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• Representing model uncertainty.

• Common configurations of unstructured
uncertainty.

• Generalizing uncertainty: the M∆∆∆∆-structure.

• Robust stability.



Representing
Model Uncertainty



Representing Model UncertaintyRepresenting Model Uncertainty

• One common convention is to use complex
transfer matrix perturbations.

• For example, additive uncertainty is given by:

nominal model

perturbed
model

G(s)

∆∆∆∆a(s)

Gp(s)

• where the stable transfer matrix ∆∆∆∆a(s) has the same
dimension as the nominal model G(s)



Unstructured Transfer MatricesUnstructured Transfer Matrices

• The assumption of completely unstructured
uncertainty is represented by a bound on the
maximum singular value:

ωωσ  allfor      1))(( ≤∆ j

• We are assuming even less knowledge about this
perturbation than we did for the SISO case.

• This transfer matrix may have any internal
structure at all.



Unstructured Transfer MatricesUnstructured Transfer Matrices

• permits any of the following for ∆∆∆∆(s):
– Zero matrices,
– Complex matrices,
– Real matrices,
– Diagonal matrices,
– Ill-conditioned matrices,
– Well-conditioned matrices,
– Full matrices,
– Sparse matrices,
– etc.

1))(( ≤∆ ωσ j
• The assumption of stability and the bound



Shaping UncertaintyShaping Uncertainty

• Similar to the SISO case, the model uncertainty will
often be shaped with known transfer matrices,

• Gain of W2 and W1 should be large for uncertain
frequencies and directions of the model.

nominal model

G(s)

∆∆∆∆a(s)W1(s) W2(s)

perturbed
model

Gp(s)



NotationNotation

• The bound on the largest singular value

ωωσ  allfor      1))(( ≤∆ j

is equivalent to bounding the H∞∞∞∞ norm

1)( ≤∆
∞

s

and is commonly used as notation.



Common Configurations
of

Model Uncertainty



Three examplesThree examples

• Additive uncertainty

G(s)

Ea(s)

G(s)

EO(s)

G(s)

EI(s) • Multiplicative input
uncertainty

• Multiplicative output
uncertainty



Importance of ConfigurationImportance of Configuration

• In MIMO systems, it is more difficult to move
uncertainty around than in SISO systems.

• Consider for example, the three previous cases:

Gp = G + EA (additive)
Gp = G ( I + EI ) (multiplicative input)
Gp = ( I + EO ) G (multiplicative output)



The Importance of ConfigurationThe Importance of Configuration

• Suppose that we have Gp = G ( I + EI ), then the size of the
uncertainty is || EI ||∞∞∞∞

• Now, suppose we wish to look at uncertainty in terms of EO.

• The two multiplicative configurations may be made equivalent
by writing

EO G = G EI

• Then (ignoring issues of invertibility),

EO = G EI G-1



The Importance of ConfigurationThe Importance of Configuration

• Then taking the maximum singular value of both
sides,
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• If we assume that the perturbations are
unstructured, then we can “pull-out”
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The Importance of ConfigurationThe Importance of Configuration

• If the matrix G is ill-conditioned, then σσσσ(G) is small,
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and therefore                  must be large!

• A similar effect would have happened if we had
tried to represent a EO perturbation in terms of EI.

)( OEσ



On the Other Hand...On the Other Hand...

• We can represent both input and output
multiplicative uncertainty easily in terms of additive
uncertainty.

• First, we equate the perturbations,

EA   =   EO G   =   G EI



On the Other Hand...On the Other Hand...

• Then, for unstructured matrices {EA, EO, EI}, we
find:

)()()()()( IOA EGGEE σσσσσ ==

and since we only deal with the maximum singular
value (i.e. not the minimum), then we are
insensitive to ill-conditioned matrices G.

• Those of you doing the CD control project should
take note of this result!



Generalizing Uncertainty:
the M∆∆∆∆-Structure



A Familiar A Familiar StructureStructure

• Consider a typical MIMO feedback loop with
multiplicative output uncertainty:

• the unstructured, stable transfer matrix ∆∆∆∆O(s) is
bounded:

||∆∆∆∆O(s)||∞∞∞∞ ≤≤≤≤ 1

G(s)

WO(s)

K(s)
-

+
+

∆∆∆∆O(s)
u y



The MThe M∆∆∆∆∆∆∆∆ Structure Structure

• The diagram:

is a special case of the M∆∆∆∆ structure

∆∆∆∆(s)

M(s)

u∆∆∆∆ y∆∆∆∆

So what?
Later, we will see that this

structure is useful for
calculating robust stability.

G(s)

WO(s)

K(s)
-

+
+

∆∆∆∆O(s)
u y



One Approach to ReconfiguringOne Approach to Reconfiguring

• Step 1: flip the diagram around so that the signals
flow from left to right through the perturbation.

G(s)

WO(s)

K(s)
-

+
+

∆∆∆∆O(s)
uy



One Approach to ReconfiguringOne Approach to Reconfiguring

• Step 2: isolate the perturbation.  Label the signals
u∆∆∆∆ and y∆∆∆∆ and the system M.

G(s)

WO(s)

K(s)

∆∆∆∆O(s)
M

u∆∆∆∆ y∆∆∆∆

uy

-



One Approach to ReconfiguringOne Approach to Reconfiguring

• Step 3: Compute M (see Section 3.2 in your text for help).

From the diagram, y = G u + u∆∆∆∆

u = -K y
y∆∆∆∆ = WO G u

G

WO

K

∆∆∆∆O

M
u∆∆∆∆ y∆∆∆∆

uy
-



One Approach to ReconfiguringOne Approach to Reconfiguring

Eliminate y by substituting
u = -K (G u + u∆∆∆∆)

then
u = -(I+KG)-1K u∆∆∆∆

Then combine result with y∆∆∆∆ = WO G u,
to get

 y∆∆∆∆ = -WO G (I+KG)-1 K u∆∆∆∆

in other words,
      M = -WO G (I+KG)-1 K

= -WO GK (I+GK)-1       (from Chapter 3)



One Approach to ReconfiguringOne Approach to Reconfiguring

• Step 4: Finished!

∆∆∆∆

M

u∆∆∆∆ y∆∆∆∆

∆∆∆∆O

-WO GK (I+GK)-1 

u∆∆∆∆ y∆∆∆∆

• Remark: if ∆∆∆∆O is completely unstructured, then the negative
sign in M is not relevant since both +∆∆∆∆O and -∆∆∆∆O are permitted.



MM∆∆∆∆∆∆∆∆-Structure - Comments-Structure - Comments

• Section 8.6.1 of the textbook lists M and ∆∆∆∆ for six
common configurations of uncertainty.

• The same procedure applies for configuring an M∆∆∆∆
for multiple perturbations in a system {∆∆∆∆1, ∆∆∆∆2, etc}.

• Your assignment will give you an opportunity to
practice!



The MThe M∆∆∆∆∆∆∆∆ Structure Structure

• If there are multiple sources of model uncertainty
{∆∆∆∆1, ∆∆∆∆2, etc} in a system,

∆∆∆∆

M

u∆∆∆∆ y∆∆∆∆

then it is often convenient to construct an M∆∆∆∆
structure such that ∆∆∆∆ is block diagonal.
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1
Why?

It typically makes
the µµµµ-analysis for

robust stability easier.



Robust Stability



Robust StabilityRobust Stability

• So far, we have discussed:
– matrix perturbations for model uncertainty.
– a structure for separating the nominal system from the

perturbations.

• Next, we will see how this structure is used to give
us a robust stability condition.



Nominal StabilityNominal Stability

• Remember* that for a multivariable feedback
system nominal stability (NS) was defined for L(s)
with Pol open-loop unstable poles:

L

• The closed-loop is stable iff:
•det(I - L(jωωωω))  makes Pol anticlockwise
encirclements of the {0,0} point.
•det(I - L(jωωωω)) ≠≠≠≠ 0

{0,0}

Im

Re

det(I-L(jωωωω))

*Section 4.9.2 in textbook.



Robust StabilityRobust Stability

• If the nominal system M(s) and the perturbation ∆∆∆∆(s)
are both stable,

L

then the closed-loop system with L = M∆∆∆∆ is
robustly stable (RS) if and only if:

• det(I - M(jωωωω) ∆∆∆∆(jωωωω)) does not encircle {0,0} for any
allowed perturbation ∆∆∆∆(s).

• det(I - M(jωωωω) ∆∆∆∆(jωωωω)) ≠≠≠≠ 0 for all ωωωω,
and all ∆∆∆∆(s)

∆∆∆∆

M

M ∆∆∆∆



Robust Stability Graphical InterpretationRobust Stability Graphical Interpretation

∆∆∆∆

M

Robust stability means that none of the curves generated
from the perturbations ∆∆∆∆(s) encircle or touch the
origin {0,0}.

{0,0}

Im

Re

det(I - M(jωωωω) ∆∆∆∆(jωωωω))

Nominal system is just a 
dot at {0,+1}



Two Bad ExamplesTwo Bad Examples

Im

Re

Im

Re

       Bad!
System is open-loop
stable, no encirclements
of {0,0} are permitted.

       Bad!
Never touch the origin!



Robust Stability CommentsRobust Stability Comments

• How we calculate RS depends on the type of model
uncertainty that we have.

– Multiple model uncertainty would require to check the NS
of each potential model.

– With complex matrix perturbations ||∆∆∆∆(s)||∞∞∞∞ ≤≤≤≤ 1, we need
only check the second condition.

Why?
Because if all stable ∆∆∆∆(s) with ||∆∆∆∆(s)||∞∞∞∞ ≤≤≤≤ 1 are allowable and there
exists an allowable ∆∆∆∆(s) such that det(I - M(jωωωω) ∆∆∆∆(jωωωω)) encircles
{0,0}, then there also exists an allowable ∆∆∆∆(s) such that
det(I - M(jωωωω) ∆∆∆∆(jωωωω)) = 0.



Robust Stability for Unstructured UncertaintyRobust Stability for Unstructured Uncertainty

Assume the nominal system M(s) is stable (NS),
and perturbations ∆∆∆∆(s) are stable.  Then the
M∆∆∆∆-system is stable for all perturbations with
||∆∆∆∆(s)||∞∞∞∞ ≤≤≤≤ 1, if and only if,

ωωσ  allfor       ,1))(( <jM

Proof : Satisfying this condition implies that det(I - M(jωωωω) ∆∆∆∆(jωωωω)) ≠≠≠≠ 0 for
any ωωωω and ||∆∆∆∆(s)||∞∞∞∞ ≤≤≤≤ 1.  (See textbook Section 8.6.)



ExampleExample

• Recall the the multiplicative output uncertainty,

∆∆∆∆O

-WO GK (I+GK)-1 

u∆∆∆∆ y∆∆∆∆

with M = -WO GK (I+GK)-1

• Then assuming that M is stable, we have the RS
condition:

ωσ  allfor     1)][( 1 <+⋅ −GKIGKWO



ExampleExample

• Notice that this condition is is terms of the
complementary sensitivity function

T = GK[I+GK]-1

then

ωσ  allfor     1)( <⋅TWO

• and bears a strong resemblance to the RS
condition for multiplicative uncertainty in the SISO
case.



ConclusionsConclusions

• We generalized the concept of stable, bounded
SISO transfer function perturbations to stable,
unstructured transfer matrices bounded with
||∆∆∆∆(s)||∞∞∞∞ ≤≤≤≤ 1.

• Discussed its use in common configurations of
nominal models with perturbations.



ConclusionsConclusions

• Presented the M∆∆∆∆ structure to generalize the
concept of model uncertainty.

• We then used the M∆∆∆∆ structure to derive a robust
stability condition for unstructured matrix
perturbations.  (I.e. it is not a general definition of RS.)

• This condition simplifies to the SISO case (last
week’s lecture) when we consider transfer matrices
of size 1-by-1.


