Sources of Faults in Computer
Systems

EECE 513: Fault-tolerant digital
systems



Learning Objectives

e Specify fault models for different techniques

 List faults in each layer of the system stack
— Why they occur ?
— How do they manifest ?

* Apply fault-tolerance techniques at the
appropriate layer of the system stack



What is a fault model ?

* A concrete description of
— What faults can occur

— Where they can occur

— When they can occur

 Example: When a packet is read from a noisy
channel, it can have a single word corrupted
by an error in its header or body



Why do we need fault models ?

* Principled way to reason about faults

* Need to qualitatively outline the space of
faults before we can quantify their occurrence

e Every fault-tolerance technique is targeted to
and evaluated against a fault-model

— Even if one is not explicitly specified in the paper
— Example: ECC targets single bit flips in memory



Examples of fault models - 1

e What?

— Fault in either processor but
not correlated faults in both

Processor 1 Processor 2 * When?

— Anytime during the execution of
the program after input is given,
but before voting starts

e Where?

— Any non-correlated fault in the
processor as well as non-
deterministic faults in S/W




Examples of fault models - 2

ECC- ECC-

protected Circuitry
Memory

What ?

— Faults that cause corruption of
memory values independently,
i.e., no correlation in space

When ?

— Anytime after a value has been
written to memory OR before it
is read from memory

Where ?

. — Anywhere in the ECC-protected
Update code after write memory (not including circuits)




Examples of fault models - 3

Recovery block e What?
Switch — Faults in the primary that
| are detected successfully
‘ by the result checker
A Module
input
* When?
— During the execution of
Secondary primary, but before the

Module result is checked

Where ?
— H/W and S/W of primary

Result
Checker




Learning Objectives

e Specify fault models for different techniques

 List faults in each layer of the system stack

— Why do they occur ?
— How do they manifest ?

* Apply fault-tolerance techniques at the
appropriate layer of the system stack



Typical System Stack

User/Operator

Application

Operating System/
Virtual Machine

Faults

(transient or
permanent) Architecture

Devices/Logic



System Stack: Logic Level

Application

Operating System/
Virtual Machine

Architecture

Soft Errors, Timing errors
Timing Errors, etc. Devices/Circuits

10



System Stack: Architectural Level

Application

The Errata Series™

Operating System/

Virtual Machine

T

Design defects +

Wearout-related defects Architecture

Devices/Circuits Wearout-related defects

11



System Stack: OS/VM Level

Application

Errors in kernel
or device drivers

Operating System/
Virtual Machine

Architecture

Devices/Circuits

An exception 06 has occur Z 1B3ADC in VXD DiskTSD(03) +
00001660, This was calle N 28:C11B40C8 in WD voltrack(04) +
00000000, It may be possible to continue normally,

any key to attempt to continue,

TRLAALTHRESET to r rt your computer, You will
y unsaved informat in all applicat 3

Press any key to continue

Driver error

12



System Stack: Application Level

Concurrency bugs
and Memory
corruption errors

Application

Operating System/
Virtual Machine

Overflow
Atacs

llllllllllllllllllll

Architecture

I

Devices/Circuits Memory corruption

13



Learning Objectives

e Specify fault models for different techniques

 List faults in each layer of the system stack

— Why do they occur ?
— How do they manifest ?

* Apply fault-tolerance techniques at the
appropriate layer of the system stack



Manifestation of Faults

* Fault effects may be permanent or temporary

— Same fault may result in different effects depending
on where/when it occurs

— A soft error in the code segment is a permanent error
while one in the data segment may be temporary

* Faults may affect different layers differently

— A permanent fault in the logic level may manifest as a
temporary fault at the architectural level if the
functional unit in which it occurs is often unused



Logic Level Fault Models

e Stuck-at-fault (Permanent)
— Assume that some gate/line gets “stuck”
— Can be stuck-at-0 or stuck-at-1
— May not correspond to real physical faults
— Very useful for evaluating test cases in ATPG

* Bit-Flip Model (Transient)

— Can be caused by cosmic rays/alpha particles striking
flip-flops or logic gates (Soft errors)

— Leads to one or more bits getting “flipped”



Architectural Level Fault Models

* Permanent Errors

— Some functional unit in the processor fails (e.g., an
ALU stops working, cache line has a stuck-at-fault)

— Certain instructions are always executed incorrectly
due to design errors (e.g., adds always encounter
errors when value overflows register width)

* Transient Errors

— Some unit experiences an error for 1 cycle/instruction
(e.g., an entry in the ROB has a bit-flip for 1 cycle)

— Cache line has a single bit-flip due to cosmic ray strike



OS Level Fault Models

* Permanent Error

— An instruction or data item was corrupted by a
fault in the disk image of the OS

— Device experiences a permanent failure

* Transient Error
— An OS data/code page in memory is corrupted
— A device experiences a transient malfunctioning
— The kernel experiences deadlock/livelock



Application/Program Level

* Permanent Errors

— Programming errors in application logic -
mutation of source code or binary file

— Corruption of configuration files/data-bases
needed by the application

* Transient Errors

— Software memory corruption errors -> corruption
of memory locations

— Race conditions/Atomicity violations -> lock elision



Operator/User Level

* Permanent Errors

— Errors in configuration files/databases due to user’s
carelessness or misunderstanding of parameters

— Wrong semantic model of the application

* Transient Errors

— User types in incorrect command/GUI action due to
carelessness or oversight

— Operator attempts to upgrade hardware or software
and upgrades the wrong component/package



Learning Objectives

e Specify fault models for different techniques

 List faults in each layer of the system stack

— Why do they occur ?
— How do they manifest ?

* Apply fault-tolerance techniques at the
appropriate layer of the system stack



Recovery Latency

s 4
100 we L
0w L
e L
100 29 4
|('ps ..

fTos L

109 L

Detection Latency

Typical Recovery Latencies for a
Hierarchical Fault Tolerant Design

Recovery Level

m

Havware

Co~cumont

Dadecion

A& Rocoyury

SoMware
Excops on
Harndus

raucion

Nat-s!

Natanek
Managomest

INNS)

Syson
Marager!
Hardcore



Why is detection latency important ?

* Long-latency errors lead to more severe,
harder-to-recover failures

— Corruption of checkpoint or file-system state
— Propagation of errors in distributed systems

e Early detection facilitates fault isolation
— Need not perform system-wide restart
— Easier to diagnose problem’s root cause



Filtering of Errors

* Only a fraction of errors in each layer makes it to
the top layer

— Not all state is used in the layer above
— Some errors may be masked/overwritten

 Example: Less than 15% of errors in flip-flops
make it to the architectural state [Saggesse’05]

— Of these, only about 30 to 40 % affect programs
‘Nakka’05]

— Not all errors that affect programs are impactful
Pattabiraman’06, Pattabiraman’09]




Multi-layer Fault tolerance

Need to balance overheads with detection latency

Protection
Overheads

Detection
Latency

Impactful Errors

25



Learning Objectives

e Specify fault models for different techniques

 List faults in each layer of the system stack

— Why do they occur ?
— How do they manifest ?

* Apply fault-tolerance techniques at the
appropriate layer of the system stack



Summary

* Fault models are important for qualifying (and
qguantifying) the scope of reliability techniques

* Faults occur at different layers of the system stack

— Same fault manifested differently at different layers
— Higher layer faults may be filtered by lower layers

* Fault tolerance techniques should judiciously
balance error detection latency and overheads



