

Structured Uncertainty and Robust Performance

ELEC 571L – Robust Multivariable Control prepared by: Greg Stewart

Honeywell

Devron Profile Control Solutions

Outline

- Structured uncertainty: motivating example.
- Structured singular value, μ.
- Robust stability for structured uncertainty.
- Application of μ : robust performance.

Motivating Example

From last week...

 Consider the usual MIMO feedback loop with multiplicative output uncertainty:

 the unstructured, stable transfer matrix ∆₀(s) is bounded:

 $\|\Delta_0(\mathbf{s})\|_{\infty} \leq 1$

Robust Stability for Unstructured Uncertainty

 After massaging the block diagrams, we derived the M∆ structure:

 and then said that "if we allow <u>all</u> ∆₀ such that ||∆₀||_∞ ≤ 1, then robust stability (RS) is given by NS and

$$\overline{\sigma}(W_O \cdot GK[I + GK]^{-1}) < 1 \quad \text{for all } \omega$$

Example

• Assume:

- we have a 2-by-2 system (two actuators and two sensors).
- we are very confident in our knowledge of our process.
- However, the sensors were supplied by a very shady vendor (i.e. not Honeywell), and we only trust the readings by $\pm 30\%$.

Example: model the uncertainty

• therefore we decide to go with:

$$W_O = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.3 \end{bmatrix}, \qquad \Delta_O = \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix}$$

where each diagonal element is SISO and bounded,

$$|\Delta_1(j\omega)| \le 1, \qquad |\Delta_2(j\omega)| \le 1$$

giving the overall matrix $||\Delta_0||_{\infty} \leq 1$.

(see textbook Appendix for the proof!)

Analysis

 Now suppose that at some frequency ω, we find that M has the numerical values:

$$M = W_O \cdot GK[I + GK]^{-1}$$

$$= \begin{bmatrix} 0.1860 & 0.3719 \\ 0.5579 & 0.7438 \end{bmatrix}$$

Analysis

We then compute the maximum singular value and find

$$\overline{\sigma}(M(j\omega)) = \overline{\sigma}\left(\begin{bmatrix} 0.1860 & 0.3719\\ 0.5579 & 0.7438 \end{bmatrix}\right)$$

=1.0162

- this is larger than 1 (and therefore violates last week's condition for RS).
- Does this mean we are not robustly stable?

Analysis

- The answer is NO, we are not necessarily violating robust stability.
- What it DOES say, is that there exists SOME stable matrix $\Delta_0(s)$ with $||\Delta_0||_{\infty} \le 1$, such that the M Δ structure is unstable.
- But this is <u>NOT</u> necessarily the same as failing RS!
- Maybe our uncertainty model does not permit the nasty, destabilizing perturbation ∆₀(s)?

Uncertainty Structure

- Remember that, for this example, we are attempting to model sensor uncertainty only.
- We are considering <u>only</u> diagonal matrices $\Delta_0(s)$:

$$\Delta_O = \begin{bmatrix} \Delta_1 & 0 \\ 0 & \Delta_2 \end{bmatrix}$$

 The real question is: "Does there exist a <u>diagonal</u> matrix ∆₀(s) that will destabilize the M∆ structure?"

- We will do a numerical experiment.
- Given the nominal system,

$$M = \begin{bmatrix} 0.1860 & 0.3719 \\ 0.5579 & 0.7438 \end{bmatrix}$$

- Let us check the robust stability for
 - (1) full matrix perturbations, Δ_{full}
 - (2) diagonal matrix perturbations, Δ_{diag}

- Each of these perturbations satisfies the assumptions of Theorem 8.2.
- Which allows us to check RS by computing the maximum eigenvalue magnitude,

ρ**(Μ**∆**) < 1**

In Matlab notation,

1. We create full complex matrix perturbations in Matlab with the commands:

```
Delta_full = rand(n,n) + sqrt(-1)*rand(n,n);
Delta_full = Delta_full /max(svd(Delta_full));
```

2. Diagonal matrix perturbations with the commands:

```
Delta_diag = diag(rand(1,n)) + sqrt(-1)*diag(rand(1,n));
Delta_diag = Delta_diag /max(svd(Delta_diag));
```

 Using the program "finddelta.m", we tested robust stability using Theorem 8.2, for 1 000 000 randomly generated full and diagonal matrices.

• Results:

Perturbation	# Destabilizing	Percentage
Δ_{full}	10 694	~1%
Δ_{diag}	0	0%

- In a million examples, we found several full matrices Δ_{full} which caused the system to be unstable.
- But we did not find a single destabilizing diagonal perturbation, $\Delta_{\rm diag}$.
- This indicates (but does not prove) that we are safe from instability since we are only concerned with diagonal perturbations Δ_{diag} .
- Look at Example 8.9 in your text for a related example.

In addition, these results also indicate (but do not prove) that the condition,

 $\overline{\sigma}(M) < 1$

may be too conservative for use checking robust stability when we have knowledge of the <u>structure</u> of the perturbation Δ .

Structured Uncertainty

- In this case, we knew that Δ was a diagonal matrix.
- This is common as robust control typically imposes a band-diagonal structure on the Δ ,

$$\Delta = \begin{bmatrix} \Delta_1 & & \\ & \Delta_2 & \\ & & \ddots \end{bmatrix}$$

with a separate Δ_i for each independent source of uncertainty.

The Structured Singular Value

Structured Singular Value: Definition

Find the smallest allowable Δ (measured in terms of $\sigma(\Delta)$) which makes det(I - M Δ) = 0, then the SSV is defined as,

$$\mu(M(j\omega)) = \frac{1}{\overline{\sigma}(\Delta(j\omega))}$$

for $\Delta \in \Pi$, where Π is a set of structured perturbations (not necessarily $\sigma(\Delta) \leq 1$).

Robust Stability for Structured Uncertainty

Assume that the nominal system M and the perturbations Δ are stable and $||\Delta||_{\infty} \leq 1$. Then the M Δ -system is stable for all allowed perturbations <u>if</u> and only if,

$$\mu(M(j\omega)) < 1, \quad \text{for all } \omega$$

for all $\Delta \in \Pi$, where Π is the set of *allowable* perturbations.

Example

 The m-file "calcmu.m" is a brute-force algorithm for computing μ.

• We randomly generated 4 000 000 perturbing matrices Δ_{full} and Δ_{diag} .

 Then check to see the smallest matrices that destabilized the M∆ system for our previous example.

Example: full perturbations

• For Δ_{full} , the smallest destabilizing perturbation (for frequency ω) was found at 0.9872, therefore:

$$\mu(M) \approx \frac{1}{0.9872} = 1.0130$$

- which indicates that (at this frequency) the system is <u>not</u> robustly stable for full perturbations with $||\Delta_{full}||_{\infty} \leq 1$
- Remark: for full perturbations, we can verify this numerical value against the true μ : $\mu(M) = \overline{\sigma}(M) = 1.0162$. So it is quite close!

Example: structured perturbations

• For Δ_{diag} , the smallest destabilizing perturbation was found at 1.0014, therefore:

$$\mu(M) \approx \frac{1}{1.0014} = 0.9986$$

- as expected, this number is smaller than for the full perturbations!
- and since it is smaller than 1, we then satisfy (at this frequency) robust stability for diagonal perturbations with ||∆_{diag}||_∞ ≤ 1.

Structure: Special Cases

- In general, $\mu(M) \leq \overline{\sigma}(M)$
- However, if the uncertainty set ∏ happens to contain the worst case perturbation ∆, then we get equality

$$\mu(M) = \overline{\sigma}(M)$$

•The most common example of this is unstructured uncertainty,

$$\Pi = \{ \Delta : ||\Delta||_{\infty} \le 1 \}$$

Structure: Special Cases

• Multiple sources of uncertainty. Typically resulting in a block-diagonal Δ :

$$\Pi = \{ \Delta = \operatorname{diag} \{ \Delta_1, \Delta_2, \ldots \} : ||\Delta_i||_{\infty} \leq 1 \}$$

• Parametric uncertainty. Typically resulting in real Δ :

$$\Pi = \{ \Delta \in \Re : -1 \le \Delta \le 1 \}$$

Computation of \mu(M)

- Unfortunately it is not straightforward to compute $\mu(M)$ in general.
- Various methods exist for computing μ (M).
- Methods often depend on the structure of Δ and M.
- It is worth reading Sections 8.8.2 and 8.8.3 to see results for some special cases which arise in practical work.

The Structured Singular Value and Robust Performance

Application: Robust Performance with μ

 We just discussed using the μ(M) to test for robust stability (RS).

 If we reconfigure our blocks, we can apply the same concepts to test for robust performance (RP).

Our usual system

 Take our usual system with multiplicative output uncertainty:

• The only new feature is the additive output disturbance, d.

Define Performance

• We will use a familiar definition of performance:

$$\overline{\sigma}(W_p S) < 1$$

- where the sensitivity function S = [I+G_pK]⁻¹.
- W_p is typically a low-pass filter (often an integrator).

Re-interpret Performance

• Note that, the performance specification:

$$\overline{\sigma}(W_p S) < 1$$

Can be re-written as a RS condition using a fictitious perturbation Δ_p:

Reconfiguring

Reconfiguring

- which now has two deltas:
 - $-\Delta_0$ for model uncertainty,
 - $-\Delta_{p}$ for performance.

Massaging Block Diagram

Massaging Block Diagram

Massaging Block Diagram

• this is known as N Δ -structure, because of the N and the Δ .

Computing N and Δ

• Using the same familiar techniques we can compute:

• with the factors:

$$\Delta = \begin{bmatrix} \Delta_O & \\ & \Delta_p \end{bmatrix}$$

$$N = \begin{bmatrix} -W_{O}GK[I+GK]^{-1} & -W_{O}GK[I+GK]^{-1} \\ W_{p}[I+GK]^{-1} & W_{p}[I+GK]^{-1} \end{bmatrix}$$

Equivalence!

• The performance condition:

 $\overline{\sigma}(W_p S) < 1, \quad \text{for all } G_p$

 has been transformed into the structured singular value condition:

$$\mu(N) < \frac{1}{\overline{\sigma}(\Delta)}$$

with the "uncertainty" given by,

$$\Delta = \begin{bmatrix} \Delta_O \\ & \Delta_p \end{bmatrix} \qquad \qquad \left\| \Delta_O \right\|_{\infty} \le 1, \qquad \left\| \Delta_p \right\|_{\infty} \le 1$$

Comments

- There may be several layers of uncertainty.
- For example, the uncertainty perturbation Δ_0 may have further structure:
 - $-\Delta_{\rm O} = \Delta_{\rm full}$ full matrix (i.e. unstructured) $-\Delta_{\rm O} = \Delta_{\rm diag}$ diagonal matrix
- The μ-condition can be applied to a wide variety of RP problem statements.
- See Section 8.10 for general procedure.

Conclusions

- The structure of model uncertainty is defined during modelling.
- If a destabilizing perturbation is small but is not included in the allowable structure, then it is not considered a violation of robust stability.
- The structured singular value (μ), is a nonconservative definition of robust stability.
- Computing μ typically requires approximation, and the <u>computation</u> may introduce conservativeness.

Conclusions

- The structured singular value μ is a powerful tool for robust control.
- Results were derived for robust stability (RS) and robust performance (RP).