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On Control for Dead-Time Systems
Gjerrit Meinsma and Hans Zwart

Abstract—A mixed sensitivity problem is solved for
dead-time systems. It is shown that for a given bound on the

-norm causal stabilizing controllers exist that achieve this
bound if and only if a related finite-dimensional Riccati equation
has a solution with a certain nonsingularity property. In the case
of zero time delay, the Riccati equation is a standard Riccati
equation and the nonsingularity condition is that the solution be
nonnegative definite. For nonzero time delay, the nonsingularity
condition is more involved but still allows us to obtain controllers.
All suboptimal controllers are parameterized, and the central
controller is shown to be a feedback interconnection of a finite-di-
mensional system and a finite memory system, both of which
can be implemented. Some problems are rewritten as pure
rational problems using a Smith predictor parameterization
of the controller.

Index Terms—Dead-time systems, delay systems, control,
infinite-dimensional systems, Riccati equations, Smith predictors,
spectral factorization.

I. INTRODUCTION

DEAD-TIME systems are systems in which the action of
control inputs takes a certain time before it affects the

measured outputs. The typical dead-time system is

(1)

where is some rational function and is a positive delay.
Models like these appear frequently in applications for several
reasons. One reason is the abundance of delay systems in real
life, such as systems with transport delay. Another reason is
that they often serve as a simple yet adequate model for oth-
erwise complicated high-order or infinite-dimensional systems.
From a mathematical system theory point of view, dead-time
systems are infinite-dimensional, meaning that their state is an
infinite-dimensional vector. Because they have a simple transfer
function, however, they lend themselves well for analysis and
controller design.

Controllers only based on the rational part of the dead-time
system (1) generally do not work if the dead-timeis large.
Therefore, a need exists for controller design specific for this
class. The first to design a controller that took into account
the dead-time was Smith. In his paper [27] from 1957, he
constructed a controller that achieved a complementary sensi-
tivity function equal to a desired one times . The desired
complementary sensitivity was designed on the bases of
only. Hence, he transformed the controller design problem
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for the dead-time system into a rational controller design
problem. Since Smith’s seminal work, many generalizations
and modification have been put forward; see, for instance, [35]
and the reference therein. The (modified) Smith predictors
were mainly designed to achieve good constant reference signal
tracking and good constant disturbance signal rejection.

There is a long-lasting discussion regarding the robustness
of the Smith predictor. Without giving a definite answer, we
indicate in Section IV that the Smith predictor has the same
robustness with respect to additive perturbations as the rational
system. If the system is unstable, then the rational system has
to be replaced by a modified (rational) plant that depends on
the dead-time. The robustness margin is thus influenced by the
dead-time.

In the 1980’s, the control problem became popular. In
a few words, the control problem is to find a controller
that stabilizes a system and minimizes the -norm of an as-
sociated transfer function. A plethora of approaches exist to
finite-dimensional control theory. Among these, we cate-
gorize three that have had some bearing on the infinite-dimen-
sional case. These approaches are as follows.

Operator-Theoretic Methods:See, e.g., Ball and Helton [1].
For the dead-time systems, see Foiaset al. [10], Foiaset al.
[11], Özbayet al. [22], Toker and Özbay [32], and Zhou and
Khargonekar [38]. The book [10] treats a general class of in-
finite-dimensional control problems from an operator the-
oretic perspective. Via a series of conversions, a mixed sensi-
tivity problem is brought back to a two-block problem,
which is then solved. Toker and Özbay [32] showed that the
overall algorithm can be simplified significantly. The approach
determines the optimal controller for single-input–single-output
(SISO) dead-time systems.

Also of interest is the paper by Dymet al. [7]. They pro-
vide explicit controller formulas for a gap metric problem of
dead-time systems, known to be equivalent to a special case
of the mixed sensitivity control problem. The gap metric
problem is special in that it can be expressed as an optimal
Hankel norm approximation problem. Building on work by
Partington and Glover [24], they are able to construct the
optimal controller using state-space realizations as a computa-
tional tool.

One way to calculate the optimal -norm is to use the es-
sential spectrum of a certain Hankel plus Toeplitz operator. The
result is this: if an eigenvalue of that operator exists whose ab-
solute value is larger than the essential spectral radius, then the
norm is the largest eigenvalue. Otherwise, the norm is the es-
sential spectral radius. Because the essential spectral radius is
not changed under compact perturbations, the essential spectral
radius can be found by considering a simpler operator; see, e.g.,
[9], [16], [37], and [38].
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State-Space Methods:See, e.g., the DGKF paper [6] (finite-
dimensional) and van Keulen [33] (infinite-dimensional). For
the dead-time systems, see Kojima and Ishjima [14], Nagpal
and Ravi [21], and Tadmor [28]–[31]. In [21] and [29], the in-
finite-dimensional problem is reduced to a finite-dimensional
problem.

-Spectral Factorization Methods:This approach has some
overlap with operator theoretic methods. See, e.g., Greenet
al. [12], Kwakernaak [15], and Meinsma [17] (finite-dimen-
sional), Curtain and Green [4] (infinite-dimensional). In Curtain
and Green [4], several infinite-dimensional problems were
solved, but only on a very general level. For a specific transfer
function, it is not clear how to solve the necessary equations and
obtain an explicit controller.

We solve the mixed sensitivity control problem for
dead-time systems. Our approach follows the-spectral fac-
torization approach. Like with the Smith predictor, we apply a
transformation that reduces the problem to a rational problem.
Our (central) controller resembles the Smith predictor in that it
is a rational system in feedback with a system whose impulse
response has compact support. This very fact makes simulation
and implementation of such controllers possible.

Our approach gives (sub)optimal controllers for mul-
tiple-input–multiple-output (MIMO) systems. The calculations
needed to construct these controllers are all matrix calculations,
involving a finite-dimensional Riccati equation, and the method
is easy to implement in, e.g., MATLAB . In [40], the results of
this paper were used to predict the movement of a ship, and in
[20], the results of this paper are generalized to the standard

control problem with delays in the control input. Using
the techniques of this paper, Koeman [13] solved the mixed
sensitivity problem for general nonrational SISO systems.

The paper is organized as follows. Section II reviews the
necessary machinery for our class of infinite-dimensional
systems. In Section III we review stability properties and
Smith predictors for dead-time systems. Section IV is about
a solution of three simple problems by using a Smith
predictor parameterization of the controller. The three problems
considered are minimization of a weighted complementary
sensitivity function, a weighted input sensitivity function, and
a tracking/model-matching problem. Section V treats
the mixed sensitivity problem. The method is tested on two
examples. Most of the proofs are in the Appendix.

II. PRELIMINARIES

The spectral norm of is denoted as . The
spaces and denote the standard Hardy spaces defined on
the open right-half plane. Their respective norms are interrelated
through

We normally do not mention dimensions and simply write
when we mean . For , the adjoint satisfies

. The elements of are calledstable,
and is said to bebistableif . Somewhat less
standard is the following class of transfer matrices.

Fig. 1. A feedback configuration; setup for stability.

Definition 2.1: The quotient field of is denoted by ,
that is

This field will be our class of transfer matrices. An ele-
ment is said tostrictly properif there is a such
that

(2)

The dimension of a signal is denoted with , so,
for frequency domain signals.

Definition 2.2 (Closed-Loop Stability):Given
the loop in Fig. 1 isstable if the four transfer matrices from

, to and are stable. In such cases,is said to be
stabilizingor is said tostabilize the plant .

A beautiful result by Smith [26], states that a plant
is stabilizable by some if and only if matrices

exist such that

and

In such cases, is said to be astrongly coprime fac-
torizationof , and is then a stabilizing controller.
This result is intriguing considering that is a field in which
not all elements have a strongly coprime factorization; that is,
some plants are not stabilizable. is one such ex-
ample [26]. As Smith showed, the stabilizable plants are exactly
those plants that have a strongly coprime factorization, and this
means that, as far as synthesis of stabilizing controllers is con-
cerned, we may use the powerful tricks that come with strongly
coprime factorizations. A central result in this respect is the fol-
lowing lemma.

Lemma 2.3:Let , and suppose that

(3)

are strongly coprime factorizations over . Then, the closed
loop of Fig. 1 is stable if and only if

(4)

is bistable. Conversely, if (4) is bistable, then (3) are strongly
coprime factorizations and the closed loop is stable.

Proof: Given the result by Smith [26], this can be proved
the same way as the rational case.

Not all elements of have an implementation in time-do-
main as a causal operator. being one such example. In most
of the problems that we consider, the causality condition is an
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Fig. 2. A standard feedback configuration with a dead-time plant.

easy byproduct of other results, but on occasion we shall need
the more abstract result of [36] that is causal if it is
bounded on some right-half plane in the sense that

such that (5)

III. STABILITY AND CAUSALITY FOR DEAD-TIME SYSTEMS:
SMITH PREDICTORS

In this section, we specialize the results on stability and
causality to dead-time systems , where is some
rational matrix.

Consider the feedback loop of Fig. 2. The plant
is a dead-time system with a delay. As a result,

for any causal controller the transfer matrix

from to will also exhibit a time-delay of at least. Therefore,
can be expressed as

(6)

where is some causal transfer matrix. The idea of the Smith
predictor is, roughly, to design a controller for the rational
part of the plant so as to obtain some desired complementary
sensitivity function

and then to solve from the equality . It
is well known that this yields the controller, called the Smith
predictor

If is stable, then it is not difficult to see that stabilizes
if and only if stabilizes the rational . The Smith

predictor, thus, has the important asset that it relegates the
problem of closed-loop stability to that of a finite-dimensional
system. If is unstable, then a modified Smith predictor can
be used much the same way, as follows.

Lemma 3.1 (Modified Smith Predictor):Consider the system
depicted in Fig. 2 and assume that is proper. Let be a
rational matrix such that is stable. Then, the
modified Smith predictor

(7)

stabilizes if and only if stabilizes .

Fig. 3. The modified Smith predictor.

Furthermore, the various sensitivity functions are related as

(8)

The proof is given shortly.
If has only one unstable pole and if that pole is ,

then is stable. Hence, we may take , which
renders the classical Smith predictor. For other unstable plants

, a rational such that is stable may be found
through interpolation.

If is taken strictly proper, then the modified Smith pre-
dictor is causal. This may be clear from the configuration
in Fig. 3 and may be formally verified from (5). In particular,
this shows that any dead-time system is stabilizable by
causal control provided that is proper, and goes the other
way: if is nonproper (and ), then is not sta-
bilizable by causal control, even if we allow for nonlinear and
time-varying controllers. This follows from a time-domain ar-
gument: let be a step input (see Fig. 1). If is nonproper
then because of its differentiating action the outputis not de-
fined, and feedback cannot instantaneously counteract the effect
of the step input because of the delay in the loop.

The proof of Lemma 3.1 uses a result that we also need in the
next sections.

Lemma 3.2:Suppose that is proper rational and that
is a rational strongly coprime factorization.

Then, is a strongly coprime factorization of
, and is a strongly coprime factorization of

for any rational for which is stable.
Proof: It follows essentially from [26, remark following

the proof of Theorem 1]. A concrete proof goes as follows.
Define as

and assume that is such that is stable. From the identity

(9)

it follows that has full row rank in the closed
right-half plane. It also has full row rank at infinity because

. Hence, the pair , being ra-
tional, is a strongly right coprime pair. So, exist
such that
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From this, it can be seen that is a strongly right
coprime pair as well because

and and are stable.
Proof of Lemma 3.1:Let be a left co-

prime factorization of a controller that stabilizes . Then,
by Lemma 2.3, the matrix

is bistable. As a result

(10)

is bistable as well, implying that stabilizes . It is
easy to see that is the modified Smith predictor (7).

Conversely, if is a strongly coprime factoriza-
tion of a controller that stabilizes , then the left-hand
side of (10) is bistable according to Lemma 2.3. Consequently

is then bistable as well, implying that stabi-
lizes . It is easy to verify that defined this way is the
controller that satisfies (7).

IV. SMITH PREDICTORS FOR CONTROL

As noted, the Smith predictor—and the modified Smith
predictor—relegate the stability problem to one of a finite-di-
mensional system. In this section, we show that the Smith
predictor parameterization can also be used to transform certain

problems for dead-time systems into finite-dimensional
problems.

From Lemma 3.1, we copy the connections between the var-
ious sensitivity functions

Example 4.1 (Complementary Sensitivity Function): -
norm minimization of the weighted complementary sensitivity
function of the dead-time system is equivalent to that
of a rational system because

Example 4.2 (Input Sensitivity Function):The input
sensitivity function in the dead-time system equals

Fig. 4. Tracking/model-matching.

. Hence, -norm minimization of the weighted
for dead-time systems can be solved as a rational

optimization problem.
See [3] for a different solution.
Incidentally, reducing the norm of the input sensitivity

function improves the stability robustness of the
loop against uncertainties in the dead-time, provided that
is strictly proper; see [39].

Example 4.3 (Tracking and Model Matching):Suppose we
wish the output to track a reference signal(see Fig. 2). One
way to optimize tracking is to minimize the -norm of the
map

from to , as shown in Fig. 4. Here, and are some
stable, rational weighting matrices and is a preferred
map from to . It is advisable to include a time-delay of
in this preferred map, as we did, because with a causal controller
that is the shortest delay we can achieve in the map fromto .
With the controller parameterized as a modified Smith predictor,
we get that

The delay term has vanished, and the optimal controller can,
hence, be obtained from a pure rational optimization
problem.

The duality between the complementary sensitivity function
and sensitivity function

may suggest that minimization of is practically the
same as that of . This process in a way is true for
rational systems, but when applied to dead-time systems the re-
sulting controller turns out to be noncausal. The causality con-
dition requires some more steps. A solution is given in [10, Sec.
4.2.3]. The problem is also a special case of the mixed sensi-
tivity problem solved next.

V. THE MIXED SENSITIVITY PROBLEM

In this section, we minimize the -norm of

(11)
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Fig. 5. The mixed sensitivity configuration.

with respect to stabilizing controllers . This process
is commonly called themixed sensitivity problem, though that
term is also used for -norm minimization of

(12)

These two equations are essentially equivalent because we may
absorb into , but (11) has the advantage over (12) that
in (11) is allowed to have poles on the imaginary axis, whereas
imaginary poles of makes (12) violate the assumptions
needed for the standard solution of the control problem.

As before, the plant is assumed of the form with
rational, and the weighting matrices and are assumed
stable and rational.

Actually, we shall minimize the -norm of

(13)

where is a stable, rational matrix from a coprime factoriza-
tion of the rational part of the plant

(14)

If so desired, the factor can be chosen to be inner (i.e.,
and stable) and then (11) and (13) have

identical -norm. Also, in the SISO case, could be ab-
sorbed into the other weights and , but it has appeared
useful in the rational case to keep as a separate weight, see
[15], and therefore we do it here as well.

Fig. 5 shows the closed-loop configuration corresponding to
the mixed sensitivity problem, and defined in (13) may be
recognized as the transfer matrix fromto . The open loop
(i.e., with the controller taken away) can be expressed as a map
from to as

Theorem 5.1:Assume that is proper, and let (14) be a
rational coprime factorization of over . Assume that
and are stable rational weights. Defineas

(15)

and suppose that for zero time-delay has full column rank on
the imaginary axis, including infinity. Let . A stabilizing
causal controller exists such that if and
only if the following three conditions hold.

1) Define

(16)
has the same number of positive and negative

eigenvalues as everywhere on the imaginary axis, and
the eigenvalues of are bounded away from zero
on the imaginary axis.

2) A bistable exists such that , and
the lower-right -block of is
bistable.

3) if .
In this case, all stabilizing controllersthat achieve

are parameterized by

(17)

where and
with . Moreover, (which is not unique) can be
chosen such that its upper-right block satisfies

, and for that choice of , the con-
troller (17) is causal for any strictly proper.

Proof: Most of the proof is technical and can be found in
the Appendix. Here, we only prove the necessity of Condition
3) because we need it in the rest of this section.

Consider Fig. 5. We see that in open loop
is the direct feed-through term from to . If , then
the map from to on the time interval is not affected
by feedback for , and the -gain on this interval
approaches as . Hence,

for any causal controller.
The proof in the Appendix shows a clear interpretation of

the three items: Condition 1) holds if and only if
can be achieved by some controller, possibly not stabilizing and
noncausal; Condition 2) characterizes when this can be done
with a stabilizing controller, and Condition 3) expresses when,
in addition, can taken to be causal. For the delay-free case,
Condition 3) is void, and Conditions 1) and 2) are then the well-
known frequency domain conditions of Greenet al. [12].

Theorem 5.1 in its present form is not very practical because
it is generally difficult to find a bistable that solves the nonra-
tional spectral factorization problem asked for in Condition 2)

bistable (18)

Owing to the specific structure of , however, the nonrational
part can be removed from the spectral factorization problem,
leaving a pure rational factorization problem to be solved. This
can be done as follows.

Given , let be the rational part of (that is,
for zero time-delay)

It is easy to verify that with the time-delays included we have
that

(19)
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If , then this is a rational problem and we can proceed with
Theorem 5.2. The interesting case is when . By Theorem
5.1, Condition 3) we have that, then

Therefore, exists and is proper. Now write
as a sum of a nonrational, but stable, part, , and a proper
rational part,

and rational.
(20)

This result is always possible.1 Then, we have that

(21)

The point here is that defined here is rational and proper, and
that the factor that we extracted is bistable. Therefore,
finding a nonrational spectral factor in (18) is equivalent to
finding a rational spectral factor such that

bistable (22)

and the spectral factors and are related by

Theorem 5.1 can now be phrased a bit more concretely.
Theorem 5.2:Assume that is proper, and let (14) be a ra-

tional coprime factorization of over . Assume that
and are stable rational weights. Define as in (15), and
suppose that for zero time-delay has full column rank on
the imaginary axis, including infinity. Let . A stabilizing
causal controller exists such that if and only if the
following three conditions hold.

1) is nonsingular and has the same number of positive
and negative eigenvalues as, and is nonsingular
on the imaginary axis.

2) A bistable exists such that , and the
lower-right -block of
is bistable.

3) if .
In this case, all stabilizing controllersthat achieve

are parameterized by

(23)

where and
with . Moreover, (which is not unique)

can be chosen such that its upper-right block
satisfies , and for this choice of , the controller
is causal for any strictly proper .

1We construct one in Theorem 5.3. For the SISO case with simple poles only,
one can be found from a partial fraction expansion

� (s)

� (s)
= a + a =(s� � ):

letF (s) := a (e �1)+ a (e �e )/(s�� ) andR(s) :=
a + a e =(s � � ).

Proof: The conditions are item by item equivalent to those
of Theorem 5.1. [Note that in Condition 1) the nonsingularity of

implies that the number of negative eigenvalues and the
number of positive eigenvalues of is equal to those of
for every .]

This formulation makes the problem suited for computation.
Given , a spectral factor can be computed using the solu-
tion of an associated Riccati equation [2], [12]; the stable factor

can be constructed from a partial fraction expansion and
bistability of can then be tested with help of the Nyquist
criterion. For the delay-free case, the stability test is much sim-
pler. In such cases, is bistable if and only if the solution
of the Riccati equation is positive semidefinite [12]. For our
nonrational system, it is still possible to obtain necessary and
sufficient conditions in terms of Riccati equations, but the con-
ditions are necessarily more involved. This is analogous to the
Lyapunov type conditions in [24].

Theorem 5.3:Assume that is proper, and let (14) be a
rational coprime factorization of over . Assume that
and are stable rational weights. Form a realization of the
rational part of

where the partitioning of and
corresponds to the partitioning of. Assume that has all its
eigenvalues in the open left-half plane and that

has full column rank on the imaginary axis and at.
A stabilizing causal controller exists such that

if and only if the following three conditions hold.

1) is nonsingular and has the same number of pos-
itive and negative eigenvalues as, and the Hamiltonian

defined as

has no imaginary eigenvalues. Here

in which

2) The Hamiltonian defined in Condition 1)
has an -dimensional stable eigenspace , [with
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], and is nonsingular for
all .

3) .
If the above conditions hold, then nonsingular matricesand
exist such that and ,
then

satisfies , and for and , we may
take

(24)

and

For this choice of , the upper-right block of satisfies
, and with defined as

, the controllers defined as

(25)

are causal for any strictly proper. Moreover, stabilizes and
achieves if and only if is stable and
.

Proof: See the Appendix.
It is well known that, given Condition 1), the Condition 2) can

alternatively be expressed as the “stabilizing” solution
of the Riccati equation

exists for all . For zero time-delay, the factor
is zero, and then the Riccati equation recovers the standard

Riccati equation associated with this type spectral factorization
problem [2], [12], and for such cases, Condition 2) holds if and
only if the single test holds that [12]. As it stands,
with the time-delays, Condition 2) is more involved, but it is
easy enough to allow to compute controllers.

Remark 1: The condition of Theorem 5.1, Condition 3), that

(26)

is for the delay-free case not needed for the computation of con-
trollers, and is indeed not necessarily true for stabilizing causal
controllers to exist that make . The condition (26)
expresses therefore a gap between zero time-delay and nonzero
time-delay, no matter how small the delay is. In practical cases,

however, the inequality (26) will also hold for the delay-free
case, for if or is strictly proper, then

It may be shown that the causality condition (26) is connected
to the essential spectral radius of a certain Hankel plus Toeplitz
operator as considered in, e.g., [23] and [37].

Remark 2: The results of this section remain valid if
everywhere in this section we replace the delay function

with an arbitrary inner function for which
is strictly proper. In that case, the matrix exponential

in Theorem 5.3 should be replaced with the matrix
function (similar inner matrix functions are employed
in [16]).

Remark 3: Another straightforward generalization of the
results in this section is to replace the single time-delay

with a multiple time-delay
. This way does not automatically commute

with other operators. Going through the manipulations of this
section will show that Theorems 5.1 and 5.2 remain valid,
provided we assume the following:

1) , that is, the multiple delays occur in the com-
ponents of the output;

2) commutes with and ;
3) commutes with .

The second condition is not very stringent if is stable, be-
cause then we may take . Also, the third condition is
not very stringend, because we may always choose to be
diagonal.

A. Controller Structure and Implementation

The most obvious choice for in the controller parameteri-
zation defined in (25) is . The resulting controller

is commonly called the central controller. With the explicit for-
mulas for and , it is interesting to work out the structure
of the central and other controllers and to see if and how such
controllers can be implemented.

It is not difficult to verify that the general controller

can be rearranged as shown in Fig. 6(a), in which

with
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(a)

(b)

Fig. 6. (a) The controller as an LFT and (b) the central controller.

We are free to choose (as long as it is stable and )
and is the infinite-dimensional part of the controller. Nor-
mally, we would choose and then the controller sim-
plifies to , shown in Fig. 6(b), with

. This is the central controller. In the cen-
tral controller, the block is finite dimensional. The only in-
finite-dimensional part if . The constructed in The-
orem 5.3 is of the form

(27)
and the fortunate implication of this is that its inverse Laplace
transform (its impulse response) has compact support (see [8]
and [11], for similar observations). In fact the impulse response
of (27) is

if
elsewhere

and it has support equal to the dead-time. It is because of
its finite support property that may be implemented
without too much difficulty, certainly for simulation purposes.
Normally, is strictly proper and it may be verified that in
such cases and so the Dirac pulses in the impulse
response are then not present.

The McMillan degree of equals the McMillan degree of
, which in turn equals the sum of McMillan degrees of ,
, and . This is in accordance with the delay free case, and it

suggests that controllers of significantly lower order generically
will not exist. In contrast, the description of as given in
Theorem 5.3 often appears to contain hidden modes.

Remark: The construction of in Theorem 5.3 is such that
is biproper, so all of the inverses taken above are well

defined. The construction in Theorem 5.3 further guarantees that

is strictly proper, and for that reason, the controller is
causal for every strictly proper .

B. Examples

We apply the method of the previous section to two exam-
ples. The first example is from Toker and Özbay [32], and the
second is based on an example by Partington and Glover [24].
The MATLAB macros used for the computations are based on the
results from the previous section.2 The macros work as long as
the delay is not too large. For large delays, different techniques
have to be used; see [40]. In [19], one more example is reported.

Example 5.4:Reference [32] considered minimizing the
-norm of

with

This problem is not yet in our form (13), but if we let

then their and our

differ only a by unitary factor and, hence, have the same
-norm (note that and have modulus 1 on the

imaginary axis). For this data, the rational part of the matrix
defined in (15) has McMillan degree 3, and so the matrix
of Theorem 5.3 is a matrix. Fig. 7 shows the smallest
singular value of as a function of . At , the

is singular for the first time as comes down from ,
and, therefore, that is the optimal. The central controller for

slightly larger than optimal, , is
, with

and with a system with impulse response as depicted in
Fig. 8. The impulse response on its support is almost indistin-
guishable from a straight line. As with the delay-free case, some
coefficients in approach zero asapproaches the optimal.
Removing those terms from the controller description leaves a
controller of reduced order, and this is normally the optimal con-
troller. Our theory does not apply, however, to the optimal case

2The macros are available from http://www.math.utwente.nl/~meinsma/.
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Fig. 7. The smallest singular value ofX (
); Example 5.4.

Fig. 8. Minus the impulse response ofF ; Example 5.4.

and care should thus be taken with setting some coefficients to
zero, no matter how small they are. A separate Nyquist plot can
be used to test for closed-loop stability for the reduced-order
controller.

Example 5.5:This example is taken from [24, Sec. 5]. We
consider the dead-time system , and we want
to find a controller that not only stabilizes, but also stabilizes
all plants in a neighborhood

Here, is strongly coprime factorization over
normalized in the sense that for all
frequencies. For our plant, that is the case for

It is well known that, given , the “stability radius” is deter-
mined as

Maximizing the stability radius over the stabilizing controllers
is thus an -norm minimization problem. In accordance with

[24], we find for a maximal of . A
near optimal controller is with

and with a system with impulse response

if
otherwise.

APPENDIX

A. Frequency Domain Proofs

In this subsection, we prove Theorem 5.1. This proof also
proves Theorem 5.2 as the two theorems are equivalent.

Lemma 6.1 (Small Gain):Let , , , and be stable
transfer matrices of appropriate dimensions, and suppose that

and are invertible in and that
and . Then, is bistable if and
only if and are bistable.

Proof: We make use of [5, Lemma 8.3], which states that
if then is stable if and only if is stable.

Suppose and are bistable, and define
. Because is stable and

, we have that

is stable.
Conversely, if is stable, then

is also stable, and because , we have
that is stable as well. Now, it is easy to see that

and therefore is stable. Similarly, can be seen to
stable. This completes the proof. (The rational case is proved
in [34, pp. 274–275].)

As before, we use the short hands

It is important to note that , i.e., that and have the
same number of negative eigenvalues. The following theorem
was proved for the rational case in [12].
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Theorem 6.2:Let , and suppose that
almost everywhere on , with and as defined above.

Consider the equality

with , , ,
and . Then, the following conditions are equiva-
lent.

1) is bistable and .
2) and are bistable and .

Proof: We use the fact that a transfer matrix is
invertible in if and only if on the imaginary
axis for some

bistable,

bistable,

on the imaginary axis, for some

bistable,

on the imaginary axis, for some

bistable,

on the imaginary axis, for some

bistable,

on the imaginary axis, for some

bistable,

on the imaginary axis, for some

bistable, is invertible in

and (28)

Next, we show that is invertible and that
. By the fact that , it follows that

. In particular, is invertible in . Now,
consider the equation

with . As , there holds that

For the specific case of , the output is
identically zero, and the above equality reduces to

As and is arbitrary, we necessarily have that
. Using this case and Lemma 6.1, the con-

dition of (28) is equivalent to that and
and are bistable.

In the remainder of the section, we prove Theorem 5.2 item by
item. Extensive use is made of the strongly coprime factoriza-

tions and . Then, according
to [26], a controller stabilizes if and only if

is bistable. We also make use of
the following expression:

(29)

The matrix is the closed-loop “characteristic polynomial,” and
closed-loop stability is equivalent tobeing bistable [26].

Lemma 6.3:Let be given. The condition of Theorem
5.1, Condition 1) is necessary for the existence of a stabilizing

such that .
Proof: Suppose stabilizes and achieves
. As is assumed to stabilize , we have that has a

factorization over such that with

Let be a right coprime factorization of . Using
the fact that and that the bottom row-block of is

, we get that

(30)

with the closed-loop transfer matrix, andwhatever comes
out. In what follows, denotes the smallest singular value.
By assumption, is bounded away from zero and be-
cause is bistable, it follows from (30) that
is also bounded away from zero as a function of. Consider the
identity

(31)

It now follows from a standard Schur complement result that
has at any at least as many negative eigenvalues
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as and at least as many positive eigenvalues as
. This accounts in fact for all of the eigenvalues so that

has indeed the same inertia aseverywhere on the
imaginary axis. None of these eigenvalues as a function of

can approach zero because is strictly less than ,
and and is bounded away from zero.

Lemma 6.4:Let be given, and assume Theorem 5.1,
Condition 1), holds. The condition of Theorem 5.1, Condition
2), is necessary and sufficient for the existence of a stabilizing

such that .
In particular, under these conditions, stabilizes and

achieves if and only if
for some stable with .

Proof—Necessity:Suppose that stabilizes and
achieves . From Lemma 5.1, Condition 1), we
have that has the same number of positive and negative
eigenvalues as. Then, also, the rational defined in (21)
has this number of positive and negative eigenvalues, including
at . Then, according to [18, Cor. 3.1], has a spectral
factorization

bistable (32)

if and only if has noequalizing vectors. An equalizing vector
of is a nonzero such that . Suppose, to
obtain a contradiction, that such equalizing vectorsexist, then

is an equalizing vector of . Partition
as . Then, on the one hand, we have that

so that

(33)

whereas on the other hand, we have that

Because , we have that with
denoting the orthogonal projection from onto . Con-

sequently

(34)

This equation contradicts (33); hence, no equalizing vectors
exist, and as a result, (32) has a bistable solution. Now,

is a bistable spectral factor of .

It remains to show that the lower right block of
is bistable. As is bistable, we can write any stable factoriza-
tion of as

(35)

for some stable and . From (29), we see that

Note that satisfies and that the
controller is stabilizing if and only if is bistable. Hence, by
Theorem 6.2, the controller (35) is stabilizing and achieves

if and only if and is bistable and
.

Sufficiency: In particular, we see that such controllers
exist if and only if is bistable: simply take and

. It is easy to see that (35) is just another way of writing
that , where
and .

Lemma 6.5:Let be given, and assume Theorem 5.1,
Conditions 1) and 2), hold. The condition of Theorem 5.1, Con-
dition 3), is then necessary and sufficient for the existence of a
causal stabilizing such that .

Concretely, under these conditions, a rational spectral factor
(as defined in Theorem 5.2) exists such that

and then is causal for every
strictly proper .

Proof: The necessity of Condition 3) was shown in the
proof of Theorem 5.1. The sufficiency can be seen by explicitly
writing a spectral factor.

Condition 3) implies that . Then, Theorem 5.2,
Condition 2), implies that the constant matrix can be de-
composed as

For any spectral factor of , the matrix
is also a bistable spectral factor ofand it is normalized in that

Then, also, is block lower triangular at
infinity in the sense that

Now, let be strictly proper. Then, a exists such that
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satisfies

Hence, is strictly proper, and in particular, we see thatis
causal.

B. Riccati Equations

In this subsection, we prove Theorem 5.3. Whenever we write

(36)

we mean that is square and that .
Usually, , , , and are constant matrices, and

is then called a realization of . In this
subsection, however, the matrices, , and may depend on

corresponding to a nonrational. The “realization” (36) is
then essentially a Rosenbrock system matrix description [25].
First, some preliminary results.

Lemma 6.6:Let

be a realization of the rational part of, and then the rational
part of has the realization

(37)

Here, the partitionings are compatible with that of. Then,
as defined in (21) has the realization as shown in (38) at the
bottom of the page, where is the Hamiltonian matrix

. Moreover

Proof: Let be the rational part of . It is easy to
verify that the realization in (37) is a realization of. Including
the time-delays, we obtain the “realization”

We associate with the equation .
This equation can be rearranged as follows:

(39)
This function defines . Rearranging the realization of
similarly gives a realization of as shown in (39a) at the bottom
of the next page. Note that the-matrix here is . Looking at
the lower left block of , we see that

It is this term that we have to write as with in
and a rational matrix. The claim is that this holds for

That the sum equals is trivial, that is rational is
also trivial, and that is in follows from the fact that the
poles of cancel against the term

(38)
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By the symmetry property, we have that
. Because we have from (39) that

it is reasonable to guess—and indeed true—that the and
constructed earlier also satisfy (39b) and (39c), at the bottom

of the page.
Based on this, we now combine the various blocks and form

the realization as shown in (40) at the bottom of the page.
As a final step, we associate with (40) the equation

and we rewrite it as

Here, we recognize as defined in (21). In terms of state-
space manipulations, we similarly obtain (38), which is what
we needed to show.

Proof of Theorem 5.3:We prove the equivalence with
Theorem 5.2 item by item.

The conditions imposed on are the same as those in The-
orem 5.2 because is assumed to have no imaginary eigen-
values.

Condition 1) First of all, note that .

Looking at the realization (38) of , we see that the Hamil-
tonian defined in Theorem 5.2, Condition 1) is the “-ma-
trix” of the realization of theinverseof . A standard Schur
complement gives that

with as defined in (37). By assumption,has no eigenvalues
on the imaginary axis; hence, has not either. The conclusion
is that is nonsingular everywhere on the imaginary axis,
including infinity, if and only if is nonsingular and
has no imaginary eigenvalues.

Condition 2) By the canonical factorization theorem [2], [18],
the condition that is nonsingular is equivalent to the ex-
istence of a bistable spectral factor . In Condition 2) that

exists and is nonsingular for all is equivalent to
that is bistable. This can be seen as follows. If the solu-
tion does not exist or is singular for some , then
by canonical factorization theorem no bistable can exist,
and, hence, by Theorem 5.1,-optimal controllers do not exist.
If doesexist and is nonsingular for all , then

as a function of is continuous. Then, also,
depends continuously on and, so,

also does the Nyquist plot3 of . For large enough, is
bistable, if now for , the would not be bistable, then
by continuity the Nyquist plot for some in between will have
to be zero at some . That is impossible because—despite
whether is bistable—we have that

everywhere on the imaginary axis

3M is bistable if and only if the Nyquist plotdetM (j )
does not encircle the origin. The Nyquist criterion assumes that
lim detM (s) exists. It may be verified that for our
choice ofQ [namely,Q (1) being block lower triangular] implies this limit
to exist with nonzero limitdet(P (1)Q (1)).

(39a)

(39b)

(39c)

(40)
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for every . Hence, no such singular pointsexist, and is
bistable for .

Condition 3) .
It is a matter of manipulation to check that is the

stabilizing solution of a Riccati equation, and that the realization
of indeed defines a bistable spectral factor of. (See, for
example, the similar derivation in [18].) The was already
determined in Lemma 6.6.

That is causal for strictly proper is shown in
Lemma 6.5.
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