

Model Uncertainty and Robust Stability for Multivariable Systems

ELEC 571L – Robust Multivariable Control prepared by: Greg Stewart

Honeywell

Devron Profile Control Solutions

Outline

- Representing model uncertainty.
- Common configurations of unstructured uncertainty.
- Generalizing uncertainty: the M∆-structure.
- Robust stability.

Representing Model Uncertainty

Representing Model Uncertainty

- One common convention is to use complex transfer matrix perturbations.
- For example, additive uncertainty is given by:

• where the stable transfer matrix $\Delta_a(s)$ has the same dimension as the nominal model G(s)

Unstructured Transfer Matrices

 The assumption of completely unstructured uncertainty is represented by a bound on the maximum singular value:

$\overline{\sigma}(\Delta(j\omega)) \leq 1$ for all ω

- We are assuming even less knowledge about this perturbation than we did for the SISO case.
- This transfer matrix may have any internal structure at all.

Unstructured Transfer Matrices

The assumption of stability and the bound

$\overline{\sigma}(\Delta(j\omega)) \leq 1$

- permits *any* of the following for $\Delta(s)$:
 - Zero matrices,
 - Complex matrices,
 - Real matrices,
 - Diagonal matrices,
 - III-conditioned matrices,
 - Well-conditioned matrices,
 - Full matrices,
 - Sparse matrices,
 - etc.

Shaping Uncertainty

 Similar to the SISO case, the model uncertainty will often be shaped with known transfer matrices,

 Gain of W₂ and W₁ should be large for uncertain frequencies and directions of the model.

Notation

The bound on the largest singular value

$$\overline{\sigma}(\Delta(j\omega)) \leq 1$$
 for all ω

is equivalent to bounding the H_{∞} norm

$$\left\|\Delta(s)\right\|_{\infty} \le 1$$

and is commonly used as notation.

Common Configurations of Model Uncertainty

Three examples

Additive uncertainty

 Multiplicative input uncertainty

 Multiplicative output uncertainty

Importance of Configuration

- In MIMO systems, it is more difficult to move uncertainty around than in SISO systems.
- Consider for example, the three previous cases:

 $G_p = G + E_A$ (additive) $G_p = G (I + E_I)$ (multiplicative input) $G_p = (I + E_O) G$ (multiplicative output)

The Importance of Configuration

- Suppose that we have $G_p = G (I + E_I)$, then the size of the uncertainty is $||E_I||_{\infty}$
- Now, suppose we wish to look at uncertainty in terms of E_o.
- The two multiplicative configurations may be made equivalent by writing

$$E_0 G = G E_1$$

• Then (ignoring issues of invertibility),

$$\mathbf{E}_{\mathbf{O}} = \mathbf{G} \mathbf{E}_{\mathbf{I}} \mathbf{G}^{-1}$$

The Importance of Configuration

Then taking the maximum singular value of both sides,

$$\overline{\sigma}(E_O) = \overline{\sigma}(G \cdot E_I \cdot G^{-1})$$

• If we assume that the perturbations are unstructured, then we can "pull-out"

$$\overline{\sigma}(E_{O}) = \overline{\sigma}(E_{I}) \cdot \overline{\sigma}(G) \cdot \overline{\sigma}(G^{-1})$$
$$= \overline{\sigma}(E_{I}) \cdot \frac{\overline{\sigma}(G)}{\underline{\sigma}(G)}$$

The Importance of Configuration

• If the matrix G is ill-conditioned, then $\underline{\sigma}(G)$ is small,

$$\overline{\sigma}(E_O) = \overline{\sigma}(E_I) \cdot \frac{\overline{\sigma}(G)}{\underline{\sigma}(G)}$$

and therefore $\overline{\sigma}(E_o)$ must be large!

 A similar effect would have happened if we had tried to represent a E_o perturbation in terms of E_I.

On the Other Hand...

 We can represent both input and output multiplicative uncertainty easily in terms of additive uncertainty.

• First, we equate the perturbations,

$$E_A = E_O G = G E_I$$

On the Other Hand...

Then, for unstructured matrices {E_A, E_O, E_I}, we find:

$$\overline{\sigma}(E_A) = \overline{\sigma}(E_O)\overline{\sigma}(G) = \overline{\sigma}(G)\overline{\sigma}(E_I)$$

- and since we only deal with the maximum singular value (i.e. not the minimum), then we are insensitive to ill-conditioned matrices G.
- Those of you doing the CD control project should take note of this result!

Generalizing Uncertainty: the MA-Structure

A Familiar Structure

 Consider a typical MIMO feedback loop with multiplicative output uncertainty:

 the unstructured, stable transfer matrix ∆₀(s) is bounded:

 $\|\Delta_0(\mathbf{s})\|_{\infty} \leq 1$

The M∆ Structure

• The diagram:

is a special case of the $M\Delta$ structure

So what?

Later, we will see that this structure is useful for calculating robust stability.

• Step 1: flip the diagram around so that the signals flow from left to right through the perturbation.

• Step 2: isolate the perturbation. Label the signals u_{Δ} and y_{Δ} and the system M.

• Step 3: Compute M (see Section 3.2 in your text for help).

From the diagram, $y = G u + u_{\Delta}$ u = -K y $y_{\Delta} = W_0 G u$

Eliminate y by substituting

$$u = -K (G u + u_{\Delta})$$

then

Then combine result with $y_{\Delta} = W_0 G u$, to get

$$\mathbf{y}_{\Delta} = -\mathbf{W}_{\mathbf{O}} \mathbf{G} (\mathbf{I} + \mathbf{K} \mathbf{G})^{-1} \mathbf{K} \mathbf{u}_{\Delta}$$

in other words,

$$M = -W_0 G (I+KG)^{-1} K$$

= -W₀ GK (I+GK)^{-1} (from Chapter 3)

• Step 4: Finished!

• Remark: if Δ_0 is completely unstructured, then the negative sign in M is not relevant since both $+\Delta_0$ and $-\Delta_0$ are permitted.

M∆-Structure - Comments

- Section 8.6.1 of the textbook lists M and ∆ for six common configurations of uncertainty.
- The same procedure applies for configuring an M Δ for multiple perturbations in a system { Δ_1 , Δ_2 , etc}.
- Your assignment will give you an opportunity to practice!

The M∆ Structure

• If there are multiple sources of model uncertainty $\{\Delta_1, \Delta_2, \text{ etc}\}$ in a system,

then it is often convenient to construct an $M\Delta$ structure such that Δ is block diagonal.

$$\Delta = \begin{bmatrix} \Delta_1 & & \\ & \Delta_2 & \\ & & \ddots \end{bmatrix}$$

Why? It typically makes the μ-analysis for robust stability easier.

Robust Stability

Robust Stability

- So far, we have discussed:
 - matrix perturbations for model uncertainty.
 - a structure for separating the nominal system from the perturbations.
- Next, we will see how this structure is used to give us a robust stability condition.

Nominal Stability

 Remember* that for a multivariable feedback system nominal stability (NS) was defined for L(s) with P_{ol} open-loop unstable poles:

*Section 4.9.2 in textbook.

Robust Stability

 If the nominal system M(s) and the perturbation ∆(s) are both stable,

then the closed-loop system with L = $M\Delta$ is robustly stable (RS) if and only if:

- det(I M(j ω) Δ (j ω)) does not encircle {0,0} for any allowed perturbation Δ (s).
- det(I M(j ω) Δ (j ω)) \neq 0 for all ω ,

and all $\Delta(s)$

Robust Stability Graphical Interpretation

Robust stability means that none of the curves generated from the perturbations $\Delta(s)$ encircle *or* touch the origin {0,0}.

Two Bad Examples

Bad! System is open-loop stable, no encirclements of {0,0} are permitted.

Bad! Never touch the origin!

Robust Stability Comments

- How we calculate RS depends on the type of model uncertainty that we have.
 - Multiple model uncertainty would require to check the NS of each potential model.
 - With complex matrix perturbations $\|\Delta(s)\|_{\infty} \le 1$, we need only check the second condition.

 $\label{eq:Why?} Why? \\ \mbox{Because if all stable $\Delta(s)$ with $||\Delta(s)||_{\infty} \le 1$ are allowable and there exists an allowable $\Delta(s)$ such that det(I - M(j\omega) $\Delta(j\omega))$ encircles $\{0,0\}$, then there also exists an allowable $\Delta(s)$ such that det(I - M(j\omega) $\Delta(j\omega))$ = 0. } \end{cases}$

Robust Stability for Unstructured Uncertainty

Assume the nominal system M(s) is stable (NS), and perturbations Δ (s) are stable. Then the M Δ -system is stable for all perturbations with $||\Delta(s)||_{\infty} \leq 1$, if and only if,

 $\overline{\sigma}(M(j\omega)) < 1$, for all ω

Proof : Satisfying this condition implies that det(I - M(j ω) Δ (j ω)) \neq 0 for any ω and $||\Delta(s)||_{\infty} \leq 1$. (See textbook Section 8.6.)

Example

Recall the the multiplicative output uncertainty,

with $M = -W_0 GK (I+GK)^{-1}$

• Then assuming that M is stable, we have the RS condition:

$$\overline{\sigma}(W_O \cdot GK[I + GK]^{-1}) < 1 \quad \text{for all } \omega$$

Example

 Notice that this condition is is terms of the complementary sensitivity function

 $T = GK[I+GK]^{-1}$

then

$$\overline{\sigma}(W_O \cdot T) < 1$$
 for all ω

 and bears a strong resemblance to the RS condition for multiplicative uncertainty in the SISO case.

Conclusions

 We generalized the concept of stable, bounded SISO transfer function perturbations to stable, unstructured transfer matrices bounded with ||∆(s)||_∞ ≤ 1.

 Discussed its use in common configurations of nominal models with perturbations.

Conclusions

- Presented the MA structure to generalize the concept of model uncertainty.
- We then used the M∆ structure to derive a robust stability condition for unstructured matrix perturbations. (I.e. it is not a general definition of RS.)
- This condition simplifies to the SISO case (last week's lecture) when we consider transfer matrices of size 1-by-1.