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On'H~o Control for Dead-Time Systems

Gjerrit Meinsma and Hans Zwart

Abstract—A mixed sensitivity H., problem is solved for for the dead-time system into a rational controller design
dead-time systems. It is shown that for a given bound on the problem. Since Smith’s seminal work, many generalizations
Hoo-norm causal stabilizing controllers exist that achieve this 54 modification have been put forward; see, for instance, [35]
bound if and only if a related finite-dimensional Riccati equation d th f therein. Th dified) Smith dict
has a solution with a certain nonsingularity property. In the case an e -re eren.ce erein. . e (modified) Smith predic .ors
of zero time delay, the Riccati equation is a standard Riccati Were mainly designed to achieve good constant reference signal
equation and the nonsingularity condition is that the solution be tracking and good constant disturbance signal rejection.
nonnegative definite. For nonzero time delay, the nonsingularity  There is a long-lasting discussion regarding the robustness
condition is more involved but still allows us to obtain controllers. of the Smith predictor. Without giving a definite answer, we
All suboptimal controllers are parameterized, and the central . . . - . -
controller is shown to be a feedback interconnection of a finite-di- Indicate in Section IV that the Smith predictor has the same
mensional system and a finite memory system, both of which robustness with respect to additive perturbations as the rational
can be implemented. Somé+.., problems are rewritten as pure system. If the system is unstable, then the rational system has
rational Ho, problems using a Smith predictor parameterization to pe replaced by a modified (rational) plant that depends on
of the controller. the dead-time. The robustness margin is thus influenced by the

Index Terms—bead-time systems, delay system8{., control, dead-time.
|nf|n|te-d|mens_|onal systems, Riccati equations, Smith predictors, In the 1980’s, theéH.., control problem became popular. In
spectral factorization. - A
a few words, theH, control problem is to find a controller
that stabilizes a system and minimizes #ig,-norm of an as-
|. INTRODUCTION sociated transfer function. A plethora of approaches exist to
Of]inite-dimensionaIHC><> control theory. Among these, we cate-

EAD-TIME systems are systems in which the action ) . S
control inputs takes a certain time before it affects tHeorize three that have had some bearing on the infinite-dimen-

measured outputs. The typical dead-time system is sional case. These gpproaches are as follows.
P yp 4 Operator-Theoretic MethodsSee, e.g., Ball and Helton [1].

e °TP.(s), (1) For the dead-time systems, see Fagasl. [10], Foiaset al.

[11], Ozbayet al. [22], Toker and Ozbay [32], and Zhou and
where F,. is some rational function and is a positive delay. Khargonekar [38]. The book [10] treats a general class of in-
Models like these appear frequently in applications for severgiite-dimensionali.,, control problems from an operator the-
reasons. One reason is the abundance of delay systems in ¢ggtic perspective. Via a series of conversions, a mixed sensi-
life, such as systems with transport delay. Another reasontiifity ., problem is brought back to a two-block problem,
that they often serve as a simple yet adequate model for offhich is then solved. Toker and Ozbay [32] showed that the
erwise complicated high-order or infinite-dimensional systemgverall algorithm can be simplified significantly. The approach

From a mathematical system theory point of view, dead-tinetermines the optimal controller for single-input—single-output
systems are infinite-dimensional, meaning that their state is @1SO) dead-time systems.

infinite-dimensional vector. Because they have a simple transfera|so of interest is the paper by Dyt al. [7]. They pro-

function, however, they lend themselves well for analysis aRgie explicit controller formulas for a gap metric problem of
controller design. dead-time systems, known to be equivalent to a special case
Controllers only based on the rational part of the dead-tinoé the mixed sensitivity/ .., control problem. The gap metric
system (1) generally do not work if the dead-timas large. problem is special in that it can be expressed as an optimal
Therefore, a need exists for controller design specific for thiséankel norm approximation problem. Building on work by
class. The first to design a controller that took into accoumartington and Glover [24], they are able to construct the
the dead-time was Smith. In his paper [27] from 1957, haptimal controller using state-space realizations as a computa-
constructed a controller that achieved a complementary serginal tool.
tivity function equal to a desired one times®”. The desired  One way to calculate the optimai..-norm is to use the es-
complementary sensitivity was designed on the bases,.of sential spectrum of a certain Hankel plus Toeplitz operator. The
only. Hence, he transformed the controller design problerasult is this: if an eigenvalue of that operator exists whose ab-
solute value is larger than the essential spectral radius, then the
Manuscript received December 19, 1997; revised January 15, 1999. RecHRIM is the largest eigenvalue. Otherwise, the norm is the es-
mended by Associate Editor, H. Ozbay. sential spectral radius. Because the essential spectral radius is
The authors are with the Faculty of Applied Mathematics, Uningt changed under compact perturbations, the essential spectral
versity of Twente, 7500 AE Enschede, The Netherlands (e-mall; .. . . . .
g.meinsma@math.utwente.nl). radius can be found by considering a simpler operator; see, e.g.,
Publisher Item Identifier S 0018-9286(00)01058-8. [9], [16], [37], and [38].
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State-Space MethodsSee, e.g., the DGKF paper [6] (finite- Ui
dimensional) and van Keulen [33] (infinite-dimensional). For vy + U J{ u y
. .. .. 72 o C P
the dead-time systems, see Kojima and Ishjima [14], Nagpal Y, AN
and Ravi [21], and Tadmor [28]—[31]. In [21] and [29], the in-
finite-dimensional problem is reduced to a finite-dimensional

problem.
J-Spectral Factorization MethodsThis approach has someFig- 1. A feedback configuration; setup for stability.
overlap with operator theoretic methods. See, e.g., Geten
al. [12], Kwakernaak [15], and Meinsma [17] (finite-dimen- Definition 2.1: The quotient field of., is denoted byF..,
sional), Curtain and Green [4] (infinite-dimensional). In Curtaithat is
and Green [4], several infinite-dimensiortdl, problems were
solved, but only on a very general level. For a specific transféfos " := {H "G : G € HX™, H € HI™, det H # 0} .
function, itis not clear how to solve the necessary equations and 0

obtain an explicit controller. . . .
P This field F., will be our class of transfer matrices. An ele-

We solve the mixed sensitivity{., control problem for - . . . :
dead-time systems. Our approach follows thepectral fac- menti € 7. is said tostrictly properif there is 8o € R such

torization approach. Like with the Smith predictor, we apply E’Pat

transformation that reduces the problem to a rational problem. lim 1M (s)|| = 0. @)
Our (central) controller resembles the Smith predictor in that it 5—00, Re s>p

is a rational system in feedback with a system whose impu . . . . . n
response has compact support. This very fact makes simulallf ¢ dimension of a .S'gn.aj is denoted with.,, S0,u(s) € €
and implementation of such controllers possible. or fregL_u_ency domain signals. . .

Our approach gives (sub)optimal controllers for muI-h D;eflnm_on 2.'2 (C_IoseSI-LFf)oE S]Eab|l|ty)G|\f/en ok C < }1}’0
tiple-input—-multiple-output (MIMO) systems. The calculation§ € ootp n F'g('j 1issta telblt el our tt:ans %ma”'ijst rl())m
needed to construct these controllers are all matrix calculation a;f 0w an qu ?ret Sb("il' e.thn 51|Jc Pcas 15 Sdl ODe
involving a finite-dimensional Riccati equation, and the metho A 'AZ'QSSfL'ler'ultos aSInI12i'?h [ZeG? asr]catés that a plafit ¢
is easy to implement in, e.g., MLAB. In [40], the results of is stabilizable b y & j__’ it and onlv if P tri
this paper were used to predict the movement of a ship, and;l;ﬁo IS Sg, 'izable by some’ € oo I and only It matrices
[20], the results of this paper are generalized to the standard’ Pa, X, Y € Hoo exist such that
Ho control problem with delays in the control input. Using P=P P, and P,X+PY =1
the techniques of this paper, Koeman [13] solved the mixed d
sensitivity problem for general nonrational SISO systems.  |n such cases? = Pd—lpn is said to be &trongly coprime fac-

The paper is organized as follows. Section Il reviews thgrizationof P, andC := ¥ X~ is then a stabilizing controller.
necessary machinery for our class of infinite-dimensiongh;s result is intriguing considering that.,, is a field in which
systems. In Section Il we review stability properties anflot all elements have a strongly coprime factorization; that is,
Smith predictors for dead-time systems. Section IV is aboggme plants” € F.. are not stabilizablese=* is one such ex-

a solution of three simplé?., problems by using a Smith ample [26]. As Smith showed, the stabilizable plants are exactly
predictor parameterization of the controller. The three problefse plants that have a strongly coprime factorization, and this
considered aré(.. minimization of a weighted complementarymeans that, as far as synthesis of stabilizing controllers is con-
sensitivity function, a weighted input sensitivity function, anderned, we may use the powerful tricks that come with strongly
a tracking/model-matching{., problem. Section V treats coprime factorizations. A central result in this respect is the fol-

the mixed sensitivity problem. The method is tested on twewing lemma.

examples. Most of the proofs are in the Appendix. Lemma 2.3:Let P, C € F.,, and suppose that

[l. PRELIMINARIES P=r;'P, C=C,lc, 3

The spectral norm off € C™*" is denoted agM/||. The are strongly coprime factorizations ovet.. Then, the closed
spaces${» andH .. denote the standard Hardy spaces defined ®bp of Fig. 1 is stable if and only if

the openright-half plane. Their respective norms are interrelated
through { Ca _Cn:|

G
||G||Hoo: sup || U’”Hz

werts ulfr, is bistable. Conversely, if (4) is bistable, then (3) are strongly

coprime factorizations and the closed loop is stable.

We normally do not mention dimensions and simply wtitg, Proof: Given the result by Smith [26], this can be proved
when we mear{”*™. ForG € H.., the adjointG™ satisfies the same way as the rational case. [ |
G~(s) = (G(=3))*. The elements o, are calledstable Not all elements ofF,, have an implementation in time-do-

and@ is said to bebistableif G, G~ € H,... Somewhat less main as a causal operatef. being one such example. In most
standard is the following class of transfer matrices. of the problems that we consider, the causality condition is an
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Fig. 2. A standard feedback configuration with a dead-time plant. P, F

easy byproduct of other results, but on occasion we shall nqgéj 3. The modified Smith predictor.
the more abstract result of [36] thét ¢ F, is causal if it is
bounded on some right-half plane in the sense that Furthermore, the various sensitivity functions are related as

dpeR suchthat sup ||C(s)]| < o0.  (B) Spc =1+ PC)!
s€C,Res> _.
g =8p.r,co + Pr(F — e "1)CoSp.F, ¢,
CSp.c =CoSp.F,c,
lll. STABILITY AND CAUSALITY FOR DEAD-TIME SYSTEMS Tp e = "P.CoSp r o 8)
2 r vt Lo

SMITH PREDICTORS

In this section, we specialize the results on stability and =

causality to dead-time systems®” P,.(s), where P, is some
rational matrix.

Consider the feedback loop of Fig. 2. The pldffs) :=
e¢~*"P.(s) is a dead-time system with a delay As a result,
for any causal controllef’ the transfer matrix

The proof is given shortly.
If P,. has only one unstable pole and if that polesis= 0,
thenP,.(I —e71)is stable. Hence, we may také= I, which
renders the classical Smith predictor. For other unstable plants
P., arationalF’ such thatP,.( F'— ¢~ 1) is stable may be found
through interpolation.

Tp ¢ = (I + PC)"LPC If Cy is taken strictly proper, then the modified Smith pre-

’ dictor C is causal. This may be clear from the configuration

from r to  will also exhibit a time-delay of at least Therefore, in Fig. 3 and may be formally verified from (5). In particular,

Tp o can be expressed as this shows that any dead-time system™ P, is stabilizable by
’ causal control provided tha?,. is proper, and goes the other
Tpc=c¢ T, (6) way: if P, is nonproper (and > 0), thene™7F, is not sta-

bilizable by causal control, even if we allow for nonlinear and
whereTj is some causal transfer matrix. The idea of the Smitime-varying controllers. This follows from a time-domain ar-
predictor is, roughly, to design a controll€y for the rational gument: letv; be a step input (see Fig. 1). H. is nonproper
part P, of the plant so as to obtain some desired complementahen because of its differentiating action the outpig not de-

sensitivity function fined, and feedback cannot instantaneously counteract the effect
. of the step input; because of the delay in the loop.
Tp,,c, == (I + P.Co)™ P.Co The proof of Lemma 3.1 uses a result that we also need in the

next sections.

and then to solvé” from the equalityl’r,c = ¢™"Tp_c,- It | emma3.2: Suppose tha; is proper rational and that, =

is well known that this yields the controller, called the Smithb—1 s 4 rational strongly coprime factorization
rdtmn .

predictor Then,Pgé(e—‘TP,,m) is a strongly coprime factorization of
C = (I Tl ef.T)COPT) -1 Co. e P, andP;j_;(P,mF) isa _strongly coprime factorization of

P,.I for any rationalF’ for which P,.(F — ¢~ 1) is stable.
If P is stable, then it is not difficult to see that stabilizes Proof: It follows essentially from [26, remark following

¢~ P, if and only if C, stabilizes the rationaP,.. The Smith the proof of Theorem 1]. A concrete proof goes as follows.
predictor, thus, has the important asset that it relegates théefinez as
problem of closed-loop stability to that of a finite-dimensional

system. IfP, is unstable, then a modified Smith predictor can Z =PI — e,

be used much the same way, as follows. and assume that is such thatZ is stable. From the identity
Lemma 3.1 (Modified Smith PredictorConsider the system
depicted in Fig. 2 and assume that is proper. LetF' be a [Prnt Pral=[PaZ+e¢ P Pal (9

rational matrix such thaf’.(£" — ¢~ 1) is stable. Then, the j ¢5jiows that [P, F

. . . P. 4] has full row rank in the closed
modified Smith predictor ’

right-half plane. It also has full row rank at infinity because

o RN det P, 4(c0) # 0. Hence, the pai(P,. 4, P, ,F), being ra-
C= (I +CoP(F — e 71)) io tional, is a strongly right coprime pair. S&, Y € H.. exist
=Co (I + P.(F — e~ "1)C)) (7) such that

stabilizesP := ¢~ 7 P, if and only if C; stabilizesP,. F'. Py X+ P o FY =1
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From this, it can be seenth@,. 4, ¢~ " F. ,,) is astrongly right
coprime pair as well because

Poa(X+2ZY)+e TP Y 4
=P g X+PF (F—e"NY+e "P Y =1 lw, | + c
andX + ZY andY are stable. |
Proof of Lemma 3.1:Let Cy = C; 5Co,» be a left co-
prime factorization of a controller, that stabilized’, F'. Then,
by Lemma 2.3, the matrix Fig. 4. Tracking/model-matching.
Coqa —Con
P..F P, 4 CoSp.F, c,. Hence,H-norm minimization of the weighted

W,CSp, ¢ for dead-time systems can be solved as a rational
H ., optimization problem.
Ca =Cp | _ | Coa —Con See [3] for a different solution. O
¢ "Pon Poa|l |Pnl Py Incidentally, reducing thé{., norm of the input sensitivity
I 0 function W>C'Sp « improves the stability robustness of the
) [_pr(p ) I} (10) loop against uncertainties in the dead-timerovided that?,
is strictly proper; see [39].
is bistable as well, implying tha(fd‘lcn stabilizese=7 F,. Itis Example 4.3 (Tracking and Model MatchingBuppose we
easy to see that}; *C,, is the modified Smith predictor (7).  wish the outpuy to track a reference signal(see Fig. 2). One
Conversely, ifC = C;'C, is a strongly coprime factoriza- way to optimize tracking is to minimize th..-norm of the
tion of a controllerC' that stabilizes: ™" P, then the left-hand map
side of (10) is bistable according to Lemma 2.3. Consequently

Cd _Cn
A PT,J from # to 2, as shown in Fig. 4. Herdd; and W, are some
I 0 stable, rational weighting matrices and™ M is a preferred
) [P,,(F —e ) I} map fromr to 4. It is advisable to include a time-delay of *”
] ] ] ] . _inthis preferred map, as we did, because with a causal controller
is then bistable as well, implying thal, := C, ,Co,» Stabi-  that js the shortest delay we can achieve in the map freony.
lizes P.I". Itis easy to verify that, defined this way is the \th the controller parameterized as a modified Smith predictor,

is bistable. As a result

Wi (e ™M —Tpc) Wy
[Co,d _CO,nPr,nF R‘,d] = |:

controller that satisfies (7). ® e get that
IV. SMITH PREDICTORS FORH ., CONTROL [Wa(em "M — Tp c)Wil|n.,
As noted, the Smith predictor—and the modified Smith =[[Wa(e™ "M — =" P.CoSp, F,cy )W
predictor—relegate the stability problem to one of a finite-di- = ||Wo(M — P,.CoSp.r,cy )Wi|n..-

mensional system. In this section, we show that the Smith _ _
predictor parameterization can also be used to transform certhli¢ delay term has vanished, and the optimal controller can,
H.. problems for dead-time systems into finite-dimension&ence, be obtained from a pure ratiorfdl, optimization

H. problems. problem. O
From Lemma 3.1, we copy the connections between the var-The duality between the complementary sensitivity function
ious sensitivity functions T and sensitivity functior
Spc=Sp.rc, + P(F—e"1CoSp,F c, Sp,.c =1u/p), 1/0)

CSp.c=CodSr.r.c may suggest that minimization §#¥; S| __ is practically the
Tpc=c¢ "P.CoSp.r,c,- same as that ofW,7||_.. This process in a way is true for

L - rational systems, but when applied to dead-time systems the re-

Example 4.1 (Complementary Sensitivity Functioj., sulting controller turns out to be noncausal. The causality con-

norm minimization of the weighted complementary sensitivity. . . Co :
. g - - ition requires some more steps. A solution is given in [10, Sec.
function WyTp  of the dead-time system is equivalent to tha . ; . ;
' .2.3]. The problem is also a special case of the mixed sensi-

of a rational system because tivity problem solved next.

IW2Tp clln. =lWae™ " P-CoSp,F,co 1.

= ||WoPrCoSp.r.colln. - V. THE MIXED SENSITIVITY PROBLEM
O In this section, we minimize th&f,,-norm of
Example 4.2 (Input Sensitivity Functionlhe input Wi(I + PC)™1t

sensitivity functionCSp « in the dead-time system equals WoC(I + PC)~! (11)
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TZZ lw 1) Define
L., 0 0
W, Py Jy=1 0 Iy, 0 , J = |:I,6u IO :| .
0 0 —42I,, T
U - ‘{g 4 (16)
c ek . Wi G~ J,G has the same number of positive and negative
eigenvalues ad everywhere on the imaginary axis, and

the eigenvalues afi™~.J, G are bounded away from zero
on the imaginary axis.

2) A bistable@ exists such thaG™~J,G = Q~JQ, and
the lower-rightn,, x n,-block My, of M = GQ™'is
bistable.

3) 7 > |[Wi(oe) Py y(o0)|| if 7 > 0.

In this case, all stabilizing controllesthat achievé| H||x_ <
W, PO U+ ro)t | (12) -~ are parameterized by

-1
These two equations are essentially equivalent because we may C'= (21U + Z12) (20U + Zn) a7
absorbP into W, but (11) has the advantage over (12) tRat yhere 7 :— Q1 e HITrIXMutn) gnqU e HIe X
in (11) is allowed to have poles on the imaginary axis, where@#th ||1/||,_ < 1. Moreover, (which is not unique) can be
imaginary poles of> makes (12) violate the assumptionghosen such that its upper-right, x =, block Q.. satisfies

needed for the standard solution of tHe, control problem. 15y, . Q15(s) = 0, and for that choice of), the con-
As before, the plank is assumed of the formr " P, with .. troller (17) is causal for any strictly propér.

Fig. 5. The mixed sensitivity configuration.

with respect to stabilizing controllel§ € F.,. This process
is commonly called thenixed sensitivity problepthough that
term is also used fok,-norm minimization of

Wil + PC)~*

rational, and the weighting matricég, and W, are assumed Proof: Most of the proof is technical and can be found in
stable and rational. the Appendix. Here, we only prove the necessity of Condition
Actually, we shall minimize thé..-norm of 3) because we need it in the rest of this section.
Wi(I + PC)~tP} Consider Fig. 5. We see that in open Ioﬁﬁ(oo)R:;(oo)
H:= WaC(I + Pc)—lf);:é (13) s the direct feed-through term from to z;. If = > 0, then

, ) ) ) _the map fromw to z; on the time interval0, ) is not affected
v_vhereP,zd is a_lstable, rational matrix from a coprime factorlzaby feedback for < 7, and the£»-gain on this interva(0, ¢)
tion of the rational part of the plant approacheﬂWl(oo)Rj(oo)H ase — 0. Hence,||Hl». >
P.= P;j; P, . (14) ||W1(oo)P7:;(oo)|| for any causal controller. [

) ) i The proof in the Appendix shows a clear interpretation of
If SO desired, the factoF’, ; can be chosen to be inner (i.e.4hq three items: Condition 1) holds if and only{|iff|| - < ~
Plalra = I and P, q stable) and then (111) and (13) have, 5, he achieved by some controller, possibly not stabilizing and
identicalHo-norm. Also, in the SISO casé; ; could be ab- noncausal; Condition 2) characterizes when this can be done
sorbed into the other weight§’, anld W», but it has appeared yith a stabilizing controller, and Condition 3) expresses when,
useful in the rational case to keé}) , as a separate weight, seg,, aqdition,C’ can taken to be causal. For the delay-free case,
[15], and therefore we do it here as well. ~ Condition 3) is void, and Conditions 1) and 2) are then the well-

F|g._ 5 shows the closed-loop conflgu_ratloq corresponding {@,own frequency domain conditions of Greetral. [12].

the mixed sensitivity problem, and defined in (13) may be  Thegrem 5.1 in its present form is not very practical because
recognized as the transfer matrix framo [_Z}]. The openloop tjs generally difficult to find a bistabl€) that solves the nonra-

(i.e., with the controller taken away) can be expressed as a Mg a| spectral factorization problem asked for in Condition 2)
from (u, y) to (w, 21, 22) @s

G~J,G=Q~JQ, Q bistable (18)
—21 0 Wl
2| = Wo 0 {“} . Owing to the specific structure @, however, the nonrational
—w e P, Pa 4 part can be removed from the spectral factorization problem,

leaving a pure rational factorization problem to be solved. This
can be done as follows.

Givenv, letll be the rational part o™~ .J, G (thatis,G™~ J,G
for zero time-delay)

Theorem 5.1:Assume thatP, is proper, and let (14) be a
rational coprime factorization d¥f,. overH... Assume thatV,
andW, are stable rational weights. Defili¢ as

0 w1

Nz F1g +10) X (N +1y) WNWQ — ’)/QPN P, —’YQPN P, d
G = W2 0 eHool 2 (15) I := 2 N r,nt TN N rn 7,N
e *"P., P.g _’VQPT, alrn Wiwy — ’YQPr,dPr,d
It is easy to verify that with the time-delays included we have

and suppose thét for zero time-delay has full column rank on
the imaginary axis, including infinity. Let > 0. A stabilizing
causal controllet” € F,, exists such thatH||»_ < ~ if and
only if the following three conditions hold.

hat

GG =

I 6571—112} (19)

e *Tllyy Il
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If - = 0, then this is arational problem and we can proceed with  Proof: The conditions are item by item equivalent to those
Theorem 5.2. The interesting case is when 0. By Theorem of Theorem 5.1. [Note that in Condition 1) the nonsingularity of
5.1, Condition 3) we have that, then O(jw) implies that the number of negative eigenvalues and the
number of positive eigenvalues 6f jw) is equal to those of
Iys (o) = W (o)W (o0) — 72 Ba(o0)Byalo) < 0. oo O Postive elgemvalues o) s ed .
This formulation makes the problem suited for computation.
Given~, a spectral facto€),. can be computed using the solu-
tion of an associated Riccati equation [2], [12]; the stable factor
Fa), can be constructed from a partial fraction expansion and
bistability of A5, can then be tested with help of the Nyquist

Therefore IT,; exists and is proper. Now write™>" TT,; Ty
as a sum of a nonrational, but stable, patt.;,, and a proper
rational part,R

e gl = Fiap, + By Flian € Hoo andR rational.

) ) . (20)  criterion. For the delay-free case, the stability test is much sim-
This result is always possibleThen, we have that pler. In such cases\/y, is bistable if and only if the solution
6. [_r _Fgab} UG [ I 0} of the Riccati equation is positive semidefinite [12]. For our
~lo T YT —Fan T nonrational system, it is still possible to obtain necessary and
1 ~ ~ sufficient conditions in terms of Riccati equations, but the con-
= {Hll B H12H21_2121;I}25 + RO R RH?;Q} .(21) ditions are necessarily more involved. This is analogous to the

Lyapunov type conditions in [24].

The point here is tha® defined here is rational and proper, and Theorem 5.3:Assume thatP, is proper, and let (14) be a
that the factof_ F_S{ab 9N thatwe extracted is bistable. Thereforeational coprime factorization P, over#... Assume that¥;
finding a nonrational spectral factg} in (18) is equivalent to and ¥, are stable rational weights. Form a realization of the

finding a rational spectral factap,. such that

0=0rJQ,, Q.. bistable (22)
and the spectral factorg and @), are related by
I 0
Q_Q7’|:Fstab I:|

Theorem 5.1 can now be phrased a bit more concretely.

Theorem 5.2: Assume thaf’, is proper, and let (14) be ara-

tional coprime factorization oF’,. over H,,. Assume that¥;
and W, are stable rational weights. Defirig as in (15), and
suppose that for zero time-delady has full column rank on
the imaginary axis, including infinity. Le¢ > 0. A stabilizing
causal controller exists such tHet ||, . < v if and only if the
following three conditions hold.

1) O(~c)is nonsingular and has the same number of positive

and negative eigenvalues.ésand@(jw) is nonsingular
on the imaginary axis.

2) A bistable@, exists such tha® = Q7JQ,, and the
lower-rightn,, xn,-block Ma of M := G[_! = ?]Q;*
is bistable.

3) @22(00) <0 if 7 > 0.

In this case, all stabilizing controlle€sthat achievé| H||,__ <
~ are parameterized by

C=(Z1U+ Z) (Zoy U+ Z22)_1 ) (23)
where 7 — [_Fst’ab ?]er c Hggu+ny)><(nu+ny) andU €

Hoa ™™ with [|U]|%.. < 1. Moreover, (which is not unique)
can be chosen such that its upper-right x =, block @, 12
satisfies,. 12(o0) = 0, and for this choice of),., the controller
is causal for any strictly propé¥.

IWe construct one in Theorem 5.3. For the SISO case with simple poles only,

one can be found from a partial fraction expansion

le(ks)
II22(s)

let Flian(s) := ag(e > —1)+> 0 ar(e™ —e #k)/(s—pr) andR(s) :=
ag + Y n_, ageTHE [(s — py).

=ag+ Z ay /(s — fr):
k=1

rational part ofGG

0 Wl(S)
Wa(s) 0 =C(sI —A)'B4+D
Pon(s) P a(s)

=C(sI — A1 [By Bo|+[D; D]

where the partitioning oB = [B; Bzl andD = [D; Ds]

corresponds to the partitioning 6f. Assume thatd has all its

eigenvalues in the open left-half plane and g/ — A)~' B+

D has full column rank on the imaginary axis anchat
A stabilizing causal controller exists such thid || < v

if and only if the following three conditions hold.

1) D*J, D is nonsingular and has the same number of pos-
itive and negative eigenvalues Asand the Hamiltonian
H., defined as

A 0
Ty = [—CTJA,C —AT}
NV L)) el IS A
L2 v 2 1

has no imaginary eigenvalues. Here

)= o] e

9 [ By — B2D2_21D21 Onxen, }
~CTJ(D1 — D2D3;' Do) Opxen,
in which
A 0
A = [—CTJA,C —AT}
B A
- |:—OTJjD2:| D221[Dg’]WC Bg]

[]-:)11 ?12

=DV 1.,D.
Dy D22:| K

2) The Hamiltoniarf{, € R?"*2" defined in Condition 1)

has anr-dimensional stable eigenspd@e[ﬁ;gig], [with
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X;(A) € R*"], and X;(\) € R™*" is nonsingular for however, the inequality (26) will also hold for the delay-free

allA > ~. case, for ifC or P, is strictly proper, then
3) Dy < 0.
If the above conditions hold, then nonsingular matricesnd.s Hlx. > HWl(I +PC)tP H
existsuch thaD,, = —YTY andD;; — D12 D55 Doy = ST'S, C e
then > [Waee) (1 + Plee)C(o0)) ™ By i)

N = [mor o]
U= | _y ip, V] (o), ()

It may be shown that the causality condition (26) is connected
to the essential spectral radius of a certain Hankel plus Toeplitz
operator as considered in, e.g., [23] and [37].

Remark 2:The results of this section remain valid if
everywhere in this section we replace the delay function
m(s) = e~ ™* with an arbitrary inner functiom(s) for which
(24) mP,. is strictly proper. In that case, the matrix exponential

e~ "4# in Theorem 5.3 should be replaced with the matrix
functionm(Ag ) (similar inner matrix functions are employed
and :
in [16]).
Remark 3: Another straightforward generalization of the
Fian(s) results in this section is to replace the single time-delay
= D3} [DT1,C BE|(sI— Ag)t (eI —e ™) m(s) =7 with a multiple time-delayl/(s) = diag(e™™",
By — ByDgt Doy e e~ ™). This wayM(§) does not automatipally commute
Ty (D _D.D=lD )] Wlth_other_operators. Going through the manlpulatlon_s of thls
YA M2 P21 section will show that Theorems 5.1 and 5.2 remain valid,
+ (G—ST _ 1) f)Q—Qlf)Ql. provided we assume the following:

1) P = MP,, that is, the multiple delays occur in the com-

For this choice of).., the upper-right block)... 1» of Q. satisfies ponents of the output; Lo
Q,.12(x) = 0, and withZ defined asZ = [_,{ ] @7t e  2) M commutes with’", and 7, P, a;
(utny )X (nutny) ' e 3) M commutes withV " W7 .
Hoo ' ¢ ¢/, the controllers” defined as . . .
The second condition is not very stringentAf is stable, be-
1 cause then we may také. ; = I. Also, the third condition is
C = (21U + Z13)(ZnlU + Z) (25)  not very stringend, because we may always chébss) to be
diagonal.

satisfiesD?'J,D = QT JQ.., and forQ, and Fy..;,, we may
take

Q [ 4 | &
" LJQIT (DT 1,C + BT Xap(n) X T M) ‘ Qoo

X

are causal for any strictly propéf. Moreover,C stabilizes and .
achieveg|H||»_ < ~ifand only if U is stable and|U]|»_ < A Controller Structure and Implementation

1. The most obvious choice fdr in the controller parameteri-
Proof: See the Appendix. B zationC defined in (25) i</ = 0. The resulting controller
Itis well known that, given Condition 1), the Condition 2) can
alternatively be expressed as the “stabilizing” solutloph) := C = Z19755
Xo(M) X[ 1(\) of the Riccati equatiofiX (1) —IMal5 )] =
0 exists for all\ > ~. For zero time-delay, the factée="*# — is commonly called the central controller. With the explicit for-

I) is zero, and then the Riccati equation recovers the standaidlas forQ, andFy;.p, it is interesting to work out the structure
Riccati equation associated with this type spectral factorizatighthe central and other controllers and to see if and how such
problem [2], [12], and for such cases, Condition 2) holds if angbntrollers can be implemented.
only if the single test holds thaX'(v) > 0 [12]. As it stands, It is not difficult to verify that the general controller
with the time-delays, Condition 2) is more involved, but it is
easy enough to allow to compute controllers. C = (211U + Z13) (L1 U + Zy) ™

Remark 1: The condition of Theorem 5.1, Condition 3), that

can be rearranged as shown in Fig. 6(a), in which
7> |[Waleo) P i) (26)

2

—1 —1
_Zr, 22Z7’7 21 Zr, 22

M= [
—1 —1
Zr, 11 — Zr, 12Zr7 22Zr, 21 Zr, 12Zr7 22

is for the delay-free case not needed for the computation of con-
trollers, and is indeed not necessarily true for stabilizing cauggkp,
controllers to exist that makeH ||+ < . The condition (26)
expresses therefore a gap between zero time-delay and nonzero [Zm 11 Zr 12

) . i — Qfl c H(nu+ny)x(nu+ny)
time-delay, no matter how small the delay is. In practical cases, Zyoo1 Zpoa| r o ’
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Z, 12 is strictly proper, and for that reason, the controller is
U causal for every strictly propér.

B. Examples

We apply the method of the previous section to two exam-
y M ples. The first example is from Toker and Ozbay [32], and the
second is based on an example by Partington and Glover [24].
The MaTLAB macros used for the computations are based on the

results from the previous secti@rilhe macros work as long as
Foap the delay is not too large. For large delays, different techniques
have to be used; see [40]. In[19], one more example is reported.
(@) Example 5.4:Reference [32] considered minimizing the
Hoo-norm of
Y K u
oo Wil + pCyt
=1 WwoPo(I + PO)~!
Faap with
(b) —02s 1
P(s)=e —
Fig. 6. (a) The controller as an LFT and (b) the central controller. s+ ‘i -1
Wils) =2 35517
We are free to choodé (as long as itis stable afid/ || < 1) Wa(s) =0.2(s + 1.1).

and L., is the infinite-dimensional part of the controller. Nor-
mally, we would choosé/ = 0 and then the controller sim-

a e """ This problem is not yet in our form (13), but if we let
plifies to C = (I — K F,,,) 1K, shown in Fig. 6(b), with

K := Z, 127, 5, This is the central controller. In the cen- - 02s S— 1 s+1.1
tral controller, the blockk is finite dimensional. The only in- Wa(s) =WaP(s)e s+1 02— T 1
finite-dimensional part iZ.a1,. The Fi.1, constructed in The- s—1
orem 5.3 is of the form Bra(s) = s+ 1
Foan(s) = C(sI—Ag) ! (e*”I _ e*TAH) Bt(e " —1)D then theirHy and ourH

(27) _ [ Wi+ PO

and the fortunate implication of this is that its inverse Laplace H
transform (its impulse response) has compact support (see [8]

and [11], for similar observations). In fact the impulse respongger only a by unitary factor and, hence, have the same

T WO + PC)TIP

of (27) is oo-norm (note thate=*" and P, 4 have modulus 1 on the
imaginary axis). For this data, the rational part of the maffix

—Celt=mAu B defined in (15) has McMillan degree 3, and so the ma¥iX~)
f(t) = +(8(t—7)—6@)D, iftelo, T of Theorem 5.3 is & x 3 matrix. Fig. 7 shows the smallest

0, elsewhere singular value ofX; () as a function ofy. At v = 0.6819, the

X, is singular for the first time as comes down fromoo,
and it has support equal to the dead-timelt is because of and, therefore, that is the optimal The central controller for
its finite support property tha#..., may be implemented ~ slightly larger than optimaly = 7oy, +0.0001, isC' = (1 —
without too much difficulty, certainly for simulation purposesX Fitan) K, with
Normally, P, is strictly proper and it may be verified that in A
such cases) = 0 and so the Dirac pulses in the impulse () — 4.6971s” + 5.6971s + 1
responsq“(t) are then not present. 0.000016s% + 1.4414s2 4+ 1.4792s + 0.0379

The McMillan degree of\f equals the McMillan degree of
Z.., which in turn equals the sum of McMillan degreesit,
W,, andP.. Thisis in accordance with the delay free case, an
suggests that controllers of significantly lower order generical

will not exist. In contrast, the description @t .;, as given in . -~
o Removing those terms from the controller description leaves a
Theorem 5.3 often appears to contain hidden modes. T :
controller of reduced order, and this is normally the optimal con-

Remark: The construction of2,. in Theorem 5.3 is such thatt ller. Our theorv does not aoply. however. to the ontimal case
Z,, 22 I1s biproper, so all of the inverses taken above are weiP ’ y PPLY: ’ P

defined. The construction in Theorem 5.3 further guarantees th&rhe macros are available from http://www.math.utwente.nl/~meinsmal/.

and with F; 3, a system with impulse response as depicted in
dF|fg 8. The impulse response on its support is almost indistin-
uishable from a straight line. As with the delay-free case, some
oefficients inK approach zero agapproaches the optimal
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tr [24], we find forT = 1 a maximale of ¢ = 1/y = 0.4859. A
oslh near optimal controller i€ = (I — K Fy41,) * K with
0.6+ 1
i K(S) = =4
o4l 0.000009s 4 0.5561
02f and with £}, a system with impulse response
0
0.2 0.4 0.6 038 1 12 1.4 _ [ —1.3091cos (v0.3091 (¢t — 7)), ifteo, 1),
y— f(t) = .
0, otherwise.

Fig. 7. The smallest singular value &f, (v); Example 5.4.

APPENDIX

! __/ A. Frequency Domain Proofs

In this subsection, we prove Theorem 5.1. This proof also
proves Theorem 5.2 as the two theorems are equivalent.

Lemma 6.1 (Small Gain)Let M2, M22, B, andA be stable
transfer matrices of appropriate dimensions, and suppose that
0 M>, and A are invertible inl., and that| My, Moy |-, < 1
0 0.1 02 and||BA™Y||z.. < 1. Then,Ms; B + M, A is bistable if and

Time only if M, and A are bistable.
Proof: We make use of [5, Lemma 8.3], which states that

if |U||z.. < 1thenU is stableifand onlyif/+U)~! is stable.

SupposeMs; and A are bistable, and defind/ :=
and care should thus be taken with setting some coeﬁ|C|entsj\1leQIBA L. BecauseU is stable and||Ul|x. <

zero, no matter how small they are. A separate Nyquist plot CAN! My |2 _||[BA™ ||%. < 1, we have that

be used to test for closed-loop stability for the reduced-order

controller. O
Example 5.5: This example is taken from [24, Sec. 5]. We

consider the dead-time systef{s) := ¢~°7 /s, and we want

to find a controller that not only stabilizg®, but also stabilizes is stable.

Fig. 8. Minus the impulse response Bf; .;,; Example 5.4.

(Mo B + Moy A)™ = AU 4+ )t Myt

all plants in a neighborhood Conversely, i M2, B + M2y A)~! is stable, then
P.+A, I+ MMy BA ™Y™Y = A(My B + My A) ™1 M.
P (PR a, Al <<} (5 My Moy BA) ™ = A B+ M )™ Moo
Pi+Aq

is also stable, and becaugk/,' My BA~||._ < 1, we have
Here P = Pd—lpn is strongly coprime factorization ovéf.. that M,' Moy BA™1 is stable as well. Now, it is easy to see that
normalized in the sense thd?, (jw)|* + | Py (jw)|* = 1 for all
frequencies. For our plank)(s) = ¢~°" /s thatis the case for -1 _ 41 (I+ M2_21M21BA*1)_1 (I + My My BA™Y)
= (M A+ M B) ™ My (I + M3 May BA™Y)

1 s
Fo(s):=e7°" ; P, = .
() = c o) =

and thereforedA—! is stable. Similarly,A,' can be seen to

stable. This completes the proof. (The rational case is proved

It is well known that, giverC, the “stability radius’ is deter- in [34, pp. 274-275]) -

mined as As before, we use the short hands
1
1_1¢ (I—i—PC)_l[P gl I, 0 0
- 7 o R I, 0
JA/ — 0 Inz2 0 , Ji= Ou g .
_ H [O(I + PC)~ } H 0 0 I, "
(I + PC) 1P—

Itis important to note that, = n.,, i.e., that/, and.J have the
Maximizing the stability radius over the stabilizing controllersame number of negative eigenvalues. The following theorem
is thus arH,-norm minimization problem. In accordance withwas proved for the rational case in [12].



MEINSMA AND ZWART: ON ‘H .. CONTROL FOR DEAD-TIME SYSTEMS

Theorem 6.2:Let M € H.., and suppose that/~.J, M =
J almost everywhere ofiR, with Jy andJ as deflned above.
Consider the equality

) =[]

with H, € HIaTme)m g qiaXtu [ ¢ iy,

andU, € Hry ™" . Then, the following condmons are equiva-

lent.
1) H, is bistable and|H, H; ! ||».. < 7.
2) Msy andU; are bistable anflU; Uy || < 1.
Proof: We use the fact that a transfer matfils € £ is
invertible in £, if and only if H5"Hy > «f on the imaginary
axis for somex > 0

H;, bistable || H, Hy '3 <~

& H, bistable, (HiHy )" HiHy' — 7 < —el <0
on the imaginary axis, for some> 0

& Hy bistable, HH, — v?Hy Hy < —861 < 0

on the imaginary axis, for some> 0

. H " H,
< H, bistable, [HJ Jy [HJ <=6l <0

on the imaginary axis, for sonte> 0
Uy
U,
on the imaginary axis, for sore> 0
& Hj bistableUTU; — UsUs < =61 < 0
on the imaginary axis, for some> 0
< Mo U + Mo, Us bistableUs is invertible in£ o
and||U U e < 1.

& H, bistable, {Ul} JA{ } < —6I<0
U,

(28)

Next, we show thab/,, is invertible and thalf M3, Moy, || o, <
1. By the fact thatdM~J, M = J, it follows that M5 Mo —
v2 M55 Moy = —1I. In particular,My, is invertible in£... Now,

consider the equation
[m} _ [Mu M12} [m}
(5 My My U2
With g, w2, y1, Y2 € Lo. As M™J, M = J, there holds that

Iyl = llw2llz = lluall3 = lluall3-
For the specific case af, = — My, Mojuy, the outputy, is
identically zero, and the above equality reduces to

lyall3 = Il — | M55" Moy l3.

As ||11]l3 > 0 andw, is arbitrary, we necessarily have that
| M5! M|z < 1. Using this case and Lemma 6.1, the con-

dition of (28) is equivalent to thatt; U ||z

<1 andMQQ
andl/, are bistable. [ ]

281

tionsC = C,, Cd andP = P~ ( ~"P, ). Then, according
to [26], a controllerC' € J—" stab|I|zesP € JF if and only if

X = P,JCd +¢7 7P, ,C,y is bistable. We also make use of
the following expression.

" [ Wil + PC) P,
[ I} = | WoC(I + PC)™1L
i I

Wl(
WQO(P;d [Pn Cu+ c_'TP,,anA'n} 9 d—l) Tp

[  aCy+ e P, nén}é(;l

[ W1 Cy

= WQOn X_l
L X
X = -Pr, déd + 6_.‘r-‘Dr, nén
[0 W, A
= W2 0 |: gn :| X_l
e Pn Pral MY
X = -Pr, déd + C_'TPT, nén
Cn| -1
- [&]
x =P aCs+e¢ P, Cp. (29)

The matrixy is the closed-loop “characteristic polynomial,” and
closed-loop stability is equivalent tpbeing bistable [26].

Lemma 6.3:Let~ > 0 be given. The condition of Theorem
5.1, Condition 1) is necessary for the existence of a stabilizing
C € Foo such thal|H||x,, < 7.

Proof: Suppose € F, stabilizes and achievéiH ||
< ~. As C is assumed to stabiliz&, we have thatC has a
factorization ovef.. such thaC' = C,,C;* with
X = P,UdCA'd + e_'TP,,ynCA'n =1.

Let P = P,P; ! be a right coprime factorization df. Using
the fact thaty = I and that the bottom row-block af is
[e= 7P, » P. 4], we getthat

ol& )-[4
cy —-P, I 0

with H the closed-loop transfer matrix, adwhatever comes

out. In what follows,z,,,;,, denotes the smallest singular value.
By assumptiong,inG(jw) is bounded away from zero and be-
cause{c Pd] is bistable, it follows from (30) that i, Y (jw)

is also bounded away from zero as a functiooo€onsider the
identity

(30)

C/\(n Pd ~ ~ C('n, Pd

& &) eneld 2]
_[HYH-—~2I H™Y

_{ o y~y}' (31)

Inthe remainder of the section, we prove Theorem 5.2 item ltynow follows from a standard Schur complement result that
item. Extensive use is made of the strongly coprime factoriz&~~J., (G has at any = jw at least as many negative eigenvalues
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asH~H — I and at least as many positive eigenvalues asltremains to show that the lower righf, x n,, block of GQ~*
Y™Y. This accounts in fact for all of the eigenvalues so thad bistable. AS? is bistable, we can write any stable factoriza-
G~ J,G has indeed the same inertia dseverywhere on the tion C = C,,C;* of C as
imaginary axis. None of these eigenvalues as a functien-of
jw can approach zero becautH ||y __ is strictly less thany, ¢l [
andY € H., ando,,;, Y (jw) is bounded away from zero.m [éd} =Q [UJ
Lemma 6.4:Let~ > 0 be given, and assume Theorem 5.1,
Cor_1dition 1), holds. The _cpndition of Thgorem 51, Cond_iFiqur some stablé/, andl/». From (29), we see that
2), is necessary and sufficient for the existence of a stabilizing
CeFyo s_,uch thal| H ||, < . N 5 Hy é L[
In particular, under these conditiong; stabilizes and [ X } =G |:éd:| =GQ [UJ .
achieves||H||».. < ~ifand only if C = (Z1,U + Zi2)
(Zn U + Zay)~* for some stabl@ with ||U]|».. < 1. L .
Proof—Necessity:Suppose that' € F., stabilizes and NOté thatM := GQ~" satisfiesM™.J,M = .J and that the
achieves|H||». < ~. From Lemma 5.1, Condition 1), we controller is stabilizing if and only |_ﬁ< is b|§F§bIe. Hence, py
have thatG™ J, G has the same number of positive and negative'eorem 6.2, the controller (35) is stabilizing and achieves
eigenvalues ag. Then, also, the ration&(jw) defined in (21) ||H||Hgo1 < v if and only if M», and U is bistable and
has this number of positive and negative eigenvalues, includi“nglU2 [l < L.

atw = co. Then, according to [18, Cor. 3.1 has a spectral Sufficiency: In particular, we see that such controllers
factorization ’ exist if and only if M, is bistable: simply také/; = 0 and

U, = I. ltis easy to see that (35) is just another way of writing
R thatC' = (leU + ZlgU)(ZglU + ZQQ)_l, whereZ := Q_l
0=QYJQ,, Q. bistable (32) andU :=U,U;". n

Lemma 6.5:Lety > 0 be given, and assume Theorem 5.1,
Conditions 1) and 2), hold. The condition of Theorem 5.1, Con-
dition 3), is then necessary and sufficient for the existence of a
causal stabilizing” € F.., such thal| H||».. < 7.

Concretely, under these conditions, a rational spectral factor
Q. (as defined in Theorem 5.2) exists such tfat;2(oc) = 0
andtherC = (Z1,U + Z15)(Z2.U + Zay) ~t is causal for every
strictly properU.

(35)

if and only if © has ncequalizing vectorsAn equalizing vector
of © is a nonzera: € H, such thatOu € Hjy. Suppose, to
obtain a contradiction, that such equalizing vectoexist, then
i = [p! ?luis an equalizing vector ofi™J,G. Partition

v := G asv = [;}]. Then, on the one hand, we have that

||U1||§ — 72||U2||§ = (v, Jw) = (Ga, J,Ga) Proof: The necessity of Condition 3) was shown in the
= (4, G~ J,Gi) = 0 proof of Theorem 5.1. The sufficiency can be seen by explicitly
’ hi writing a spectral factor.
EHy Condition 3) implies tha®,2(c0) < 0. Then, Theorem 5.2,
Condition 2), implies that the constant matéXoo) can be de-
so that composed as
_oT§
[villz = vllvall2 (33) O(o0) =575,
_ Sll 0 (nu+ny)xX(n,+ny)
whereas on the other hand, we have that 5= [521 SQJ €R o det S 20
H™vy — 20, = [H~ 1]J.Gil For any spectral factap,. of ©, the matrixQ,. := SQ; ! (c0)Q,
- v

[ ) : " - 90
N N is also a bistable spectral factor®fand it is normalized in that
—x 6y O] GYILGa e ML P
——

CHF

o S11 0
QT(OO)_S_[Sm SQJ'

Becauses, € Ha, we have thatn, = (1/4%)7(H~v1) with L one1 )
. denoting the orthogonal projection frofy onto,. Con- 1hen, alsoZ := (Q:[, , 71)7" is block lower triangular at

sequently infinity in the sense that
. ? 0
Vlv2llz = llrp (H™vn)|l2 < |H vill2 < vllosl2. (34) Sﬁog}ggwo Z(s) = [? 52—21} .

This equation contradicts (33); hence, no equalizing veatordNOW, letU be strictly proper. Then, a € R exists such that
exist, and as aresult, (32) has a bistable soluf)prNow, @ :=
Q.[r,| []is abistable spectral factor 6~.J,G. C := (711U + Z19) (701U + Zpp) ™t
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satisfies
li C(s)= 1 Z12(8) Zygt
s—>o<>,uRnes>p (8) s—>o<>,HRnes>/7 12(8) 22 (8)
=S519855 = 0.

Hence,C is strictly proper, and in particular, we see tlfais
causal. m

B. Riccati Equations

In this subsection, we prove Theorem 5.3. Whenever we wrijge associate WithG™~ J, G the equatior{#:]
Y2

A
C

B
D

y 2 (36)

we mean thatl is square and thaf(s) = C(sI — A)"'B+D.
Usually, A, B, C, and D are constant matrices, ant(s)
C(sl — A)~ 1B + D is then called a realization df. In this

subsection, however, the matricBsC, and D may depend on
s corresponding to a nonration&l. The “realization” (36) is

283

Proof: Let Il be the rational part off™~.J,G. It is easy to
verify that the realization in (37) is a realizationldf Including
the time-delays, we obtain the “realization”

~ _ Iy e’"Il1o
GG = {G_STHm Iy }
A ‘ 6_57_31 BQ
= Csiél le Csiblg
Cy e~ "Dy Dy
= GGl

H12H o,
—STH22 H21

Q

CSTHIQHQ—QI

This equation can be rearranged as follows:
Uy
—1 .
-5, Y2

BN ||

This function define$2. Rearranging the realization 6f~.J, G
similarly gives a realization d? as shown in (39a) at the bottom
of the next page. Note that thematrix here isd ;. Looking at
the lower left block of(2, we see that

then essentially a Rosenbrock system matrix description [25].

First, some preliminary results.
Lemma 6.6: Let

A
C

B
D

be a realization of the rational part 6f, and then the rational
part of G~ .J,G has the realization

A | B B
C:'l @11 @12
02 D21 D22
A 0 B
Ty, —AT | —CTUD (37)
prnc BT | DTLD

Here, the partitionings are compatible with thatofThen,®

—sT11—1 k4 AH ‘ e (Bl BQD;QIDQl)
c H22 H21 =

D76y | "Dt Doy

It is this term that we have to write d8§;,, + R with F,,p, Iin
H.. and R a rational matrix. The claim is that this holds for

o [ Ag (G_STI — C_TAH) (Bl — BQD;21D21>
Fstab = — — — —
| D37 Co (¢7°7 = 1) D3y Doy
s [ Ag e~ THH (Bl — BQDQ_QI.Dgl)
R=
D35 Cs D33 Doy

That the sum equat&r”H;QlHQl is trivial, that R is rational is
also trivial, and that'; ., is in H, follows from the fact that the
poles of(sI — Ag)~! cancel against the terfa=>"1 — ¢~ 747

as defined in (21) has the realization as shown in (38) at the ~ (sI — Ap)™" (e7771 — 7 747)
bottom oAfErIeApage, wheréy is the Hamiltonian matrid g := = (sl — Ay)~ (I - GT(SI—AH))
A — By D55 C,. Moreover
e 5T T
= SI AH lz_ﬁ SI—AH)
Fstab k=1
A e~ I — e~ TAHY (B — BoD3,' D o
2| = f’A ‘ ( )(}IAQ 22 21)]. STZ—T—'SI—AH)
b6 | (7 — 1)D3t Doy = M
A ‘ C_TAF’Bl + (- 6_7‘4”)32]_,\72_21]-,\721 BQ
CA&CTAH + D12D2—2ICA¢2(I — CTAH) Dll Dlg (38)
Co Dy Da»
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By the symmetry property, we have thet I 11, = Looking at the realization (38) &b, we see that the Hamil-
I, + R™~. Because we have from (39) that tonian’, defined in Theorem 5.2, Condition 1) is thd-ma-
trix” of the realization of theinverseof ©. A standard Schur

. Ay By D5} complement gives that
Tl = A A =LA A, =1
o (61 — D1, D3LC ‘ " Do D A
¢ ( Lo 2) ¢ Tt det(A — jwI)det(O(jw)) = det(D” J,D) det(H,, — jwl)

it is reasonable to guess—and indeed true—thatfthg, and

R constructed earlier also satisfy (39b) and (39¢), at the bottdfh 4 as defined in (37). By assumptian,has no eigenvalues

of the page. on the imaginary axis; hencg, has not either. The conclusion

Based on this, we now combine the various blocks and forhthat©(jw) is nonsingular gverTywhere on the imaginary axis,
the realization as shown in (40) at the bottom of the page. including infinity, if and only it D™ J, D is nonsingular andt.,

As a final step, we associate with (40) the equation has no imaginary eigenvalues. o
Condition 2) By the canonical factorization theorem [2], [18],

vi] [T — Tl o, R~ u Fhe condition thaer(fy) is nonsingular is equiva!gnt to the ex-
= R 1) istence o.f a blsta'ble speptral factor.. In Cgmdmon 2) that
X7 () exists and is nonsingular for all > ~ is equivalent to

that M, is bistable. This can be seen as follows. If the solu-

tion X1(A) does not exist or is singular for some> ~, then
[yl} B {Hn — oI5 oy + R0 R RNHQQ} by canonical factorization theorem no bistaléle can exist,

us | 2R L and, hence, by Theorem 5 X-optimal controllers do not exist.
If X;(\) doesexist and is nonsingular for ak > ~, then

Y2 U2

and we rewrite it as

(S]

X = XQX]L_1 as a function of\ is continuous. Then, also,
. [ ul} ) M = G[_j  9]Q,' depends continuously ok and, so,
Y2 also does the Nyquist pfoof Ms,. For A large enoughj/s, is

bistable, if now forx = ~, the Ms> would not be bistable, then
k{y continuity the Nyquist plot for somg in between will have
%0 be zero at some— jw. Thatis impossible because—despite
whetherMs, is bistable—we have thatd;,(jw)Mi2(jw) —

A2 M3, (jw)Mao(jw) = —I everywhere on the imaginary axis

Here, we recogniz&® as defined in (21). In terms of state-
space manipulations, we similarly obtain (38), which is wh
we needed to show.
Proof of Theorem 5.3:We prove the equivalence with
Theorem 5.2 item by item.
The conditions imposed off are the same as those in The- 3M,, is histable if and only if the Nyquist plotdet Mas(jR)

orem 5.2 becausd is assumed to have no imaginary eigendoes not encircle the origin. The Nyquist criterion assumes that
lmges>0,)s)—oe det Mao(s) exists. It may be verified that for our

values. o ) choice of().,. [namely,Q..(co) being block lower triangular] implies this limit
Condition 1) First of all, note tha®(cc) = D*'.J, D. to exist with nonzero limitlet(P;., o(c0) Q5o (0)).
A — BQDQ_QIOQ ‘ e %7 (Bl — BQDQ_QI.Dgl) .éQDQ_QI
Q = e’” (él — Dlg.b;?lég) ‘ Dll — D12D2_21D21 CSTDIQDQ_QI (39a)
i D3} Cy ¢ Dyy Dy — Dyt
I An ByDyyt
~ i , ——— (39b)
tab i (Cl _ D12D221 02) (es‘rI _ CTAH) ‘ (es‘r _ 1)D12D221
~ 8 [ An ‘ 32D2_21
R~ = - S A 1A s PP (39¢)
L (Cl - D12D22 02) c D12D22
Ay ‘ e~ AR (B1 - BQD2_21D21) BQD2_21
Iy — 0105, Ty R | s
R —H2_21 B 1 (40)

(él - D12D2—2lé,2) CTAH Dll - D12D2_21D21 D12D2_2
D3} Doy —-D3}
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for every\. Hence, no such singular pointsexist, andMa is
bistable forA = ~.

Condition 3) D2y = O2(c0).

It is a matter of manipulation to check ththX]f1 is the

stabilizing solution of a Riccati equation, and that the realization

of @, indeed defines a bistable spectral factoiGof(See, for
example, the similar derivation in [18].) THg..;, was already
determined in Lemma 6.6.

That C is causal for strictly properl/ is shown in
Lemma 6.5. ]
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