
Fuel Cell Diagnostic Assistant

 Dana Kulic
 Department of Mechanical Engineering
 University of British Columbia
 2324 Main Mall
 Vancouver, BC V6T 1Z4 Canada
 +1 604 822 3147
 dana@mech.ubc.ca

ABSTRACT

This paper describes a diagnostic assistant software project
which has been developed for use with a portable fuel cell
system. The diagnostic assistant is intended for use in a
manufacturing environment to diagnose fuel cell systems
which fail factory acceptance testing. Because diagnostic
procedures for the fuel cell system are still being
developed, the assistant is designed to allow procedures to
be modified without software changes. The test
configuration interface allows users to create and modify
diagnostic procedures and test hardware configurations in a
simple graphical interface, without having to modify any of
the underlying program. The runtime interface executes
test procedures created in the test configuration interface,
and is designed to allow the user to quickly and easily
diagnose the system, and provide good overview of the
system status and test progress. The first prototype of the
fuel cell diagnostic assistant has been implemented and
tested by potential users. This paper describes the design
and implementation of the assistant system and the user
testing.

Keywords

Diagnostic software systems, fuel cell diagnostics,
interactive user interface.

1 INTRODUCTION

The fuel cell industry has traditionally been focused on
research and development and proving concepts via hand
made prototypes. As the technology matures, focus has

been shifting from research to manufacturing. If fuel cells
are to be mass-produced, improvements are needed in
many processes which are currently performed with little
automation and frequently require highly trained workers.

One such process is fuel cell diagnostics. This paper
describes a prototype system for fuel cell diagnostics which
has been developed at Ballard Power Systems. The system
assists users in diagnosing system failures of a portable fuel
cell system during factory acceptance testing.

Overview of the Fuel Cell System

The Ballard Nexa is a 1.2 kW fuel cell system designed for
integration into portable power generation devices by
Original Equipment Manufacturers (OEMs). The system
consists of a 1.2 kW Ballard fuel cell and ancillary
hardware that is used to control the fuel cell power
generation process. The fuel cell is composed of multiple
individual cells which are stacked together to form a fuel
cell stack. The fuel cell, when connected to an external
load, produces electrical power by chemically reacting
oxygen from air and hydrogen. Water is the only
byproduct of the reaction. In addition to the fuel cell stack
itself, the major subsystems are cooling, air supply and fuel
supply. Each subsystem consists of several sensors and
actuators, which are controlled by custom developed
controller software and hardware. In addition to sensing
and actuating the system components, the controller
periodically transmits information about its status and all
current sensor readings and actuator settings over a serial
bus interface. The controller can also be commanded via
the serial interface to enter “Diagnostics” mode. In this
mode, calibration settings can be modified and actuators
can be manually driven to specified control points.

Overview of the Current Diagnostic Process

The initial factory acceptance test (FAT) on each Nexa
module is executed on a fully automated test station. This
test station executes a test sequence confirming the
operation of each sensor and actuator in the “Diagnostics”
mode. Sensors are confirmed by comparing the
measurement reported by the Nexa with measurements

from independent sensors mounted at the test station. If all
sensors and actuators are operating properly, the system is
started up and tested under multiple load points.

If any of the sensor/actuator tests fails, or if the system fails
at any point during startup or operation, the failed unit is
transferred to a Rework station for diagnosis. The user
knows at which point in the test sequence the unit failed,
but has very little information as to what component in the
system actually caused the failure. The rework station is
equipped with all the functionality of the automated station,
and the user can display all of the information being
transmitted from the Nexa controller. A programmable
loadbank is also mounted on the test station and can be
used to simulate various types of loading. However, the
large amount of information being displayed
simultaneously causes the user difficulties in isolating the
cause of the problem.

Another problem is the lack of diagnostics experience with
the Nexa system in manufacturing. Since this fuel cell
technology has only recently been transferred to
manufacturing, systematic diagnostic procedures have not
yet been developed for the system. As a result, the trial and
error approach is used, where components are replaced
until something is found which fixes the problem.

The Diagnostic Assistant

The goal of the diagnostic assistant project was to develop
a new system which would help the user to visualize and
analyze the large amounts of data collected by the system.
The new system, implemented on the existing Rework test
station, would assist the user in identifying and isolating
causes of failure in the fuel cell system. One of the primary
goals of the new system was to incorporate the existing
knowledge about the relationship between symptoms and
causes into a more useable form. The knowledge had to be
organized and represented in a way that is easily accessible
and easily understood by the user. In addition, the assistant
program can be used to ensure that each user follows a
consistent and re-traceable procedure to identifying
failures.

The focus of the user interface of the system was to present
the data in a way that draws attention to anomalies and
inconsistencies in the data, without overloading the user
with information. The system should provide visibility into
how it is “thinking”, so that users can understand why the
system is prescribing certain actions, and gain a better
understanding of both the Nexa system and the diagnostic
assistant.

One of the key features required was that the system be
easily configurable and scaleable, so that as new
knowledge about isolating and identifying failures is
gained, it can be easily incorporated into the program
without requiring software rewrites. A set of procedures to
be followed for each failure type already exists in the form

of flow charts written in text form. However, since both
the system and the tests are fairly new, these procedures
tend to change as more becomes known about failure
symptoms within the system, and as more testing
functionality is added. These test procedures should be
configurable without having to re-program the system.

The diagnostic assistant was designed as two separate
interfaces, one for configuring and specifying diagnostic
test procedures, and one for executing these procedures
with a malfunctioning fuel cell system. A first prototype of
the diagnostic assistant has been developed and tested by
potential users of the system. Section 2 of this paper
describes related work in interactive diagnostic interfaces,
focusing on industrial applications. Section 3 describes the
design of the diagnostic interfaces. Section 4 presents the
user testing performed on the prototype and discusses user
responses. Finally, Section 5 concludes the paper and
discusses future work on the project.

2 RELATION TO PREVIOUS WORK

A large body of work exists in the field of interactive user
interface research and design. Commercially, many
interactive assistants are available today, ranging from
Clippie the Microsoft Office Assistant to on-line travel
booking tools, system configuration Wizards, etc.

Norman [10] provides general guidelines for user
interfaces. Mackinlay [9] describes a design approach
based on the theory of graphical presentation.

There are many works detailing different implementations
of diagnostic assistants for various industrial applications.
Chiu [5] describes an electronic recovery assistant for use
in interactive assistance during printer maintenance. The
assistant is implemented as a hypertext web application,
and also contains video footage of corrective procedures.

Koch, Isle and Butler [8] present a diagnostic assistant
system used for power plant maintenance and
troubleshooting. The system prompts the user for the
present conditions and symptoms of the unit and provides
step-by-step instructions for the maintenance technician.
The technician can also access wiring schematics,
component descriptions and pictures and video help files.
However, no allowances are made for user modification of
the knowledge base.

Kant [7] describes the implementation of an interactive
problem solving system to identify hydrocarbons and their
flow paths from oil-well data. The task of analyzing this
data is divided into many subtasks; algorithms and
programs already exist for some of these subtasks, while
others require new designs. The system contains a
graphical editor for constructing tasks from existing code
modules. The system is clearly aimed at an expert user
with programming experience, as the task configuration

system also requires users to configure many system
parameters and program new modules.

Vale et al. [11] describe a user interface developed for
assisting users during fault analysis and service restoration
in the Portuguese power transmission network. The user
interface is constructed of 3 levels of detail at which the
operators can view all or detailed parts of the network.
Users can modify the level of detail being displayed in the
detailed views. In case of an incident, a separate window is
displayed showing the location of the incident. Flashing of
the incident zone is used to alert the user. In [12], the same
system is extended to provide a more structured interface
for novice users, and a more flexible interface for advanced
users. An expert system explanation server is also added to
provide explanations into the systems actions to the user.

Davidson et al. [6] develop a set of functional requirements
for a troubleshooting advisory system for use with
mechanical equipment. A jet engine troubleshooting
implemented is developed based on the requirements. The
troubleshooting assistant guides the user through a
structured diagnostic network.

In addition to specific industrial applications, there are
numerous articles focused on research and prototype
systems. Cebulka [4] describes a prototype system which
uses an iconic script editor to allow the user to graphically
modify the control flow of a program by manipulating a
directed graph of icons. One shortfall of the described
system is that the user only has access to a predefined set of
primitive icons, and cannot create additional primitive
nodes.

Bartram and Ovans [2], and Bartram et al. [1] describe an
intelligent user interface designed for use with supervisory
control systems, such as those used in process control.
Their work is focused on displaying context sensitive
information to the user and presenting and facilitating
multiple simultaneous events requiring user attention and
response. The display is configured dynamically to
present detailed views of zones requiring attention, while at
the same time maintaining global context.

Blythe et al. [3] describe a system that allows users to add
new knowledge to a system without having to re-program
the system. The user adds knowledge by selecting from a
predefined set of English paraphrases, which map to a
formal representation in the system internal language. The
system also interactively guides the user through the
knowledge addition process. One drawback of this text-
based system is that it can be difficult to visualize the flow
of control and information in a text based system.

3 SYSTEM DESIGN

Requirements

In addition to hardware and communications requirements
imposed by the existing test station and the Nexa controller,

the following primary goals were identified for the new
system, based on consultation with users of the existing
system and an analysis of the diagnostics process:

- Help users to better visualize the fuel cell system and
the diagnostic test procedures

- Provide a structured framework that allows each user
to follow a consistent and re-traceable procedure when
diagnosing failed systems

- Provide an easy-to-use interface for modifying test
procedures

- Provide the capability to re-configure test station
hardware without software changes

The first two requirements concern the interface the user
interacts with while performing a diagnostic procedure.
The last two requirements apply to how the user interfaces
with the system when she is trying to modify the test
procedure or the system configuration. Based on these two
separate sets of requirements, two separate interfaces were
developed: the test configuration interface and the runtime
interface. The test configuration interface is used to create
and modify diagnostic procedures and to create and modify
different hardware configurations. The runtime interface is
used on the test station to diagnose a failed system. The
runtime interface executes the diagnostic procedures
created in the test configuration interface and displays the
relevant test data to the user.

Test Configuration Interface Design

User Interface Design

The test configuration interface is used to configure the
hardware and communication interfaces of the test station,
and to create and modify test execution sequences. The
user of the test configuration interface is assumed to be the
“expert” in diagnostic procedures. The user is also
assumed to be familiar with the test station hardware
interfaces. The configuration user does not need to be
familiar with the underlying implementation of the
diagnostic program, and should be able to modify
procedures and hardware configurations without
programming or software knowledge.

The goal of the test configuration interface design was to
allow the user to specify the diagnostic sequence in an easy
and familiar format, while allowing the user as much
flexibility as possible to create various test scenarios. For
these reasons, a graphical test configuration interface was
chosen, which represents the test sequence as a flow chart
(or decision tree). Each node in the tree represents a simple
test, which is termed a test node. The leaves of the decision
tree represent an identification of the failure cause. A test
node is represented as a sequential series of actions:
Actuate, Wait, Measure and Compare. The flow chart of a
test node is shown in Figure 1. An identification node is

used to represent a termination of the diagnostic procedure.
Identification nodes do not contain repair procedures,
because repairs are usually not performed by the system
diagnostics personnel, they are usually returned to the
component manufacturing team.

Actuate

Wait

Measure

Compare
Pass Fail

Figure 1 - Test Node Flow Chart

The test configuration interface is divided into several
panels. When the user first starts the program, the main
test panel appears. A picture of this panel is shown in
Figure 2. This panel is used to graphically specify the test
execution sequence using a decision tree diagram.

Figure 2 - Test Configuration Interface Main Panel

The test decision tree consists of test nodes and
identification nodes. Nodes are placed and connected on
the drawing area using the buttons in the top right corner
and using familiar clicking and dragging operations. The
user configures each node by double clicking on the node.
When a test node is double-clicked, the test node edit
window pops up. The test node edit window is shown in
Figure 3. Each test is divided into four subtasks: Actuate,
Wait, Measure and Compare. In the Actuate subtask, the

user specifies which actuator will be activated. The Wait
subtask is used to specify how long the test should wait
after operating an actuator. The Measure subtask is used to
specify which sensors are to be measured for this test.
Since the system measures all configured sensors by
default, the Measure subtask need only be used to specify
manual measurements. The Compare subtask is used to
specify the test pass/fail criteria. In the first prototype
version of the software, only a simple compare operation
with two operators is enabled, this can later be modified to
include more complex Boolean operations. The user
specifies two measurements to be compared, and the
operator to be used to compare them.

Figure 3 - Test Node Edit Window

When an identification node is double-clicked, the
identification edit window pops up. This window is used to
specify what to display to the test operator when a problem
has been identified by the diagnostic procedure. The
description should be used to instruct the test operator
which component has failed, and what the appropriate
corrective action is. The identification inputs are quite
simple, and no facility is provided for interactive guidance
during the corrective action. This approach was chosen
because in most cases, the technicians performing the
diagnostic tests do not repair a failed component, they
replace the component with a functioning one and report
the failure.

From the main panel, the user can also call up lower level
panels to configure the test station hardware, the
communications format of the Nexa controller, or the test
data database layout, via the configuration buttons on the
right side of the screen.

Software Architecture

The software design is divided in three layers, each
representing an increasing level of abstraction. The
bottom, interface layer contains software modules that
interface with the file system. Two separate file structures
are used, one for storing the hardware configuration, and

one for storing the test sequence configuration. This allows
a hardware configuration file to be re-used for multiple test
sequences. The middle, translation layer contains modules
that configure components of the test file. These modules
include the test edit module and the identification edit
module. Finally, a single top layer module handles the top-
level user interface and the graphical test description.

The test configuration interface is implemented in the
LabWindowsCVI environment from National Instruments.
This environment was chosen because it provides an easy
way to create user interface panels by automating a lot of
the user interface code. At the same time, the application
programming can be done in the familiar C environment.

Runtime Interface

User Interface Design

The runtime interface is used to execute the diagnostic test
sequences created using the test configuration interface.
The goals of the runtime interface are to display to the user
parameters of interest while the diagnostic sequence is
running, to prompt the user to perform manual actuation or
measurement operations, to receive user feedback from
these operations and to indicate to the user the results of the
diagnostic procedure. This user interface needs to handle a
variety of user types, ranging from the novice to the expert
user. Some novice users will have only rudimentary
knowledge of the Nexa system or the test station layout.
Therefore, this interface needs to provide a greater level of
structure to ensure that all users follow the correct
diagnostic procedure.

The design of the runtime interface was guided by the need
to present a large amount of data to the user without
overwhelming her. For this reason, sensors and actuators
were grouped by functionality into several subsystems,
which are displayed on different screens. Using several
screens also allowed larger displays such as gauges and
thermometers to be used, which help the user to get an
estimate of the sensor value by quick visual inspection,
without having to read the numeric display. A strip chart is
also shown on all the subsystem screens to enable the user
to view time varying behavior of parameters. This design
also takes advantage of the fact that the test sequence
designer knows which subsystem is currently being tested,
and can specify the subsystem the user should be directed
to. The runtime interface will then display the specified
subsystem by default, but the user can select to view the
other subsystems.

The runtime interface is divided into six user interface
panels. The base panel is always present in the bottom
section of the screen, while the other panels alternate based
on the current test being executed.

The base panel displays information on variables that are
important for every test node and is displayed at the bottom

of the screen throughout test execution. This panel displays
the current status of the test station hardware, the loadbank
and the Nexa system. The panel also displays the test and
test node currently being executed, and contains links to
any help files associated with the test node. From this
panel, the user also controls the operation of the test; she
can choose to stop the test, restart the test, or step back to
the previous node.

The main panel displays a schematic diagram of the Nexa
fuel cell system, showing all the subsystems and their
components and the locations of all the system sensors and
actuators. Besides each system sensor or actuator, an
indicator is displayed showing the current value of that
sensor/actuator. In the lower right corner of the screen, any
warnings being issued by the controller are displayed.

The main panel provides an overview of the system. For a
more detailed view, the sub-system panels are used. The
fuel cell is divided into 5 major subsystems: Fuel Cell
Parameters, Cooling System, Fuel Supply System and Air
Supply System. Each subsystem panel contains two sets of
indicators, one displaying parameters reported by the Nexa
controller, and one displaying the same parameters as
measured by the test station. Large meter and thermometer
type displays are used in addition to the numeric displays to
allow parameter changes to be easily noticeable. The
software monitors each sensor to ensure that it stays within
its allowable range, if a sensor exceeds its allowable range
the sensor numeric indicator turns red.

Each panel also contains a strip chart that can be used to
view the time-varying behavior of the parameters. The user
can select which parameters are viewed by clicking on the
desired parameter. Figure 4 shows a sample sub-system
panel, in this case the fuel cell parameters panel. At the
bottom of the screen is the base panel.

Figure 4 - Fuel Cell Parameters Panel

Software Architecture

The runtime interface follows the same design approach as

the test configuration interface, using the three layers of
modules. The bottom, interface layer contains software
modules which interface with the test station hardware, the
Nexa and loadbank communications interfaces and access
the filing system. The middle, translation layer contains a
single test execution module. The test execution module
executes the diagnostic test sequence based on the
specification from the test configuration file. The top layer
also contains a single module responsible for handling all
the user interface panels.

Implementation of the runtime interface was initially
started using the National Instruments Labview
environment. This platform was initially chosen because
the existing test station software was written in this
environment, which meant that many of the low-level
software modules could be re-used. However, the Labview
environment does not allow for programmatic changes to
the hardware configuration, or changes to the contents of
the serial messages. For this reason, the runtime interface
was also implemented using the LabWindowsCVI
platform.

4 TESTING

Test Design

The first prototype system was tested by six employees of
Ballard Power Systems. All six subjects tested the run-time
interface; five subjects tested the test configuration
interface. Two of the subjects were very knowledgeable of
both the Nexa system and Nexa diagnostics procedures.
Three of the subjects had good knowledge of the Nexa
system, but were not familiar with Nexa testing procedures.
One of the subjects was not familiar with either the Nexa
system or the diagnostic procedures.

All the test subjects received a 30 minute demonstration of
the system, during which both the test configuration and the
run time interface were demonstrated. As part of the
demonstration, a sample test procedure was created using
the test configuration interface. This test procedure would
be used to diagnose a system which had failed to startup
during the automated FAT test. The test case starts the
Nexa controller, and waits for a successful startup. If the
startup is not successful, the test case retrieves data from
the Nexa controller to determine what the cause of the
startup failure is, and does further diagnostics to identify
the faulty component.

Following the demonstration, each subject was asked to run
the startup test case created during the demonstration using
the runtime interface. To ensure that tests were consistent
across subjects, and also due to lack of availability of the
test station hardware, simulated data was used for the
runtime interface test. The data used was from a previously
tested system for which test data had been recorded. In the
data used, the startup does not complete successfully,
because the maximum allowable startup time is exceeded.

There are several possible failures which would cause the
startup time to expire before the startup sequence is
completed successfully. In this case, the problem was
caused by a bad connection between a sensor and the
system control board.

After running the startup test case, each subject was asked
to fill out a questionnaire about the effectiveness of the
runtime interface. When testing the runtime interface, it
would have been beneficial to compare the new interface
with the existing diagnostic process. However, because of
the lack of a structured procedure in the existing process,
there is no good way to consistently compare the two
interfaces. These issues, as well as the user responses are
discussed in the section below.

Following the completion of the runtime test, each subject
was asked to design a test case to diagnose a system which
had failed a test of one of the system sensors during the
FAT. In order to test the hardware configuration
capability, part of the test case included configuring an
additional sensor at the test station. Each subject was given
a written description of the procedure to be programmed,
which was adapted from existing manual procedures. The
subjects were then asked to attempt to create this test case
in the test configuration interface. Following the trial, the
subjects were asked to complete a questionnaire assessing
the test configuration interface, and comparing the new
process with other test specification procedures.

Test Results

Runtime Interface

All of the users rated the new interface positively, but had
many suggestions for improvement. During the test
specification phase, the test designer specifies which sub-
system will be affected by the test, so that during the
runtime phase, this subsystem is displayed. In this way, the
user was directed to look at data which was important to
the test. As a result of this feature, most users found the
data important to the test easy to see and understand. The
directed views were preferred over the old system, where
all the data was displayed on a single screen. However, the
one novice user commented that despite this direction, he
was still not sure what to focus on, and felt that the test
executed too fast. Users also appreciated the large meter
and gauge displays, but suggested that the numeric displays
also be made larger. The idea of having chart displays was
seen as beneficial, but users wanted to have more control
over the chart display, including control over the time axis,
the scale, and better color selection for the chart traces and
their labels. Users also indicated that red should not be
used as a trace color on the chart, as red was used to
indicate an out of range sensor. The current system of
indicating an out-of-range sensor was criticized by the
majority of users; however, there was disagreement as to
what would constitute a better design. Some users felt that

more visual cues were needed, such as a flashing indicator,
while others considered an out-of-range sensor a safety
concern, and wanted the system to take active measures to
return the sensor to its allowable range, such as stopping
the test and disabling any actuators.

Users also felt that the system did not provide enough
information about where it was in the test sequence. One
suggestion was to have an additional subsystem panel
showing the test decision tree, with the current test
highlighted. Another suggestion was to highlight
sensors/actuators which are currently being considered by
the test sequence. Users also felt that more information
should be placed on the base panel, including basic
information about the fuel cell stack performance. Users
also wanted to be allowed to start multiple tests without
having to reload the software.

One big issue raised by some of the subjects was safety.
Users did not feel that it was adequate to allow the test
designer to ensure that the system was shut down safely
following each test procedure. The system should
incorporate a shutdown procedure which is run at the end
of each test, which ensures that all the system actuators are
shut off. Another suggestion for ensuring safety was to
only allow out-of-range sensor values for a limited time
before performing the safety shutdown procedure.

Subjects assessed the new interface as better than the
existing interface, but it was difficult to objectively
measure this claim. The existing system does not have any
structured procedures, therefore, the time taken to diagnose
a system is heavily dependent on the experience of the
operator. For example, during the running of the test case,
one experienced user immediately noticed the problem,
before the test procedure had finished running. On the
other hand, the novice user found that test case had already
diagnosed the problem and finished execution before he
had determined what he was supposed to be looking at.
The advantage of the new system is that it ensures that each
operator follows the same procedure during diagnostics.
However, the experiences of the novice user suggest that
the system might also benefit from having an additional
training mode, where the diagnostic procedure is executed
slower.

Test Configuration Interface

Users reacted very positively to the test configuration
interface. Most comments on the test configuration
interface indicated that the interface does not provide
enough features to adequately define all tests. Users
wanted to see multiple ways to define the equality
comparison operator, such as adding an accuracy
definition, or a range of acceptable values. Users also
wanted more flexibility when having to query the user. In
addition to the numeric input provided, a Yes/No input
dialog box was suggested.

The hardware configuration feature was assessed
positively. Users wanted to have the ability to modify the
range checking parameters in the hardware configuration
screen.

Users also wanted to see the capability of the test
configuration interface increased to allow multiple tests to
be joined together. This feature was planned by the
designer, but was not included in the initial prototype
version tested. Users offered many suggestions on how to
implement this added capability, especially on making the
user’s position in the hierarchy of tests easy to see.

Users also suggested making changes to the graphical
drawing interface to make it more user friendly and more
similar to the familiar drag and drop paradigm. The
concept of representing the test sequence graphically was
rated very positively, and users rated this method as
preferable to other methods for specifying test
configurations.

Again, it was difficult to compare the test configuration
interface to the existing process, since diagnostics
procedures are currently executed on an ad-hoc basis.
Some users have written their own flow charts in text or
tabular form, but hand written procedures do not ensure
that the diagnostic sequence is followed consistently.

5 CONCLUSIONS

User response to the new system has been very
encouraging, but has also identified several areas for
improvement. The system is currently being modified to
incorporate the results of the user testing. A shutdown
safety module will be added to the runtime interface, as
well as safety monitoring initiating a shutdown if critical
sensors exceed their allowable ranges. The test
configuration interface is also being extended to include
some of the features identified during the user tests. Once
these modifications are completed, the system will be
installed on the test station for commissioning on the
manufacturing floor. As a result of the user testing, several
other potential applications are being considered, including
use of the interface for diagnostics by service personnel in
the field.

Once this initial version is commissioned on the test
station, the system will be extended to automatically
interface with the manufacturing databases. This will allow
the diagnostic assistant to automatically determine which
FAT test was failed by the unit, and start the corresponding
diagnostic procedures automatically. Once a diagnostic
identification is made, the system will also interface to the
tracking database, to allow automated data collection on
system failures.

ACKNOWLEDGEMENTS

This project was carried out with support from Product
Development and Manufacturing teams at Ballard Power

Systems. Their support and many insightful suggestions
and comments are gratefully acknowledged.

REFERENCES

[1] Bartram, L., Henigman, F., and Dill, J. (1995) The
Intelligent Zoom as metaphor and navigation tool in a
multiscreen interface for network control systems. In
Systems, Man and Cybernetics, 1995. Intelligent Systems
for the 21st Century, IEEE International Conference on,
Volume: 4, 3122 –3127.

[2] Bartram, L. and Ovans, R. (1995) A Dialogue-Based
Approach to the Design of User Interfaces for Supervisory
Control Systems. In Systems, Man and Cybernetics, 1995.
Intelligent Systems for the 21st Century, IEEE International
Conference on, Volume: 4, 3144 –3149.

[3] Blythe, J., Kim, J., Ramachandran, S. and Gil, Y.
(2001) An Integrated Environment for Knowledge
Acquisition. In Lester, J.C. (ed.) 2001 International
Conference on Intelligent User Interfaces, January 14 – 17,
Santa Fe, New Mexico, 13 – 20.

[4] Cebulka, K. D. (1990) WISE: An Intelligent Interface
for User Modification of Applications. In Systems, Man
and Cybernetics, 1990. Conference Proceedings, IEEE
International Conference on, 637 – 639.

[5] Chiu, S. (2000) Error Recovery Assistant for Operators
of Industrial Automation. In Proceedings of Human
Interface Technologies, 2000, 13 – 20.

 [6] Davidson, P.L, Halasz, M, Phan, S. and Hakima, S. A.
(1990) Intelligent troubleshooting of complex machinery.
In Proceedings of the third international conference on
Industrial and engineering applications of artificial
intelligence and expert systems, Charleston, South
Carolina, 16 – 22.

[7] Kant, E. (1988) Interactive Problem Solving Using Task
Configuration and Control. In IEEE Expert, Volume: 3
Issue: 4, Winter 98, 36 - 49.

[8] Koch, C. G., Isle, B. A. and Butler, A. W. (1988)
Intelligent User Interface for Expert Systems Applied to
Power Plant Maintenance and Troubleshooting. In IEEE
Transactions on Energy Conversion, Vol. 3, No. 1, March
1988.

[9] Mackinlay, J. (1998). Applying a Theory of Graphical
Presentation to the Graphic Design of User Interfaces. In
Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software, 1988, 179 – 189.

[10] Norman, D. A. (1988) The Design of Everyday
Things, New York: Basic Books.

[11] Vale, Z. A., Faria, L., Ramos, C., Fernandes, M. F. and
Marques, A. (1996) Towards More Intelligent and
Adaptive User Interfaces for Control Center Application In

Intelligent Systems Applications to Power Systems, 1996.
Proceedings, ISAP ’96, 2- 6.

 [12] Vale, Z.A.; Ramos, C.; Faria, L.; Malheiro, N.; Silva,
A.; Marques, A. (1999) in International Conference on
Human Interfaces in Control Rooms, Cockpits and
Command Centres, 1999, 446 - 451.

	ABSTRACT
	Keywords

	INTRODUCTION
	Overview of the Fuel Cell System
	Overview of the Current Diagnostic Process
	The Diagnostic Assistant

	RELATION TO PREVIOUS WORK
	SYSTEM DESIGN
	Requirements
	Test Configuration Interface Design
	User Interface Design
	Software Architecture

	Runtime Interface
	User Interface Design
	Software Architecture

	TESTING
	Test Design
	Test Results
	Runtime Interface
	Test Configuration Interface

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

