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° Representing model uncertainty.

* Common configurations of unstructured
uncertainty.

* Generalizing uncertainty: the MA-structure.

° Robust stability.



Representing
Model Uncertainty



Representing Model Uncertainty

* One common convention is to use complex
transfer matrix perturbations.

* For example, additive uncertainty is given by:
G (s) perturbed

model

_____________________________________

l—' A,(8)
» G(s) >

nominal model

_____________________________________

* where the stable transfer matrix A,(s) has the same
dimension as the nominal model G(s)



Unstructured Transfer Matrices

* The assumption of completely unstructured
uncertainty is represented by a bound on the
maximum singular value:

O(A(jw))<1 forallw

°* We are assuming even less knowledge about this
perturbation than we did for the SISO case.

* This transfer matrix may have any internal
structure at all.



Unstructured Transfer Matrices

* The assumption of stability and the bound
o(A(jw)) <1

* permits any of the following for A(s):
— Zero matrices,
— Complex matrices,
— Real matrices,
— Diagonal matrices,
— lll-conditioned matrices,
— Well-conditioned matrices,
— Full matrices,
— Sparse matrices,
— etc.



Shaping Uncertainty

e Similar to the SISO case, the model uncertainty will
often be shaped with known transfer matrices,

G (S) perturbed

[T ! model

[—> W,(5) | A,(8) 3 W,(5)
> G(s) >_< = .

________________________________________________________

* Gain of W, and W, should be large for uncertain
frequencies and directions of the model.



° The bound on the largest singular value
O(A(jw))<1 forallw
is equivalent to bounding the H_ norm

HA(S)HOO <1

and is commonly used as notation.



Common Configurations
of
Model Uncertainty



Three examples

"""""""""""""""

* Additive uncertainty

* Multiplicative input
uncertainty

* Multiplicative output
uncertainty



Importance of Configuration

* In MIMO systems, it is more difficult to move
uncertainty around than in SISO systems.

* Consider for example, the three previous cases:

G,=G+E, (additive)
G,=G(I+E) (multiplicative input)
G, =(l+Ey)G (multiplicative output)



The Importance of Configuration

Suppose that we have G, = G (| + E,), then the size of the
uncertainty is || E, ||..

Now, suppose we wish to look at uncertainty in terms of E.

The two multiplicative configurations may be made equivalent
by writing

EoG=GE,

Then (ignoring issues of invertibility),

Eo=G E,G"



The Importance of Configuration

* Then taking the maximum singular value of both
sides,

6(E,))=0(G-E,-G™)

* If we assume that the perturbations are
unstructured, then we can “pull-out”

G(E,)=0(E,)-6(G)-0(G™)
o (G)
o(G)

=0(E))-



The Importance of Configuration

* If the matrix G is ill-conditioned, then 5(G) is small,

5(E,) =G (E,) "(G)/

o(G)

and therefore O (E,) must be large!

* A similar effect would have happened if we had
tried to represent a E, perturbation in terms of E,.



On the Other Hand...

* We can represent both input and output
multiplicative uncertainty easily in terms of additive
uncertainty.

* First, we equate the perturbations,

E, = E,G = GE



On the Other Hand...

* Then, for unstructured matrices {E,, E,, E;}, we
find:

O(E,)= E(EO)E(G) =0(G)o(E))
and since we only deal with the maximum singular

value (i.e. not the minimum), then we are
insensitive to ill-conditioned matrices G.

* Those of you doing the CD control project should
take note of this result!



Generalizing Uncertainty:
the MA-Structure



A Familiar Structure

* Consider a typical MIMO feedback loop with
multiplicative output uncertainty:

Wo(s) 1 Ap(s)
) l_' 0 0 _l+ y

f " KG6) [T G) >0 >

* the unstructured, stable transfer matrix Ay(s) is
bounded:

1Ao(8)Il.. < 1



The MA Structure

* The diagram:

Wo(s) > An(S)
u r > > _l+ y

f—» K(s) |~ G(s) (O I >
is a special case of the MA structure
. A(s) So what?
A
Ya Later, we will see that this
—> M(s) |—— structure is useful for

calculating robust stability.



One Approach to Reconfiguring

* Step 1: flip the diagram around so that the signals
flow from left to right through the perturbation.

N Ao(8) [ Wo(s) 4—1
Yy + u

G(s) [ | K(s) ‘_f




One Approach to Reconfiguring

* Step 2: isolate the perturbation. Label the signals
u, and y, and the system M.

v u
LF@ I G(s) [*— | K(s) ‘_Cf




One Approach to Reconfiguring

* Step 3: Compute M (see Section 3.2 in your text for help).

U, YA M
i e :
oy | u :
| 4—|—Q< G<—K<—§f :
From the diagram, y=Gu+u,
u=-Ky

y,=WoGu



One Approach to Reconfiguring

Eliminate y by substituting
u=-K(Gu+u,
then
u = -(I+KG)' K u,

Then combine result withy, =W, G u,
to get
Yy, =-Wg, G (+KG)'K u,
in other words,

M = -W, G (I+KG)"' K
= 'WO GK (|+GK)'1 (from Chapter 3)



One Approach to Reconfiguring

* Step 4: Finished!

A — Ag

Ha Ya <:> ta Ya

L v |— % -W, GK (I+GK)! |—

* Remark: if A, is completely unstructured, then the negative
sign in M is not relevant since both +A, and -Ag, are permitted.



MA-Structure - Comments

* Section 8.6.1 of the textbook lists M and A for six
common configurations of uncertainty.

* The same procedure applies for configuring an MA
for multiple perturbations in a system {A,, A,, etc}.

* Your assignment will give you an opportunity to
practice!



The MA Structure

* If there are multiple sources of model uncertainty
{A;, A,, etc} in a system,

A.‘_

¥Ya

_’M_

then it is often convenient to construct an MA
structure such that A is block diagonal.

- ~ Why?
It typically makes
A= A, the p-analysis for

. robust stability easier.




Robust Stability



Robust Stability

* So far, we have discussed:
— matrix perturbations for model uncertainty.

— a structure for separating the nominal system from the
perturbations.

* Next, we will see how this structure is used to give
us a robust stability condition.



Nominal Stability

* Remember* that for a multivariable feedback
system nominal stability (NS) was defined for L(s)
with P, open-loop unstable poles:

L

R

* The closed-loop is stable iff:

*det(l - L(jo)) makes P, anticlockwise
encirclements of the {0,0} point.

*det(l - L(jw)) =0

det(I-L(jo))

*Section 4.9.2 in textbook.



Robust Stability

* If the nominal system M(s) and the perturbation A(s)
are both stable,

e T e

then the closed-loop system with L = MA is
robustly stable (RS) if and only if:

* det(l - M(jo) A(jw)) does not encircle {0,0} for any
allowed perturbation A(s).

* det(l - M(jo) A(jw)) #0 for all w,
and all A(s)



Robust Stability Graphical Interpretation

\ Nominal system is just a

BN M ] dot at {0,+1}

'\v\'\%/

det(I - M(jo) A(jo))

Robust stability means that none of the curves generated

from the perturbations A(s) encircle or touch the
origin {0,0}.



Two Bad Examples

/ /@ Ee Re

Bad! Bad!

System is open-loop Never touch the origin!
stable, no encirclements

of {0,0} are permitted.



Robust Stability Comments

* How we calculate RS depends on the type of model
uncertainty that we have.

— Multiple model uncertainty would require to check the NS
of each potential model.

— With complex matrix perturbations ||A(s)||.. <1, we need
only check the second condition.

Why?
Because if all stable A(s) with ||A(s)]|.. £ 1 are allowable and there
exists an allowable A(s) such that det(l - M(jo) A(jw)) encircles
{0,0}, then there also exists an allowable A(s) such that

det(l - M(jo) A(jo)) = O.




Robust Stability for Unstructured Uncertainty

Assume the nominal system M(s) is stable (NS),
and perturbations A(s) are stable. Then the
MA-system is stable for all perturbations with
lIA(s)|].. £ 1, if and only if,

oc(M(jw)) <1, forallw

Proof : Satisfying this condition implies that det(l - M(jo) A(jw)) # 0 for
any o and ||A(s)]|.. £ 1. (See textbook Section 8.6.)



* Recall the the multiplicative output uncertainty,

Ag 1

¥Ya

- » -W, GK (I+GK)! |—

with M =-W, GK (I+GK)"!

* Then assuming that M is stable, we have the RS
condition:

c(W, -GK[I+GK]")<1 forallw



* Notice that this condition is is terms of the
complementary sensitivity function

T = GK[I+GK]
then

oW, -T)<l forallw

* and bears a strong resemblance to the RS
condition for multiplicative uncertainty in the SISO
case.



* We generalized the concept of stable, bounded
SISO transfer function perturbations to stable,
unstructured transfer matrices bounded with
[IA(s)]].. < 1.

* Discussed its use in common configurations of
nominal models with perturbations.



° Presented the MA structure to generalize the
concept of model uncertainty.

* We then used the MA structure to derive a robust
stability condition for unstructured matrix
perturbations. (l.e.itis not a general definition of RS.)

* This condition simplifies to the SISO case (last
week’s lecture) when we consider transfer matrices
of size 1-by-1.



