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ABSTRACT 
We describe a new method for data glove calibration that 
uses computer vision techniques to create a filter for 
individual customization of input obtained from the glove.  
Our major observation is that it is possible to create a linear 
correlation between the hand posture reported by the data 
glove and the observed posture of the hand itself. 
 
We use a feature-based computer vision system 
independently to extract information about hand posture 
from video images of a human hand that is using the data 
glove. We simultaneously collect the glove data for the 
same posture. Linear regression is used on the combined 
sets of reported data to establish a filter that customizes the 
data reported from the glove for an individual user. The 
filtered glove data is mapped onto a computer-generated 
image of the hand�s skeletal structure.  We show by 
comparison that the computer-generated hand image 
exhibits a posture quite similar to that of the actual hand. 
 
Keywords 
data glove, calibration, computer vision, computer graphics, 
linear regression, hand model 
 
1  INTRODUCTION 
Of the existing human computer interaction (HCI) 
techniques, keyboards and mice are probably the 
best-known input devices.  However, these devices 
constrain the dexterity and naturalness of interaction with 
computer-controlled applications.  This limitation 
becomes more apparent when we employ these devices 
settings such as virtual reality applications that require a 
wide variety of input from the user.   Thus, in recent years  

there has been a tremendous push in research toward novel 
devices and techniques for natural and friendly interaction 
with computers.  In particular, the analysis of hand motion 
has proved attractive to many computer animation and 
virtual reality researchers since the human hands perform 
most everyday tasks, assist in communication with other 
individuals and can sometimes express our feelings. 
 
Human hands are a very complex and delicate mechanical 
structure with approximately 30 degrees of freedom, which 
vary amongst individuals.  Consequently, successfully 
interpreting an individual�s hand motion becomes a 
necessary and significant task. 
 
In this paper, a new approach for hand model calibration is 
reported.  We base our observations on a data glove device 
called the CyberGlove [2,6].  It is constructed with stretch 
fabric and eighteen resistive bend sensors that describe the 
position of the finger joint angles (see Figure 1).  The idea 
is to find a relationship between raw sensor data reported 
by the CyberGlove and the actual joint angles of the hand 
obtained using computer vision technique. The relationship 
is established through the use of a statistical linear 
regression analysis method.  This may seem like a 
straightforward approach but the implementation is in fact 
relatively complicated.  First, the accuracy of the joint 
angles obtained from a glove-based input device is usually 
dubious.  This problem stems primarily from the 
restriction that a data glove is not tailored the specific 
geometry and features of an individual user�s hand.  
Perforce, the glove manufacturer assumes that a user�s hand 
conforms to a generic model.  This problem is 
compounded by the fact that data from such gloves is 
usually taken directly from the glove�s sensors without 
filtering or altering it to match a specific user.  Secondly, 
the actual human hand configuration is quite different from 
model assumed by the data glove.  Each joint of the 
human finger has its own relative degree of freedom that 
varies from one person to another. On the other hand (so to 
speak), the CyberGlove has only a single degree of freedom 
flexion in each joint.  Thirdly, the movements of some 



fingers are not completely independent from those of others.  
For example, the middle finger will comply with the plane 
of palm when the index finger is abducted from it.  Fourth, 
one finger�s joint movement may affect several CyberGlove 
sensors instead of one.  For example, when we rotate the 
thumb toward palm, the values of both the thumb rotation 
sensor and the thumb abduction sensor are changed.  
Therefore, understanding how to map the CyberGlove 
sensor data to the hand joint angles is a critical task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To solve all these problems described above, we divide our 
calibration system into two steps.  In the first step, a 
monocular camera system is used to take a series of images 
of the CyberGlove while the user wears it.  To assist in the 
identification of features in the image, a coloured marker is 
placed on each visible joint of the CyberGlove (see Figure 
5).  These images are then processed using edge detection 
to extract joint angles related to the hand model.  Once the 
features are extracted from vision system, the second step 
consists determining the mapping from CyberGlove sensors 
to hand joint angles through the use of linear regression 
analysis.  Finally, once an appropriate sensor mapping has 
been determined, a virtual hand is created which employs 
the results of the calibration in the display of a graphical 
model of the user�s hand based on real-time data obtained 
from the glove. 
 
Hand model building in this paper is to combine both 
techniques of computer vision system and computer 
graphics.  The objectives are to recognize the CyberGlove 
reading from the computer vision system extracted features 
and to create a visual displaying hand providing an 
immediate feedback.  Also, the model is easy to calibrate 
to any person�s hand since we do not hope it constricts 
anyone from using this hand model system.  These issues 
will be described in the following sections. 
 
 
 

2 DESCRIPTION OF THE HUMAN HAND 
MODEL SKELETON 

 
Finding a relationship between the data reported by the 
glove�s sensors and the actual hand posture of the user is 
dependent on using a reasonable description of the skeletal 
structure of the hand.  The human hand is actually a very 
complicated piece of machinery for which it is difficult to 
gain a physically exact model.  Hence, many researchers 
have used simpler approximations to the hand�s physical 
structure [4,5,6,9].  We have relatively little to add to this 
subject, except to note that we have augmented features 
described by these models to match our particular problem 
domain. 
 
The skeleton of human hand is modeled with a hierarchical 
structure of links connected by joints with one or two 
rotational degrees of freedom. Figure 2 illustrates our 
model of the human hand skeleton. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
The abbreviations used to describe the fingers, links, and 
joints in this diagram are summarized in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1 - The Virtual Technologies CyberGlove 
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Figure 2 - Hand skeleton notational diagram 

Fingers Joints Links 
T Thumb TM Trapezio 

Metacarpal 
P1 Proximal 

Phalanx 
I Index MCP Metacarpo  

Phalangeal 
P2 Middle 

Phalanx 
M Middle IP Interphalangeal P3 Distal 

Phalanx 
R Ring PIP Proximal  

Interphalangeal 
M Metacarpal

P Pinky DIP Distal  
Interphalangeal

Table 1 � Finger, joint and link abbreviations 



 
3 NOTATIONS 
We have developed a notation for the representation of the 
joint angles in the hand model and the sensor data from the 
CyberGlove. 
 
We begin with the notation used in the hand model.  In 
order to describe a rotational position around a specific 
joint, we label five fingers thumb as T, index as I, middle as 
M, ring as R, and pinkie as P.  Each joint of the fingers is 
also labeled as shown in Figure 2. 
 
The rotational position of each joint of a finger is 
represented by θCj

k, where k represents the number of the 
joint on the finger C and i represents the axis of rotation, 
either X or Z.  For example, θTX

1 refers to a rotation 
around the X-axis of the thumb's MCP joint.  In total, 
there are twenty-three joint angles taken into consideration.   
 
Next, we consider the sensor data of CyberGlove.  There 
are 18 bend sensors on the CyberGlove that monitor the 
motions of the human hand [1,7].  The sensors are located 
over or near the joints of hand and wrist.  We use Xi, 
where 0 ≤ i ≤ 17, to denote these eighteen sensors, each of 
which has 8-bit resolution.  For the thumb, there are three 
sensors X0, X1, and X2, which measure the TM, MCP, and IP 
joints respectively.  For the remaining fingers, index, 
middle, ring, and pinkie, there are two sensors for each 
finger to measure the MCP and PIP joints, which are X4, X5, 
X6, X7, X9, X10, X12, and X13.  The CyberGlove also has 
four sensors to measure the abduction angles, which are 
thumb-index abduction X3, middle-index abduction X8, 
ring-middle abduction X11, and pinkie-ring abduction X14.   
Finally, X15 measures the palm arch angle, and X16 and X17 
measure the wrist pitch and yaw angles respectively. 
 
4 CONSTRAINTS ON THE HAND MODEL 
Normally, it is impossible to move the DIP without moving 
the adjacent PIP joint and vice versa in human finger joint 
movements.  According to the previous study result 
[4,5,6], it revealed that a linear relationship exists between 
these two joint angles.  θDIP can be expressed as: 

PIPDIP θθ
3
2=       (1) 

As described earlier, the eighteen-sensor CyberGlove has 
no sensors on the DIP joints.  We use the above constraint 
in our hand model calibration to infer the DIP joint angle 
from the PIP joint angle.  In addition, we do not consider 
the wrist pitch and yaw angles in order to simplify our hand 
model calibration and display, since they do not contribute 
to the overall posture of the hand itself.  
 
After defining the joint notation, CyberGlove sensor data, 
and hand model constraints, the following section 
demonstrates how we derive the relationship between the 
movement of each joint and CyberGlove sensor data. 

 
5 DATA MAPPING 
Theoretically, the digitized sensor values of the CyberGlove 
vary linearly with values ranging from 0 to 255.  We can 
mathematically describe the relationship between the actual 
joint angle and the raw CyberGlove sensor readings as a 
function f: 

θ = f (x)       (2) 

where θ is the actual joint angle and x is a set of the values 
reported by individual CyberGlove sensors. As mentioned 
earlier, it is important to recognize that one joint angle may 
depend on the values of multiple glove sensors. 
 
In order to find the relationship between CyberGlove sensor 
readings and hand joint movement, we observed the 
CyberGlove output in a variety of hand postures while 
wearing the glove.  By noting which sensors exhibited a 
change when a given joint angle changed, we could 
determine the sensor dependencies for each joint. These 
relationships are summarized in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that some joint angles are related to only one 
CyberGlove sensor while some are related to two.  See 
Section 7 for a discussion of the hand model calibration, 
one-on-one mapping, and one-on-two mapping. 
 
6 DESCRIPTION OF VISION SYSTEM 
In order to measure the actual angles of the joints and the 
lengths between the joints, we marked each joint with a 
small coloured sticker.  We then used a monocular camera 
system to record a series of images of the hand as the user 
made different movements with the CyberGlove.  During 
the measurement, the user was required to form a series of 
prompted hand postures, as shown in Figure 3.  The 
graphical prompt depicts the hand position that the user 
should be forming, while the camera view shows what the 
camera will record.   
 
Once the user is satisfied that the camera view matches the 
on-screen prompt as closely as possible, he presses a button 
on the keyboard.  Both the camera image and the 
corresponding CyberGlove sensor values are 
simultaneously recorded.  This procedure is repeated for 

Joint Relation Joint Relation Joint Relation 
θIx

1 X4 θTx
1 X1 θIx

0 X15 
θIx

2 X5 θTx
2 X2 θRx

0 X15 
θMx

1 X6 θTx
0 X0, X3 θPx

0 X15 
θMx

2 X7 θTz
0 X0, X3   

θRx
1 X9 θIz

1 X8 θIx
3 2/3 θIx

2 
θRx

2 X10 θMz
1 X8, X11 θMx

3 2/3 θMx
2 

θPx
1 X12 θRz

1 X11, X14 θRx
3 2/3 θRx

2 
θPx

2 X13 θPz
1 X14 θPx

3 2/3 θPx
2 

Table 2 - Joint/Sensor relationships 



several predetermined hand postures specifically designed 
for the calibration procedure.  Colour filtering and edge 
detection techniques were then used to extract a set of 
features from each image, and the features were analyzed 
for desired geometric relationships such as joint angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.1 Markers 
Coloured markers are used to help identify the features in 
the image [2,3].  The image is processed using a colour 
mask, with all colours but those of the marker filtered out.  
The position of the marker on the image then determines 
the location of the relevant feature.  By putting different 
colours on different features, the locations of specific 
features can be discerned.  For example, different colours 
on each of the fingers will partially mitigate occlusion by 
other fingers - even a partially occluded finger can be 
identified as long as the marker can be seen. 
 
We investigated several marking techniques before 
deciding on the use of coloured dots.  These included dots, 
rubber bands, and lines.  Dots placed over the joints would 
allow identification of the main segments of the fingers, but 
would require repositioning for different users.  Rubber 
bands would be placed around both the proximal and distal 
ends of each bone in the fingers, allowing the joints to be 
identified by their relationship to the bones.  This method 
requires a certain amount of extrapolation because the 
bands cannot be placed around the joints themselves as they 
would be likely to slide off to one side or the other.  Bands 
would also require repositioning for different users.  Lines 
on the glove, up the back of each finger, would present a 
continuous feature that could also be used for data 
extraction, but would be prone to occlusion if the hand 
were turned away, unlike the bands. 
 
Both the rubber bands and the lines would work well for 
the fingers.  However, to extract information for the rest of 
the hand is a more difficult matter.  Rubber bands don't fit 
well around the palm.  The best way to use markers to 
assist in feature extraction from the palm is to use lines 
crossing the back of the hand; such lines could be easily 

detected and examined for curvature, which could then be 
related to the parameters of the palm. 
 
For the purposes of our prototype, however, dots proved to 
be the most versatile.  Because they are simply stickers, 
they can be moved around to experiment with different 
marking positions and combinations, and to avoid 
occlusion.  We leave open the option of experimenting 
with bands or lines in future work. 
 
6.2 Colour Filtering 
The main part of the feature extraction process involved 
filtering the colours of the markers to determine their 
positions.  Since the illumination is fairly consistent, a 
simple thresholding algorithm was used to determine where 
the markers are.  This information was then translated into 
(x,y) coordinates for use in the feature extraction routine. 
 
Four colours of marker were employed: red, green, blue, 
and yellow.  Each colour was unique in the image, in that 
no objects other than the markers had these colours.  Each 
colour is defined by its red, green, and blue (RGB) 
components; for example, the yellow marker is mainly red 
and green, with little or no blue, while green has almost no 
red or blue.  To determine where the markers are, the 
image was divided into its three colour planes and scanned 
for peaks.  If, for example, a peak in the green colour 
plane coincided with lows in the red and blue colour planes, 
the colour at that point was interpreted as green.  By 
finding the points with the strongest characteristics for each 
colour of marker, the positions of the markers were 
determined. 
 
The filtering process was done in four steps to find each of 
the four colours of markers, with the results stored in four 
separate bitmaps � on each bitmap, a pixel was set if the 
corresponding pixel of the original image was of the 
respective colour, and cleared otherwise.  The result was 
four two-tone images, each of which had pixels set where 
there were markers of the related colour.  The centroid of 
each area of pixels was then determined; this was defined 
as the position of the marker. 
 
Once the position of a marker was known, it was recorded 
as an (x,y) coordinate pair, with the corresponding colour 
also noted.  These data were then be used to extract 
desirable features from the image.  There was another 
pre-processing step, though, that added information to the 
marker positions to aid the extraction of features.  The 
next section discusses that step, edge-detection. 
 
6.3 Edge Detection 
The edge detection algorithm uses a centre-surround 
function to filter the image.  The result is analyzed for 
zero crossings, and then passed through a threshold filter to 
remove noise.  The resulting image is a map of the edges 
found in the original image, with the different parameters 

Figure 3 - Interface for vision data acquisition 



for the centre-surround function providing different edges 
in the result.  Most of the functions needed to process the 
image are provided by the Vista image processing suite by 
Art Pope [8]. 
 
The centre-surround function used is the Laplacian of 
Gaussian function: 

2

2

2
2

22
2 )

2
1( σ

σ
⋅
+−

⋅
⋅
+−=⋅∇

yx

eyxG    (3) 

It is radially symmetric and looks like the function shown 
in Figure 4 when sliced through its centre-point.  It is 
weighted so that the positive part of the graph integrates to 
+1, while the negative portion integrates to �1, and it is 
used as a convolution mask.  It can be of varying size, 
usually ranging from 3 to 15 pixels square, with a σ value 
of about 1/7 of that value.  The effects of these values will 
be discussed below.  The ∇ 2G function is convolved with 
the image, producing a gradient map of the image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The image map is passed to a zero crossing detection 
procedure, which joins up zero crossings into likely edges.  
However, because image noise produces many zero 
crossings in a flat area, the image must also be filtered.  A 
thresholding algorithm uses a double threshold to determine 
which zero crossings to retain � the gradient must rise 
above a threshold to be retained, but once the gradient is 
accepted all connected zero crossings must fall below a 
lower threshold before being rejected.  The operation of 
the thresholder is conceptually similar to a heterodyne, in 
which different thresholds are used depending on whether 
the signal is increasing or decreasing. 
 
The result of the image processing steps above is an edge 
map of the image.  The edges detected depend on the size 
of the convolution mask, with larger sizes averaging the 
gradient over wider features in the picture.  The sigma 
value also affects what scale edges are detected, and the 
two threshold values trade off between noise insensitivity 
and feature insensitivity. 
 
The resulting image, consisting of all the selected edges of 
the original image, was then analyzed for feature extraction.  

As a first step, the edges were approximated as line 
segments.  Then, interesting line segments were examined.  
Two line segments converging on a point indicate a joint; 
two parallel line segments probably indicate a single 
segment, such as a bone in a finger.  These interesting 
features, in tandem with the marker data, were used to 
identify features such as the finger joints and palm structure 
of the hand.  These features are then easily measured to 
extract the relevant data for the regression analysis. 
 
6.4 Feature Extraction 
There are two kinds of features that we wanted to extract 
from our image data.  These were joint angles and relative 
link lengths.  The first required that, for each joint, the 
joint and its two neighbouring links were determined.  The 
second required that the two joints surrounding a single link 
were found. 
 
By marking each joint with a dot, and making each finger�s 
markers a different colour, the salient features were 
extracted.  For example, in Figure 5, the back view of the 
hand, we marked the index finger with green, the middle 
with blue, the ring with yellow, and the pinkie with blue.  
Note that there is also a single blue marker on the back of 
the palm; this marker provides an easy reference for all the 
others.  The analysis consisted of filtering the colours to 
retrieve a single point where each marker is located.  Then 
the desired features were determined from the locations of 
those points, along with the known original colours of the 
points.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the example, the abduction angle between the index and 
middle fingers can be determined by extrapolating straight 
lines from the three green Index markers and the three blue 
Middle markers.  The extra green marker is used to 
determine in which direction the extrapolation must occur 
in case there is any doubt.  The angle between the two 
lines is the abduction angle between the two fingers.  
Similarly, by placing the markers on the edges of the 
fingers and viewing the hand from the side, joint angles 

 

Figure 5 - Data glove with markers 

 

Figure 4 - ∇∇∇∇ 2G function cross-section 



such as θIx
1, the metacarpophalangeal joint of the index 

finger, can be found. 
 
One problem with this approach is that the fingertip is hard 
to mark � since the marker should be centred about the 
middle of the joint, it must be hanging off the end of the 
finger.  One way of getting around this difficulty is to use 
edge detection to find the end of the finger.  Once the 
edges have been found, as described in Section 6.3, the end 
can be found by several methods.  One method is to 
examine only the edge set, looking for two parallel 
segments attached to two or more converging segments.  
Another method uses the known joint positions as starting 
points and extrapolates distally until the end edge of the 
finger is intersected.  The latter method is easier to 
implement but works easily only for straight-fingered 
postures. 
 
The second type of feature we wish to extract from the 
image is the relationship between the various link lengths.  
Since we are using only a monocular camera system, 
absolute distances cannot be determined without a known 
reference point.  However, the relative lengths between 
links can be determined, and one link measured externally 
to the system.  The relative lengths are easily found by 
measuring the distances between the markers on each finger, 
with the fingertip known from edge detection. 
 
Two types of features were extracted from the images of the 
hand: joint angles and relative link lengths.  These features 
were extracted from a combination of coloured marker 
identification and edge detection.  Once the data is 
extracted, it can be correlated to the CyberGlove data as 
demonstrated in the following section. 
 
7 HAND MODEL CALIBRATION 
When the sequence of images captured from computer 
vision system are analyzed, a set of data for each finger�s 
joints is obtained.  Each of these corresponds to a set of 
CyberGlove data, recorded at the same times.  These two 
sets are: 

( )nxxxX ,...,, 21=  and    (4) 
( )nθθθφ ,...,, 21=  ,     (5) 

where X is the CyberGlove sensor data and φ is the image 
joint angles data. 
 
To determine the function f in equation 1, calibration of the 
human hand model is divided into two correlation parts, 
one-to-one mapping and one-to-two mapping, as described 
in section 5. 
 
7.1 One-to-One Mapping 
In this section, we consider those joint angles that have a 
one-to-one relationship with a sensor.  A simple linear 
regression method employing least squares analysis is used.  
The general simple linear regression equation can be 

written as: 
 

Joint_Angle = Gain · (α + β · Sensor_Value)  (6) 
 

where Joint_Angle is the angle in radians, Sensor_Value is a 
value from zero to 255, α and β are the regression 
coefficients, and the Gain is a manually adjustable 
parameter to ensure that the displayed graphic joint angle is 
consistent with the physical joint angle. 
 
In the calculation of the two regression coefficients, α and 
β, Sensor_Value and Joint_Angle are denoted as X and Y 
respectively.  Then the equations for α and β are 
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XY βα −= ,      (8) 

where XXx −= and YYy −= , with X as the average 
value of all X andY the average value of all Y. 
 
After calculating α and β, each of one-to-one mapping joint 
angles is obtained.  Then the four DIP angles can be 
derived from equation 1.  For example, a possible posture 
of the index finger is shown in Figure 6.  Three joint 
angles, MCP, PIP, and PIP, are represented in equations 9 
to 11 respectively. 
 
 
 
 
 
 
 
 
 
 
 

 

θIx
1 = Gain(α1 + β1X4)     (9) 

θIx
2 = Gain(α2 + β2X5)    (10) 
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7.2 One-to-Two Mapping 
In this section, we consider those joint angles that have a 
one-to-two relationship with the sensors.  A multiple 
linear regression analysis method employing least squares 
analysis is used.  The general multiple linear regression 
equation is defined as: 
 
  Joint_Angle =        (12) 

Gain · (α + β · Sensor_Value1 + γ · Sensor_Value2),  

θIx
1 
θIx

2 θIx
3 

PIP 
DIP 

TM 

MCP 

 

Figure 4 - Gesture of index finger 



where Joint_Angle is in radians, Sensor_Value1 and 
Sensor_Value2 are values from 0 to 255, and α, β, and γ are 
the regression coefficients. 
 
In the calculation of α, β, and γ, Sensor_Value1 and 
Sensor_Value2 of the CyberGlove are denoted as X and Z, 
and Joint_ Angle of the vision-system is denoted as Y. 
 
α, β, and γ are then calculated as follows: 
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where X , Y , and Z are averages and  XXx −= , 
YYy −= , and ZZz −= . 

 
The one-to-two mapping joint angles θTx

0, θTz
0, θMz

1, and 
θRz

1 are obtained from equations 12 through 15.  
 
8 GRAPHIC DISPLAY OF THE HUMAN HAND 
After performing the linear regression analysis from the 
previous section, we have developed a filter that allows us 
to tailor the data glove input for an individual user.  At this 
point we are ready to construct a graphical depiction of the 
hand.  When the hand is displayed, a three-dimensional 
geometric model of the hand�s skeleton is presented to the 
user.  This skeleton is represented as a set of linked 
cylinders.  The justification for our purposefully simplistic 
display of the hand is that we are interested primarily in the 
analysis of the hand�s posture and are therefore not as 
interested in an exact model of the hand�s skin and 
muscular structure.  In fact, these features could 
potentially obscure vital information regarding the posture 
of the hand�s skeleton. 
 
The hand model is animated in real time based on sensor 
data retrieved from the CyberGlove.  The sensors are 
polled for data at regular intervals and this data is passed 
through the regression map filter to update the appropriate 
joints of the hand model. 
 
As mentioned previously, even after establishing the 
regression map it may be necessary to fine-tune the 
calibration. This is done by manually adjusting the gain on 
the filtered data being passed to the joints. A convenient 
interface is provided to perform manual calibration (see 
Figure 7).  The manual calibration can be done while the 
hand model is being animated.  This permits easy 
inspection of the results in an interactive setting.  We also 

accompany the animation of the hand model with a 
simultaneous video display of the hand to aid in 
comparison of the posture of the animated model to that of 
the hand itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9 CONCLUSIONS AND FUTURE WORK 
We have presented a novel approach to data glove 
calibration.  By using computer vision techniques and 
linear regression, along with a representative hand model, 
we attempted to provide an automated calibration 
procedure for the Virtual Technologies CyberGlove. 
 
At the time of this writing, we had not yet conducted 
structured trials to statistically determine the validity of our 
approach to CyberGlove calibration.  However, we drew 
several conclusions from our experiences with the project. 
 
First, the method by which we obtained data and interacted 
with the user proved to be very intuitive and 
straightforward. In particular, gathering the images and 
glove data for the regression analysis felt very natural.  
The graphical display of prompted poses with simultaneous 
video capture was especially effective.  In addition, the 
manual gain calibration of the active data glove seemed 
likely to be a helpful tool.  Also, the regression analysis 
leant itself to a simple, yet highly usable, implementation. 
 
The edge detection proved to be effective within the limited 
domain that we were able to use it.  However, the vision 
system suffered from a general lack of accuracy brought on 
by several factors.  These included the volatile nature of 
hand marker location and difficulty in obtaining 

Figure 5 - Playback and manual calibration 



three-dimensional data from two-dimensional images. 
 
We have identified several directions through which this 
work could be expanded in future research.  In reality, the 
joint-sensor mappings are much more complex than the 
one-to-one and one-to-two mappings to which we restricted 
ourselves.  A more realistic approach would be to 
implement many-to-many mappings.  In addition, it is not 
completely clear that the mappings are linear, and an 
exploration of higher-order mapping spaces would be 
appropriate.  As mentioned previously, the largest 
drawback was the quality of data obtained from the vision 
system.  Better results would likely be obtained by using 
more sophisticated methods such as three-dimensional 
model matching.  Finally, it would have been aesthetically 
pleasing to have a more complex and physically accurate 
display of the surface of the hand available during 
playback. 
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