
Drawing on the table: computer aided design for dummies

 Duncan Cavens
 University of British Columbia
 Interdisciplinary Studies
 Vancouver, BC Canada
 604 822 4148
 dcavens@interchange.ubc.ca

ABSTRACT
This paper presents a prototype for an interface device
which leverages the strengths of commercially available
computer-aided-design (CAD) packages and the skills of
pen-based designers in a single system. Using relatively
conventional technology, a cathode ray tube (CRT) display
and a touchscreen, the device connects the traditional skills
of a designer with the power and advantages of a CAD
system. In order to closely emulate a standard drawing
surface, the system interprets pen-based sketching as vector
linework. In addition, a user interface system was
developed that adapts the current graphical user interface
(GUI) paradigm to the particular demands of a large
drafting surface, using a two handed interface. While the
author only created a smaller proof-of-concept device, the
results were positive, and point towards the need for further
development.

Keywords
Computer-aided-design, pen sketching, drafting, two
handed interface

1 INTRODUCTION AND CONTEXT
As with many industries, the introduction of computers into
the field of architectural and landscape design has been a
mixed success. Most design firms now use computer
software for a majority of their day-to-day drafting and
graphical work. Computer aided design (CAD) software is
used at many stages of a design project: drafting, revisions,
sharing of designs between trades, and for production of
construction details and presentation drawings. While at
first glance it appears that CAD has permeated all aspects
of landscape and architectural practise, it is interesting to
note that the use of the computer is largely excluded from
the fundamental aspect of this industry: creative design.
Based upon anecdotal evidence, pencil and paper are the
dominant media for initial design work in most North
American firms (particularly in the field of landscape

architecture.) Once a design has been finalized using
�traditional� methods, it is handed over to a junior staff
member who enters it into a CAD system. In essence, the
computer aided design system has become a computer
aided drafting system.

There are many possible explanations for this use of CAD
software. Often, it is the senior associates or partners who
are responsible for design. As these practitioners are
generally older, they are less likely to have the time or
inclination to learn the intricacies of a CAD system, a
process which generally takes several years[1]. As well,
even with trained staff, studies have shown that overall
productivity only increases by a maximum of 5% with a
CAD system over a purely manual system[7]. Another
important factor is that CAD systems were generally
designed for engineering purposes, in particular solid
modelling, and adapted to other fields. Many of the tools
available do not reflect standard practice in the landscape
and architectural design fields. This is also reflected in the
lack of usability studies which focus on these fields, when
compared to the engineering field (in particular
mechanical.)

An obvious question is whether one should care about the

Figure 1: Mock up of what final system could look like

current state of affairs. If users are as efficient using
manual methods as computer-aided ones, why shouldn�t
they continue using pen and paper? While one could argue
that true efficiencies have not been gained due to a
lackluster interface, there is another fundamental issue.
Design is a process of iterative synthesis- the constant
testing of ideas against new and different information.
Over the course of a large complex projects new
information is introduced at many different steps. With the
current state of practice, it is difficult to creatively
assimilate new data and change one�s design to reflect it,
due to the disconnect between design and drafting, and due
to the large investment in drafting time.

It has been suggested that integrating a designer�s pen
based skills and knowledge with the power of a CAD
system would have powerful synergy[7]. A current theme
in computer interface design is the creation of unique
interfaces which are designed for a particular purpose,
rather than trying to fit the task around the existing
interface[5]. This paper presents a prototype for an
interface device which leverages the strengths of
commercially available CAD packages and the skills of
pen-based designers in a single system. It seeks to adapt
two components of the traditional drafting system, the
drafting table and pen, and connect them to the CAD
system and database. This is done using conventional
technology: a pressure-sensitive touch screen and a CRT
display/desk. In order to closely emulate a standard
drawing surface, the system interprets pen-based sketching
as vector linework. In addition, a user interface system was
developed that adapts the current graphical user interface
(GUI) paradigm to the particular demands of a large
drafting surface, using a two handed interface.

2 RELATED WORK
There has been similar published work in three closely
related areas: examinations of the use and limitations of
existing CAD systems; interpretation of pen-based
sketching; and in the development of two-handed
interfaces.

While Hwang and Ullman [7] focused on mechanical
engineers, their detailed analysis of mechanical engineers at
the design stage confirms the authors supposition that
sketching plays a key role in the design process. The study
concluded that, to be effective, a CAD system needed to
accepted pen-based input and recognize features. Others,
such as Bhavani and John [1] have examined CAD usage
(again amongst mechanical engineers) in order to
understand the reasons for the lack of productivity in CAD
systems. This study in particular concludes that current
systems do not reflect the aptitudes and desires of their
users, and insinuates that users either need to be completely
retrained for existing software, or need a new paradigm for
drafting.

Eggli, Bruederlin and Elber present a closely related system
in Sketching as a Solid Modeling Tool[4]. Their system
uses a sketching interface to create three dimensional
objects. It interprets the users pen strokes into lines, circles
and arcs and then assembles them into three dimensional
objects. The paper presents many good points about user
interface design issues with regards to pen-based sketching
input, as well as good summary of other research in
interpretation algorithms for converting points to lines.

There has also been a large volume of research into
handwriting recognition, which has similar issues, albeit
more complicated, with respect to feature extraction from
points. In particular, the work of L.R.B Schomaker [6,9]
was the inspiration for the feature extraction algorithm used
in the system described here. His work in analysing
handwriting is partially based on the realisation that control
points in handwriting can be identified by their relative
velocity. As demonstrated in figure 1, the writers tend to
slow down their pen velocity as they reach a critical point,
and accelerate away from the point once they have reached
it.

There has also been a fair amount of research into the use
of two handed interfaces. Beginning with Buxton and
Myers[2], many have demonstrated that users can easily
learn and use a two handed interface, and that significant
speed increases can be gained by the use of two hands. In
addition to providing a good overview of current research
in two handed interfaces, Hinckley et al. [*] seems to
indicate that the non-dominant hand is very good at
performing supporting tasks simultaneously, rather than co-
dominant tasks.

3 SYSTEM DESIGN
At its fundamental level, the system is a drafting table

Figure 2: Diagram showing relationships between
control points and velocity in handwriting[6].

which uses a back projected screen and is touch sensitive.
This allows the user to directly draw on the surface, and
immediately sees her drawing reflected on the screen.
While the author has only created a smaller prototype of the
proposed final system, the system was conceived to be
implemented on an industry-standard sized (3� x 4�)
drawing surface. This allows the user to easily change
scales, either by moving one's body position, or via a CAD
zoom operation. It also allows the user to design at a
relatively small scale over a large area, without constantly
needing to pan across a CAD drawing space.

On such a large surface, a rigidly traditional �WIMP�
(Windows, Icons, Menus and Pointer) interface begins to
break down with respect to usability. As the user will be
drawing across the entire surface, having toolbars, menus
and dialogs in a fixed location (normally at the top) would
require that the user reach and/or move frequently to
interact with the system to change modes. Not only is this
cumbersome physically, it also serves as a distraction from
the task at hand.

As Chatty[3] observes, even with traditional computer
aided drawing systems, having to use the same hand for
both spatial indication as well as to communicate non-
spatial information to the system (as is done in most vector
based drawing programs, such as Adobe Illustrator or
CorelDRAW) is both inefficient and frustrating. Most
current CAD systems attempt to circumvent this
inefficiency by the use of keyboard commands. While this
is a very successful solution for expert users, keyboard
shortcuts take a long time to learn and are not generally
used by casual users. In addition, it is difficult to envisage
how one could adapt a keyboard interface to a large
drawing surface: the user invariably has to stretch and/or
move to enter commands, or move the keyboard around to
follow her dominant hand, which would be cumbersome.

In order to allow the user to focus on their area of interest,
and still be able to switch modes and options, it was
decided to implement a floating toolbar that the user is able
to summon to their point of interest. The user uses a pen in
their dominant hand to draw and input co-ordinate
information, and uses their non-dominant hand to summon
the a floating toolbar to the hand�s location using a double-
tap. This division between dominant and non-dominant
hand is not rigidly enforced- a tapping motion with the pen
will also summon the toolbar. Each button on the toolbar is
sized at about 1.5cm x 1.5cm, considerably larger than
buttons in a conventional GUI, in order to accommodate
the much larger pointing surface of an index finger.

The toolbar �borrows� its basic functionality and icons from
the existing WIMP paradigm and modifies it in slightly
different way. Not only was this relatively simple to
implement, it also leverages users existing understanding of
standard user interfaces to enable them to quickly learn the
interface.

An important design element that required careful

consideration was how one could interpret the data from
the pen-based input into useful information for the CAD
system. The strength of a CAD system is its vector-based
nature- capturing graphic data as lines, arcs and polygons
allows rapid revision and dimensioning. Rather than using
the traditional CAD and vector-drawing tool practice of
requiring the user to explicitly enter control points, it was
decided that maintaining the fluid sketching of pencil and
paper was essential. As a result, the system is required to
interpret the point data into lines, arcs and circles.

Unlike Eggli�s system[4], which automatically interprets
and classifies input as line, spline, or circle, it was decided
that the user would be required to specify which kind of
primitive to draw. This was decided for two closely related
reasons:

1) that it would be technically very difficult to implement
a system which recognizes different primitives at a
high level of reliability.

2) 2) it was reasoned that it would be better not to
automatically classify pen strokes than to do it without
a very high degree of accuracy.

There was a desire to avoid the frustrations that users
experience when the computer incorrectly interprets the
user�s intentions on a consistent basis (i.e. auto-correct
feature in Microsoft Word.) Therefore, a series of buttons
were placed on the floating toolbar which allow the user to
select which kind of primitive to draw (line, multipart line,
closed polygon, arc and circle.) It is felt that the ease with
which the user can change types, due to the placement of

Figure 3: Floating Toolbar design.
Roll-out button menus are used to save
space while adding functionality.

the toolbar, is a better solution than a partially successful
algorithm. Upon informal testing, it was decided to extend
the toolbar to allow different �subtypes� for some primitive
types. Similar to Eggli�s �modes�, each subtype is a simply
a modification of the tolerances within the recognition
algorithm to correspond roughly to the following three
types:

�� rigid line mode: the system has a low tolerance for
selecting control points, and selects very few

�� freehand mode: the system selects a large number of
control points

�� �inbetween� mode: the system is moderately tolerant
and selects a moderate amount of control points.

All of the settings and tolerances are changeable by the user
in a separate pop up window in order to customize the
system for individual user�s habits and desires.

In addition to the basic drawing commands, it was
necessary to implement some basic object manipulation
commands such as zoom, pan, select object, move object,
copy object and delete object. Each command uses the pen
interface to perform spatial selection and indication. The
commands use the pen metaphor where possible so as to be
more intuitive: for example, when zooming in, the user
selects the zoom mode and then quickly circles the area of
interest to zoom in on.

4 IMPLEMENTATION
As it was impossible to get access to a large enough
touchscreen, the project was implemented as a prototype on
a 17� touch screen. A Magictouch pressure sensitive
touchscreen was used, which affixes itself to the monitor in
front of the screen. As the touchscreen has a maximum
resolution of 1024 x 1024, the program was displayed at
1024 x 768 resolution.

The touchscreen was attached to a Intel Pentium III system
running the Microsoft Windows NT 4.0 Workstation
operating system. The drivers supplied with the
touchscreen allowed touch input to be interpreted as mouse
events. While this made rapid prototyping easier, it also
had the effect of precluding what the author believes would
be one of the most interesting aspects to touchscreen
drafting: the ability to use mechanical aides, such as rulers
and templates on top of the screen. These aides help to
increase the productivity of mechanical drafters
significantly, and it is thought that they would have the
same effect on drafters using the touchscreen system. As
the touchscreen drivers assume that the user will only touch
a single point at a time, placing a ruler on the screen causes
the driver to misinterpret the location of the pen.

 From the beginning, it was intended that the system should
�piggy-back� on existing CAD software. Modern software
design techniques have increasingly allowed software
developers to extend and change the interface of the major
CAD systems. By using an existing system, it was possible
to concentrate development efforts on the user interface,
rather than on the drawing database, graphics engine, etc.
User�s current work could also be brought into the system
so that testing could occur on user�s current projects, rather
than on hypothetical situations. Autodesk, Inc.�s AutoCAD
Release 14 was chosen as a base platform as it allows two
different kinds of customization: an object oriented access
to its database and commands using Microsoft�s ActiveX
API, and access to the AutoCAD�s graphics engine using
the scripting language AutoLISP.

Microsoft�s Visual Basic language was used to interface
with the ActiveX components of AutoCAD.
Unfortunately, the customisation experience was not as
successful as it should have been. It was only discovered
quite a way into the process that the two customisation
environments have radically different capabilities, and that
it is pratically impossible to communicate between the two
environments. As a result, quite a few inelegant techniques
at interprocess communication were required, which
largely involved saving information to text files in one
environment and then loaded back into the same program
in the other environment.

Most of the implementation of the user interface was
straightforward, although the choice of Visual Basic as a
user interface design was perhaps unfortunate. The
development environments encourages the use of
Microsoft�s particular interpretation of the WIMP interface,
making it difficult to implement some user interface
elements found in other commercial drawing packages (i.e.
roll-out button menus.)

In order to extract vector based data from the pen input, an
algorithm was written that processes each pen stroke
immediately after the user has lifted the pen from the touch
surface. Real-time conversion of the input was considered

Figure 4: Photo of Mockup System

and partially implemented, but was discarded when it was
found to be too distracting to the user (i.e. one�s attention
was focused on how the computer was interpreting the line,
as opposed to drawing the line itself.) As the algorithm is
based on relative velocity, the unpredictability caused by
excessive user concentration causes the algorithm to lose
some of its accuracy.

As stated above, the feature recognition algorithm is based
on the concepts presented by Schomaker[9]. The algorithm
tracks the velocity and position of the pen tip during
drawing. During the post-processing phase, the velocity is
compared against a threshold velocity. If it is lower than
this threshold, the algorithm also compares the relative
velocity against another threshold to determine if the user is
simply drawing very slowly. If the relative threshold is
below the threshold, the point is accepted as a control point.
A second processing feature was later added to add a
minimum distance between control points. It was found
that user�s tended to pause slightly at key points, such as
corners. Their hands were not at complete rest, however,
which resulted in a few points being sampled within a few
pixels of each other. It is these three parameters which are
used to create the sub-types. They are also customisable
via an interactive dialog.

Frankly, it was surprising how well the algorithm worked
for extracting points from the data stream. Although the
algorithm is not as accurate at slow speeds, it works quite
well for a first rough cut.

In addition, the software uses the ObjectSnap feature
adapted from AutoCAD to connect points if they are within
a certain distance (expressed as a percentage of screen area)
of a control point. One can select the type of point that one
wishes to �snap� to: end of a line, middle of a line, centre
of a circle, or simply the nearest point. These options can
be turned off from the options dialog, or the entire snap

setup can be turned on from the toolbar.

5 USER TESTING/RESPONSE
A few landscape architecture students were invited to
informally test the interface. These students have some
exposure to the traditional AutoCAD interface, but do not
describe themselves as proficient in the software. Their
initial reaction was extremely positive, especially when it
was mentioned that the screen was a prototype for a larger
system. Use of the toolbar was received generally
positively, although one user had problems with the speed
required for the double click motion (this is a problem with
the touchscreen driver, and was not easily resolved.) In
addition, a couple of users wanted to know where certain
other commands were (such as splitting a line, rotate, etc..)
This raises an important point: with CAD systems
contained well over 5000 commands, it is difficult to
conceive of how even the most commonly used ones can be
accommodated in a single toolbar.

Users were also distracted by the fact that the surface of the
touchscreen is about 7mm away from the surface of the
monitor used for the test. Depending on the angle of view,
it sometimes appears that the location of the pen does not
correspond with the point being drawn to the screen. It is
anticipated that a different touchscreen technology, where
the touchscreen is integrated with the monitor, would fix
this problem.

Some users complained that the pause between the time
when they lifted the pen from the screen to when the line
was redisplayed after being converted to vector format.
This time lag, which is noticeable, is a result in a bug in
AutoCAD which requires that one regenerate the entire
drawing after each operation in order for the changes to be
made visible. The processing required to convert the point
data into linework does not produce a visible lag.

6 CONCLUSIONS AND FUTURE WORK
While many would regard CAD as a mature technology, it
is evident from useability studies that it is not living up to
its potential as a design tool. The integration of the CAD
technology into traditional drafting tools could go a long
way to fixing this situation. While the initial results of this
proof-of-concept was promising, there needs to be a few
improvements before one can fully test the concept of a
virtual drafting table. These areas include:

• Either the touchscreen technology needs to improve, or
the drivers for the touchscreen technology need to be
found/rewritten to allow the system to accommodate
multiple simultaneous contacts with the screen. This
would allow users to rest their arms on the screen, use
drafting aids, etc. This is especially crucial if one were
to migrate to a much larger desk, where the temptation
would be to rest oneself on the drawing surface.

• The user interface would need to be designed to
accommodate a much larger set of modes and options

Figure 5: Example of Control Point interpretation. Left
to Right: Original, Line, Inbetween, Freehand

Figure 6: Example of drafting with Object Snap
feature turned on.

in the toolbar. This must be done while still
maintaining its� relatively small size, so that all of the
options are within easy reach of the hand.

• The algorithm for converting points to lines need to be
refined and retested.

REFERENCES

1. Bhavnani, Suresh K. Exploring the unrealized potential
of computer-aided drafting. in Proc. Human Factors
in Computing Systems (Vancouver BC, April 1996),
ACM Press, 332-339.

2. Buxton, William. Myers, Brad. A Study in Two-
Handed Input in Proc. CHI (Boston, MA 1986), ACM
Press, 321-326.

3. Chatty, Stephane. Issues and Experience in Designing
Two-Handed Interaction in CHI94-Companion
(Boston, MA 1994), ACM Press, 253-254.

4. Eggli, Lynn et al. Sketching as a Solid Modeling Tool
in Proc. Solid Modeling (Salt Lake City, UT 1995),
ACM Press, 313-321.

5. Hinckley, Ken et al. Two Handed Direct
Manipulation. in Transactions of Computer Human
Interaction, 5,3 (Sept 1998), ACM Press, 260-302.

6. Handwriting Recognition Group, NICI (Nijmegen
Institute for Cognition and Information) Web Site.
Online at http://hwr.nici.kun.nl/pen-computing/.

7. Hwang, T. Ullman, D. The design capture system:
capturing back-of-the-envelope sketches. Journal for
Engineering Design 1,4, 1990.

8. Majchrzak, A. Effect of CAD on the jobs and drafters
and engineers: a quantitative case study. International
Journal of Man-Machine Studie, 32,3 (1990), 245-62.

9. Schomaker, L.R.B., & Teulings, H.-L. (1990). A
Handwriting Recognition System based on the
Properties and Architectures of the Human Motor
System. Proceedings of the International Workshop
on Frontiers in Handwriting Recognition (IWFHR).
Montreal: CENPARMI Concordia. 195-211.

