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* Structured uncertainty: motivating example.
* Structured singular value, L.
* Robust stability for structured uncertainty.

* Application of u: robust performance.



Motivating Example



From last week...

* Consider the usual MIMO feedback loop with
multiplicative output uncertainty:

Wo(s) 1 Ap(s)
) l_' 0 0 _l+ y

f—» K(s) " G(s) () I >

* the unstructured, stable transfer matrix Ay(s) is
bounded:

1Ao(8)Il.. < 1



Robust Stability for Unstructured Uncertainty

* After massaging the block diagrams, we derived
the MA structure:

A — Ag 1

Ha Ya <:> ta Ya

L v |— % -W, GK (I+GK)! |—

* and then said that “if we allow all A, such that
[|1Acl].. < 1, then robust stability (RS) is given by NS
and

c(W, -GK[I+GK]")<1 forallw



°* Assume:
— we have a 2-by-2 system (two actuators and two sensors).
— we are very confident in our knowledge of our process.

— However, the sensors were supplied by a very shady
vendor (i.e. not Honeywell), and we only trust the readings
by +30%.

l_' Wo(s) —>1 Ap(s) E
u n y

f—' K(s) [ G(s) I >




Example: model the uncertainty

* therefore we decide to go with:

W_o.3 0 A_Al 0
° 10 03] o

where each diagonal element is SISO and bounded,
A (jo)l=], A,(jo) =1

giving the overall matrix ||Ap]].. < 1.
(see textbook Appendix for the proof!)



* Now suppose that at some frequency o, we find
that M has the numerical values:

M W, -GK[I+GKT"

0.1860 0.3719
10.5579  0.7438




°* We then compute the maximum singular value and

find

o(M(jw)) =a[

0.1860 0.3719

10.5579  0.7438

=1.0162

J

* this is larger than 1 (and therefore violates last
week’s condition for RS).

* Does this mean we are not robustly stable?



* The answer is NO, we are not necessarily violating
robust stability.

* What it DOES say, is that there exists SOME stable
matrix Ag(s) with ||Ao]l.. <1, such that the MA
structure is unstable.

* But this is NOT necessarily the same as failing RS!

°* Maybe our uncertainty model does not permit the
nasty, destabilizing perturbation Ay(s)?



Uncertainty Structure

* Remember that, for this example, we are attempting
to model sensor uncertainty only.

* We are considering only diagonal matrices Ay(s):

A, =

* The real question is: “Does there exist a diagonal
matrix Ag(s) that will destabilize the MA structure?”




Experimental Robust Stability

* We will do a numerical experiment.

* Given the nominal system,

0.1860 0.3719
10.5579  0.7438

* Let us check the robust stability for

(1) full matrix perturbations, A,
(2) diagonal matrix perturbations, A,



Experimental Robust Stability

* Each of these perturbations satisfies the
assumptions of Theorem 8.2.

* Which allows us to check RS by computing the
maximum eigenvalue magnitude,

p(MA) <1

° In Matlab notation,
1f max(abs(eig(M*Delta))) < 1
‘Delta is not destabilizing’

end



1.

2.

Experimental Robust Stability

We create full complex matrix perturbations in Matlab
with the commands:

Delta full = rand(n,n) + sgrt(-1)*rand(n,n);
Delta full = Delta full /max(svd(Delta full)) ;

Diagonal matrix perturbations with the commands:

Delta diag diag(rand(l,n)) + sqgrt(-1)*diag(rand(1l,n)) ;
Delta diag = Delta diag /max(svd(Delta diag)) ;



Experimental Robust Stability

* Using the program “finddelta.m”, we tested robust
stability using Theorem 8.2, for 1 000 000 randomly
generated full and diagonal matrices.

* Results:

Perturbation # Destabilizing | Percentage
Atui 10 694 ~1%
Adiag 0 0%




Experimental Robust Stability

* In a million examples, we found several full
matrices A¢,, which caused the system to be
unstable.

* But we did not find a single destabilizing diagonal
perturbation, A, -

* This indicates (but does not prove) that we are safe
from instability since we are only concerned with
diagonal perturbations Ay, -

* Look at Example 8.9 in your text for a related
example.



Experimental Robust Stability

In addition, these results also indicate (but do not
prove) that the condition,

g(M)<1

may be too conservative for use checking robust
stability when we have knowledge of the structure
of the perturbation A.




Structured Uncertainty

° In this case, we knew that A was a diagonal matrix.

* This is common as robust control typically
imposes a band-diagonal structure on the A,

AI
A= A,

with a separate A, for each independent source of
uncertainty.



The Structured Singular Value



Structured Singular Value: Definition

Find the smallest allowable A (measured in terms
of 6(A)) which makes det(l - M A) = 0, then the
SSV is defined as,

1
0 (A(jw))

UM (jw))=

for A € I1, where Il is a set of structured
perturbations (not necessarily 6(A)<1).



Robust Stability for Structured Uncertainty

Assume that the nominal system M and the
perturbations A are stable and ||A]|l., £1. Then the
MA-system is stable for all allowed perturbations if
and only if,

uUM(jw))<l, forallw

for all A € T1I, where Il is the set of allowable
perturbations.




* The m-file “calcmu.m” is a brute-force algorithm for
computing L.

* We randomly generated 4 000 000 perturbing
matrices A;,, and A,

* Then check to see the smallest matrices that
destabilized the MA system for our previous
example.



Example: full perturbations

* For Aq,, the smallest destabilizing perturbation (for
frequency ) was found at 0.9872, therefore:

1
M) = =1.0130
M) 0.9872

* which indicates that (at this frequency) the system
is not robustly stable for full perturbations with

* Remark: for full perturbations, we can verify this numerical value
against the true u: ((M)=0(M) =1.0162. Soitis quite close!



Example: structured perturbations

* For A4.4, the smallest destabilizing perturbation
was found at 1.0014, therefore:

1
M) = =0.9986
M) 1.0014

* as expected, this number is smaller than for the full
perturbations!

* and since it is smaller than 1, we then satisfy (at
this frequency) robust stability for diagonal
perturbations with [|Ay;,4ll.. < 1.



Structure: Special Cases

*Ingeneral, u(M)<o(M)

* However, if the uncertainty set IT happens to
contain the worst case perturbation A, then we get
equality

u(M)=0o(M)

°The most common example of this is unstructured
uncertainty,

IT={A: [|A]l.. =1}



Structure: Special Cases

* Multiple sources of uncertainty. Typically resulting
in a block-diagonal A:

[1={A=diag{A,, Ay...} : ||A]ll.. < 1}

° Parametric uncertainty. Typically resulting in real
A:

[I={Ae R:-1< AL1}



Computation of u(M)

* Unfortunately it is not straightforward to compute
w(M) in general.

* Various methods exist for computing pu(M).
* Methods often depend on the structure of A and M.

* It is worth reading Sections 8.8.2 and 8.8.3 to see
results for some special cases which arise in
practical work.



The Structured Singular Value
and
Robust Performance



Application: Robust Performance with u

* We just discussed using the (M) to test for robust
stability (RS).

* If we reconfigure our blocks, we can apply the
same concepts to test for robust performance (RP).



Our usual system

* Take our usual system with multiplicative output
uncertainty:

l_' Wo(s) —> Ap(S) E l
$—> K(s) [~ G(s) g — I i

* The only new feature is the additive output
disturbance, d.




Define Performance

d

l_' Wo(s) —> Ap(S) E »é
u + y
I >

f_' K@) |7 G()

* We will use a familiar definition of performance:

ocw,S)<l

* where the sensitivity function S = [I+G K].
* W, is typically a low-pass filter (often an integrator).



Re-interpret Performance

* Note that, the performance specification:

ocw,S)<l

* Can be re-written as a RS condition using a
fictitious perturbation A:

N RS ocw,S)<l

s TR

with [|A ]l <1




Reconfiguring

u, Ya :::




Reconfiguring

A by.d.ei."lnition qf A |le—
P sensitivity matrix S

l—>WO—>AO-
KL’G

* which now has two deltas:
— Ao for model uncertainty,
— A, for performance.



Massaging Block Diagram




Massaging Block Diagram

—>§< Ge— K<+
— T»W




Massaging Block Diagram

e e e o e e e s o ol

* this is known as NA-structure, because of the N
and the A.



Computing N and A

* Using the same familiar techniques we can compute:

A | +—

* with the factors:

S

| -W,GK[I+GK1" —W,GK[I+GK]"
| W I+GK]" W [I+GK]"



* The performance condition:

ocw,S)<1, forallG,

* has been transformed into the structured singular
value condition:

1
5(A)

H(N) <
with the “uncertainty” given by,

A
A :{ 0 AJ (798 =0 R Vi S



* There may be several layers of uncertainty.

* For example, the uncertainty perturbation A5 may
have further structure:

— Ao = Agys full matrix (i.e. unstructured)
—Ag = Agiag diagonal matrix

* The pu-condition can be applied to a wide variety of
RP problem statements.

* See Section 8.10 for general procedure.



* The structure of model uncertainty is defined
during modelling.

* If a destabilizing perturbation is small but is not
included in the allowable structure, then it is not
considered a violation of robust stability.

* The structured singular value (u), is a non-
conservative definition of robust stability.

* Computing u typically requires approximation, and
the computation may introduce conservativeness.




* The structured singular value u is a powerful tool
for robust control.

* Results were derived for robust stability (RS) and
robust performance (RP).



