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ABSTRACT 

This paper describes a diagnostic assistant software project 
which has been developed for use with a portable fuel cell 
system.  The diagnostic assistant is intended for use in a 
manufacturing environment to diagnose fuel cell systems 
which fail factory acceptance testing.  Because diagnostic 
procedures for the fuel cell system are still being 
developed, the assistant is designed to allow procedures to 
be modified without software changes.  The test 
configuration interface allows users to create and modify 
diagnostic procedures and test hardware configurations in a 
simple graphical interface, without having to modify any of 
the underlying program.  The runtime interface executes 
test procedures created in the test configuration interface, 
and is designed to allow the user to quickly and easily 
diagnose the system, and provide good overview of the 
system status and test progress.  The first prototype of the 
fuel cell diagnostic assistant has been implemented and 
tested by potential users.  This paper describes the design 
and implementation of the assistant system and the user 
testing. 
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1 INTRODUCTION 

The fuel cell industry has traditionally been focused on 
research and development and proving concepts via hand 
made prototypes.  As the technology matures, focus has 

been shifting from research to manufacturing.  If fuel cells 
are to be mass-produced, improvements are needed in 
many processes which are currently performed with little 
automation and frequently require highly trained workers.   

One such process is fuel cell diagnostics.  This paper 
describes a prototype system for fuel cell diagnostics which 
has been developed at Ballard Power Systems.  The system 
assists users in diagnosing system failures of a portable fuel 
cell system during factory acceptance testing.   

Overview of the Fuel Cell System 

The Ballard Nexa is a 1.2 kW fuel cell system designed for 
integration into portable power generation devices by 
Original Equipment Manufacturers (OEMs).  The system 
consists of a 1.2 kW Ballard fuel cell and ancillary 
hardware that is used to control the fuel cell power 
generation process.   The fuel cell is composed of multiple 
individual cells which are stacked together to form a fuel 
cell stack.  The fuel cell, when connected to an external 
load, produces electrical power by chemically reacting 
oxygen from air and hydrogen.  Water is the only 
byproduct of the reaction.  In addition to the fuel cell stack 
itself, the major subsystems are cooling, air supply and fuel 
supply.  Each subsystem consists of several sensors and 
actuators, which are controlled by custom developed 
controller software and hardware. In addition to sensing 
and actuating the system components, the controller 
periodically transmits information about its status and all 
current sensor readings and actuator settings over a serial 
bus interface.  The controller can also be commanded via 
the serial interface to enter “Diagnostics” mode.  In this 
mode, calibration settings can be modified and actuators 
can be manually driven to specified control points. 

Overview of the Current Diagnostic Process 

The initial factory acceptance test (FAT) on each Nexa 
module is executed on a fully automated test station.  This 
test station executes a test sequence confirming the 
operation of each sensor and actuator in the “Diagnostics” 
mode.  Sensors are confirmed by comparing the 
measurement reported by the Nexa with measurements 



 

from independent sensors mounted at the test station.  If all 
sensors and actuators are operating properly, the system is 
started up and tested under multiple load points.  

If any of the sensor/actuator tests fails, or if the system fails 
at any point during startup or operation, the failed unit is 
transferred to a Rework station for diagnosis.  The user 
knows at which point in the test sequence the unit failed, 
but has very little information as to what component in the 
system actually caused the failure. The rework station is 
equipped with all the functionality of the automated station, 
and the user can display all of the information being 
transmitted from the Nexa controller.  A programmable 
loadbank is also mounted on the test station and can be 
used to simulate various types of loading. However, the 
large amount of information being displayed 
simultaneously causes the user difficulties in isolating the 
cause of the problem.   

Another problem is the lack of diagnostics experience with 
the Nexa system in manufacturing. Since this fuel cell 
technology has only recently been transferred to 
manufacturing, systematic diagnostic procedures have not 
yet been developed for the system.  As a result, the trial and 
error approach is used, where components are replaced 
until something is found which fixes the problem.   

The Diagnostic Assistant 

The goal of the diagnostic assistant project was to develop 
a new system which would help the user to visualize and 
analyze the large amounts of data collected by the system.  
The new system, implemented on the existing Rework test 
station, would assist the user in identifying and isolating 
causes of failure in the fuel cell system. One of the primary 
goals of the new system was to incorporate the existing 
knowledge about the relationship between symptoms and 
causes into a more useable form.  The knowledge had to be 
organized and represented in a way that is easily accessible 
and easily understood by the user.  In addition, the assistant 
program can be used to ensure that each user follows a 
consistent and re-traceable procedure to identifying 
failures. 

The focus of the user interface of the system was to present 
the data in a way that draws attention to anomalies and 
inconsistencies in the data, without overloading the user 
with information.  The system should provide visibility into 
how it is “thinking”, so that users can understand why the 
system is prescribing certain actions, and gain a better 
understanding of both the Nexa system and the diagnostic 
assistant. 

One of the key features required was that the system be 
easily configurable and scaleable, so that as new 
knowledge about isolating and identifying failures is 
gained, it can be easily incorporated into the program 
without requiring software rewrites.  A set of procedures to 
be followed for each failure type already exists in the form 

of flow charts written in text form.  However, since both 
the system and the tests are fairly new, these procedures 
tend to change as more becomes known about failure 
symptoms within the system, and as more testing 
functionality is added.  These test procedures should be 
configurable without having to re-program the system.  

The diagnostic assistant was designed as two separate 
interfaces, one for configuring and specifying diagnostic 
test procedures, and one for executing these procedures 
with a malfunctioning fuel cell system.  A first prototype of 
the diagnostic assistant has been developed and tested by 
potential users of the system.  Section 2 of this paper 
describes related work in interactive diagnostic interfaces, 
focusing on industrial applications.  Section 3 describes the 
design of the diagnostic interfaces.  Section 4 presents the 
user testing performed on the prototype and discusses user 
responses.  Finally, Section 5 concludes the paper and 
discusses future work on the project. 

2 RELATION TO PREVIOUS WORK 

A large body of work exists in the field of interactive user 
interface research and design.  Commercially, many 
interactive assistants are available today, ranging from 
Clippie the Microsoft Office Assistant to on-line travel 
booking tools, system configuration Wizards, etc.   

Norman [10] provides general guidelines for user 
interfaces.  Mackinlay [9] describes a design approach 
based on the theory of graphical presentation. 

There are many works detailing different implementations 
of diagnostic assistants for various industrial applications.  
Chiu [5] describes an electronic recovery assistant for use 
in interactive assistance during printer maintenance.  The 
assistant is implemented as a hypertext web application, 
and also contains video footage of corrective procedures. 

Koch, Isle and Butler [8] present a diagnostic assistant 
system used for power plant maintenance and 
troubleshooting.  The system prompts the user for the 
present conditions and symptoms of the unit and provides 
step-by-step instructions for the maintenance technician.  
The technician can also access wiring schematics, 
component descriptions and pictures and video help files. 
However, no allowances are made for user modification of 
the knowledge base.   

Kant [7] describes the implementation of an interactive 
problem solving system to identify hydrocarbons and their 
flow paths from oil-well data.   The task of analyzing this 
data is divided into many subtasks; algorithms and 
programs already exist for some of these subtasks, while 
others require new designs.  The system contains a 
graphical editor for constructing tasks from existing code 
modules.  The system is clearly aimed at an expert user 
with programming experience, as the task configuration 



 

system also requires users to configure many system 
parameters and program new modules. 

Vale et al. [11] describe a user interface developed for 
assisting users during fault analysis and service restoration 
in the Portuguese power transmission network.  The user 
interface is constructed of 3 levels of detail at which the 
operators can view all or detailed parts of the network.   
Users can modify the level of detail being displayed in the 
detailed views.  In case of an incident, a separate window is 
displayed showing the location of the incident.  Flashing of 
the incident zone is used to alert the user.  In [12], the same 
system is extended to provide a more structured interface 
for novice users, and a more flexible interface for advanced 
users.  An expert system explanation server is also added to 
provide explanations into the systems actions to the user. 

Davidson et al. [6] develop a set of functional requirements 
for a troubleshooting advisory system for use with 
mechanical equipment.  A jet engine troubleshooting 
implemented is developed based on the requirements.  The 
troubleshooting assistant guides the user through a 
structured diagnostic network. 

In addition to specific industrial applications, there are 
numerous articles focused on research and prototype 
systems.  Cebulka [4] describes a prototype system which 
uses an iconic script editor to allow the user to graphically 
modify the control flow of a program by manipulating a 
directed graph of icons.  One shortfall of the described 
system is that the user only has access to a predefined set of 
primitive icons, and cannot create additional primitive 
nodes. 

Bartram and Ovans [2], and Bartram et al. [1] describe an 
intelligent user interface designed for use with supervisory 
control systems, such as those used in process control.  
Their work is focused on displaying context sensitive 
information to the user and presenting and facilitating 
multiple simultaneous events requiring user attention and 
response.   The display is configured dynamically to 
present detailed views of zones requiring attention, while at 
the same time maintaining global context. 

Blythe et al. [3] describe a system that allows users to add 
new knowledge to a system without having to re-program 
the system.  The user adds knowledge by selecting from a 
predefined set of English paraphrases, which map to a 
formal representation in the system internal language.  The 
system also interactively guides the user through the 
knowledge addition process.  One drawback of this text-
based system is that it can be difficult to visualize the flow 
of control and information in a text based system. 

3 SYSTEM DESIGN 

Requirements 

In addition to hardware and communications requirements 
imposed by the existing test station and the Nexa controller, 

the following primary goals were identified for the new 
system, based on consultation with users of the existing 
system and an analysis of the diagnostics process: 

- Help users to better visualize the fuel cell system and 
the diagnostic test procedures 

- Provide a structured framework that allows each user 
to follow a consistent and re-traceable procedure when 
diagnosing failed systems  

- Provide an easy-to-use interface for modifying test 
procedures 

- Provide the capability to re-configure test station 
hardware without software changes 

The first two requirements concern the interface the user 
interacts with while performing a diagnostic procedure.  
The last two requirements apply to how the user interfaces 
with the system when she is trying to modify the test 
procedure or the system configuration.  Based on these two 
separate sets of requirements, two separate interfaces were 
developed: the test configuration interface and the runtime 
interface.  The test configuration interface is used to create 
and modify diagnostic procedures and to create and modify 
different hardware configurations.  The runtime interface is 
used on the test station to diagnose a failed system.  The 
runtime interface executes the diagnostic procedures 
created in the test configuration interface and displays the 
relevant test data to the user.   

Test Configuration Interface Design 

User Interface Design 

The test configuration interface is used to configure the 
hardware and communication interfaces of the test station, 
and to create and modify test execution sequences.   The 
user of the test configuration interface is assumed to be the 
“expert” in diagnostic procedures.  The user is also 
assumed to be familiar with the test station hardware 
interfaces. The configuration user does not need to be 
familiar with the underlying implementation of the 
diagnostic program, and should be able to modify 
procedures and hardware configurations without 
programming or software knowledge.   

The goal of the test configuration interface design was to 
allow the user to specify the diagnostic sequence in an easy 
and familiar format, while allowing the user as much 
flexibility as possible to create various test scenarios.  For 
these reasons, a graphical test configuration interface was 
chosen, which represents the test sequence as a flow chart 
(or decision tree).  Each node in the tree represents a simple 
test, which is termed a test node.  The leaves of the decision 
tree represent an identification of the failure cause.  A test 
node is represented as a sequential series of actions:  
Actuate, Wait, Measure and Compare.  The flow chart of a 
test node is shown in Figure 1.  An identification node is 



 

used to represent a termination of the diagnostic procedure.  
Identification nodes do not contain repair procedures, 
because repairs are usually not performed by the system 
diagnostics personnel, they are usually returned to the 
component manufacturing team. 
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Figure 1 - Test Node Flow Chart 

The test configuration interface is divided into several 
panels.  When the user first starts the program, the main 
test panel appears.  A picture of this panel is shown in 
Figure 2.  This panel is used to graphically specify the test 
execution sequence using a decision tree diagram.  

Figure 2 - Test Configuration Interface Main Panel   

The test decision tree consists of test nodes and 
identification nodes.  Nodes are placed and connected on 
the drawing area using the buttons in the top right corner 
and using familiar clicking and dragging operations.  The 
user configures each node by double clicking on the node.  
When a test node is double-clicked, the test node edit 
window pops up. The test node edit window is shown in 
Figure 3.  Each test is divided into four subtasks: Actuate, 
Wait, Measure and Compare.  In the Actuate subtask, the 

user specifies which actuator will be activated. The Wait 
subtask is used to specify how long the test should wait 
after operating an actuator.  The Measure subtask is used to 
specify which sensors are to be measured for this test.  
Since the system measures all configured sensors by 
default, the Measure subtask need only be used to specify 
manual measurements. The Compare subtask is used to 
specify the test pass/fail criteria.  In the first prototype 
version of the software, only a simple compare operation 
with two operators is enabled, this can later be modified to 
include more complex Boolean operations.  The user 
specifies two measurements to be compared, and the 
operator to be used to compare them.  

 
Figure 3 - Test Node Edit Window 

When an identification node is double-clicked, the 
identification edit window pops up.  This window is used to 
specify what to display to the test operator when a problem 
has been identified by the diagnostic procedure. The 
description should be used to instruct the test operator 
which component has failed, and what the appropriate 
corrective action is.   The identification inputs are quite 
simple, and no facility is provided for interactive guidance 
during the corrective action.  This approach was chosen 
because in most cases, the technicians performing the 
diagnostic tests do not repair a failed component, they 
replace the component with a functioning one and report 
the failure. 

From the main panel, the user can also call up lower level 
panels to configure the test station hardware, the 
communications format of the Nexa controller, or the test 
data database layout, via the configuration buttons on the 
right side of the screen.   

Software Architecture 

The software design is divided in three layers, each 
representing an increasing level of abstraction.  The 
bottom, interface layer contains software modules that 
interface with the file system.  Two separate file structures 
are used, one for storing the hardware configuration, and 



 

one for storing the test sequence configuration.  This allows 
a hardware configuration file to be re-used for multiple test 
sequences.  The middle, translation layer contains modules 
that configure components of the test file.  These modules 
include the test edit module and the identification edit 
module.  Finally, a single top layer module handles the top-
level user interface and the graphical test description.  

The test configuration interface is implemented in the 
LabWindowsCVI environment from National Instruments.  
This environment was chosen because it provides an easy 
way to create user interface panels by automating a lot of 
the user interface code.  At the same time, the application 
programming can be done in the familiar C environment.   

Runtime Interface 

User Interface Design 

The runtime interface is used to execute the diagnostic test 
sequences created using the test configuration interface.  
The goals of the runtime interface are to display to the user 
parameters of interest while the diagnostic sequence is 
running, to prompt the user to perform manual actuation or 
measurement operations, to receive user feedback from 
these operations and to indicate to the user the results of the 
diagnostic procedure.  This user interface needs to handle a 
variety of user types, ranging from the novice to the expert 
user.  Some novice users will have only rudimentary 
knowledge of the Nexa system or the test station layout.  
Therefore, this interface needs to provide a greater level of 
structure to ensure that all users follow the correct 
diagnostic procedure. 

The design of the runtime interface was guided by the need 
to present a large amount of data to the user without 
overwhelming her.  For this reason, sensors and actuators 
were grouped by functionality into several subsystems, 
which are displayed on different screens.  Using several 
screens also allowed larger displays such as gauges and 
thermometers to be used, which help the user to get an 
estimate of the sensor value by quick visual inspection, 
without having to read the numeric display.  A strip chart is 
also shown on all the subsystem screens to enable the user 
to view time varying behavior of parameters.  This design 
also takes advantage of the fact that the test sequence 
designer knows which subsystem is currently being tested, 
and can specify the subsystem the user should be directed 
to.  The runtime interface will then display the specified 
subsystem by default, but the user can select to view the 
other subsystems. 

The runtime interface is divided into six user interface 
panels.  The base panel is always present in the bottom 
section of the screen, while the other panels alternate based 
on the current test being executed. 

The base panel displays information on variables that are 
important for every test node and is displayed at the bottom 

of the screen throughout test execution.  This panel displays 
the current status of the test station hardware, the loadbank 
and the Nexa system.  The panel also displays the test and 
test node currently being executed, and contains links to 
any help files associated with the test node.  From this 
panel, the user also controls the operation of the test; she 
can choose to stop the test, restart the test, or step back to 
the previous node. 

The main panel displays a schematic diagram of the Nexa 
fuel cell system, showing all the subsystems and their 
components and the locations of all the system sensors and 
actuators.  Besides each system sensor or actuator, an 
indicator is displayed showing the current value of that 
sensor/actuator.  In the lower right corner of the screen, any 
warnings being issued by the controller are displayed.  

The main panel provides an overview of the system.  For a 
more detailed view, the sub-system panels are used.  The 
fuel cell is divided into 5 major subsystems: Fuel Cell 
Parameters, Cooling System, Fuel Supply System and Air 
Supply System.  Each subsystem panel contains two sets of 
indicators, one displaying parameters reported by the Nexa 
controller, and one displaying the same parameters as 
measured by the test station. Large meter and thermometer 
type displays are used in addition to the numeric displays to 
allow parameter changes to be easily noticeable.  The 
software monitors each sensor to ensure that it stays within 
its allowable range, if a sensor exceeds its allowable range 
the sensor numeric indicator turns red. 

Each panel also contains a strip chart that can be used to 
view the time-varying behavior of the parameters.  The user 
can select which parameters are viewed by clicking on the 
desired parameter. Figure 4 shows a sample sub-system 
panel, in this case the fuel cell parameters panel.  At the 
bottom of the screen is the base panel. 

 

 

Figure 4 - Fuel Cell Parameters Panel 

Software Architecture 

The runtime interface follows the same design approach as 



 

the test configuration interface, using the three layers of 
modules.  The bottom, interface layer contains software 
modules which interface with the test station hardware, the 
Nexa and loadbank communications interfaces and access 
the filing system.  The middle, translation layer contains a 
single test execution module.  The test execution module 
executes the diagnostic test sequence based on the 
specification from the test configuration file. The top layer 
also contains a single module responsible for handling all 
the user interface panels.  

Implementation of the runtime interface was initially 
started using the National Instruments Labview 
environment.  This platform was initially chosen because 
the existing test station software was written in this 
environment, which meant that many of the low-level 
software modules could be re-used.  However, the Labview 
environment does not allow for programmatic changes to 
the hardware configuration, or changes to the contents of 
the serial messages.  For this reason, the runtime interface 
was also implemented using the LabWindowsCVI 
platform. 

4 TESTING 

Test Design 

The first prototype system was tested by six employees of 
Ballard Power Systems.  All six subjects tested the run-time 
interface; five subjects tested the test configuration 
interface.  Two of the subjects were very knowledgeable of 
both the Nexa system and Nexa diagnostics procedures.  
Three of the subjects had good knowledge of the Nexa 
system, but were not familiar with Nexa testing procedures.  
One of the subjects was not familiar with either the Nexa 
system or the diagnostic procedures.   

All the test subjects received a 30 minute demonstration of 
the system, during which both the test configuration and the 
run time interface were demonstrated.  As part of the 
demonstration, a sample test procedure was created using 
the test configuration interface. This test procedure would 
be used to diagnose a system which had failed to startup 
during the automated FAT test. The test case starts the 
Nexa controller, and waits for a successful startup.  If the 
startup is not successful, the test case retrieves data from 
the Nexa controller to determine what the cause of the 
startup failure is, and does further diagnostics to identify 
the faulty component. 

Following the demonstration, each subject was asked to run 
the startup test case created during the demonstration using 
the runtime interface.  To ensure that tests were consistent 
across subjects, and also due to lack of availability of the 
test station hardware, simulated data was used for the 
runtime interface test.  The data used was from a previously 
tested system for which test data had been recorded.  In the 
data used, the startup does not complete successfully, 
because the maximum allowable startup time is exceeded.  

There are several possible failures which would cause the 
startup time to expire before the startup sequence is 
completed successfully.  In this case, the problem was 
caused by a bad connection between a sensor and the 
system control board.   

After running the startup test case, each subject was asked 
to fill out a questionnaire about the effectiveness of the 
runtime interface. When testing the runtime interface, it 
would have been beneficial to compare the new interface 
with the existing diagnostic process.  However, because of 
the lack of a structured procedure in the existing process, 
there is no good way to consistently compare the two 
interfaces.  These issues, as well as the user responses are 
discussed in the section below. 

Following the completion of the runtime test, each subject 
was asked to design a test case to diagnose a system which 
had failed a test of one of the system sensors during the 
FAT.  In order to test the hardware configuration 
capability, part of the test case included configuring an 
additional sensor at the test station.  Each subject was given 
a written description of the procedure to be programmed, 
which was adapted from existing manual procedures.  The 
subjects were then asked to attempt to create this test case 
in the test configuration interface.  Following the trial, the 
subjects were asked to complete a questionnaire assessing 
the test configuration interface, and comparing the new 
process with other test specification procedures. 

Test Results 

Runtime Interface 

All of the users rated the new interface positively, but had 
many suggestions for improvement.  During the test 
specification phase, the test designer specifies which sub-
system will be affected by the test, so that during the 
runtime phase, this subsystem is displayed.  In this way, the 
user was directed to look at data which was important to 
the test.  As a result of this feature, most users found the 
data important to the test easy to see and understand.  The 
directed views were preferred over the old system, where 
all the data was displayed on a single screen.  However, the 
one novice user commented that despite this direction, he 
was still not sure what to focus on, and felt that the test 
executed too fast.  Users also appreciated the large meter 
and gauge displays, but suggested that the numeric displays 
also be made larger.  The idea of having chart displays was 
seen as beneficial, but users wanted to have more control 
over the chart display, including control over the time axis, 
the scale, and better color selection for the chart traces and 
their labels.  Users also indicated that red should not be 
used as a trace color on the chart, as red was used to 
indicate an out of range sensor.  The current system of 
indicating an out-of-range sensor was criticized by the 
majority of users; however, there was disagreement as to 
what would constitute a better design.  Some users felt that 



 

more visual cues were needed, such as a flashing indicator, 
while others considered an out-of-range sensor a safety 
concern, and wanted the system to take active measures to 
return the sensor to its allowable range, such as stopping 
the test and disabling any actuators.   

Users also felt that the system did not provide enough 
information about where it was in the test sequence.  One 
suggestion was to have an additional subsystem panel 
showing the test decision tree, with the current test 
highlighted.  Another suggestion was to highlight 
sensors/actuators which are currently being considered by 
the test sequence.  Users also felt that more information 
should be placed on the base panel, including basic 
information about the fuel cell stack performance.  Users 
also wanted to be allowed to start multiple tests without 
having to reload the software.   

One big issue raised by some of the subjects was safety.  
Users did not feel that it was adequate to allow the test 
designer to ensure that the system was shut down safely 
following each test procedure.  The system should 
incorporate a shutdown procedure which is run at the end 
of each test, which ensures that all the system actuators are 
shut off.   Another suggestion for ensuring safety was to 
only allow out-of-range sensor values for a limited time 
before performing the safety shutdown procedure. 

Subjects assessed the new interface as better than the 
existing interface, but it was difficult to objectively 
measure this claim.  The existing system does not have any 
structured procedures, therefore, the time taken to diagnose 
a system is heavily dependent on the experience of the 
operator.  For example, during the running of the test case, 
one experienced user immediately noticed the problem, 
before the test procedure had finished running.  On the 
other hand, the novice user found that test case had already 
diagnosed the problem and finished execution before he 
had determined what he was supposed to be looking at.  
The advantage of the new system is that it ensures that each 
operator follows the same procedure during diagnostics.    
However, the experiences of the novice user suggest that 
the system might also benefit from having an additional 
training mode, where the diagnostic procedure is executed 
slower. 

Test Configuration Interface 

Users reacted very positively to the test configuration 
interface.  Most comments on the test configuration 
interface indicated that the interface does not provide 
enough features to adequately define all tests.  Users 
wanted to see multiple ways to define the equality 
comparison operator, such as adding an accuracy 
definition, or a range of acceptable values.  Users also 
wanted more flexibility when having to query the user.  In 
addition to the numeric input provided, a Yes/No input 
dialog box was suggested.   

The hardware configuration feature was assessed 
positively.  Users wanted to have the ability to modify the 
range checking parameters in the hardware configuration 
screen. 

Users also wanted to see the capability of the test 
configuration interface increased to allow multiple tests to 
be joined together.  This feature was planned by the 
designer, but was not included in the initial prototype 
version tested.  Users offered many suggestions on how to 
implement this added capability, especially on making the 
user’s position in the hierarchy of tests easy to see. 

Users also suggested making changes to the graphical 
drawing interface to make it more user friendly and more 
similar to the familiar drag and drop paradigm.  The 
concept of representing the test sequence graphically was 
rated very positively, and users rated this method as 
preferable to other methods for specifying test 
configurations.   

Again, it was difficult to compare the test configuration 
interface to the existing process, since diagnostics 
procedures are currently executed on an ad-hoc basis.  
Some users have written their own flow charts in text or 
tabular form, but hand written procedures do not ensure 
that the diagnostic sequence is followed consistently.    

5 CONCLUSIONS  

User response to the new system has been very 
encouraging, but has also identified several areas for 
improvement.  The system is currently being modified to 
incorporate the results of the user testing.  A shutdown 
safety module will be added to the runtime interface, as 
well as safety monitoring initiating a shutdown if critical 
sensors exceed their allowable ranges.  The test 
configuration interface is also being extended to include 
some of the features identified during the user tests.  Once 
these modifications are completed, the system will be 
installed on the test station for commissioning on the 
manufacturing floor.  As a result of the user testing, several 
other potential applications are being considered, including 
use of the interface for diagnostics by service personnel in 
the field. 

Once this initial version is commissioned on the test 
station, the system will be extended to automatically 
interface with the manufacturing databases.  This will allow 
the diagnostic assistant to automatically determine which 
FAT test was failed by the unit, and start the corresponding 
diagnostic procedures automatically.  Once a diagnostic 
identification is made, the system will also interface to the 
tracking database, to allow automated data collection on 
system failures. 
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