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• Structured uncertainty: motivating example.

• Structured singular value, µµµµ.

• Robust stability for structured uncertainty.

• Application of µµµµ: robust performance.



Motivating Example



From last week...From last week...

• Consider the usual MIMO feedback loop with
multiplicative output uncertainty:

• the unstructured, stable transfer matrix ∆∆∆∆O(s) is
bounded:

||∆∆∆∆O(s)||∞∞∞∞ ≤≤≤≤ 1
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Robust Stability for Unstructured UncertaintyRobust Stability for Unstructured Uncertainty

• After massaging the block diagrams, we derived
the M∆∆∆∆ structure:

∆∆∆∆

M
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∆∆∆∆O

-WO GK (I+GK)-1 
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• and then said that “if we allow all ∆∆∆∆O such that
||∆∆∆∆O||∞∞∞∞ ≤≤≤≤ 1, then robust stability (RS) is given by NS
and
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ExampleExample

• Assume:
– we have a 2-by-2 system (two actuators and two sensors).
– we are very confident in our knowledge of our process.
– However, the sensors were supplied by a very shady

vendor (i.e. not Honeywell), and we only trust the readings
by ±±±±30%.
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Example: model the uncertaintyExample: model the uncertainty

• therefore we decide to go with:
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where each diagonal element is SISO and bounded,

1|)(|          ,1|)(| 21 ≤∆≤∆ ωω jj

giving the overall matrix ||∆∆∆∆O||∞∞∞∞ ≤≤≤≤ 1.
(see textbook Appendix for the proof!)



AnalysisAnalysis

• Now suppose that at some frequency ωωωω, we find
that M has the numerical values:
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AnalysisAnalysis

• We then compute the maximum singular value and
find
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• this is larger than 1 (and therefore violates last
week’s condition for RS).
• Does this mean we are not robustly stable?



AnalysisAnalysis

• The answer is NO, we are not necessarily violating
robust stability.

• What it DOES say, is that there exists SOME stable
matrix ∆∆∆∆O(s) with ||∆∆∆∆O||∞∞∞∞ ≤≤≤≤ 1, such that the M∆∆∆∆
structure is unstable.

• But this is NOT necessarily the same as failing RS!

• Maybe our uncertainty model does not permit the
nasty, destabilizing perturbation ∆∆∆∆O(s)?



Uncertainty StructureUncertainty Structure

• Remember that, for this example, we are attempting
to model sensor uncertainty only.

• We are considering only diagonal matrices ∆∆∆∆O(s):
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• The real question is: “Does there exist a diagonal
matrix ∆∆∆∆O(s) that will destabilize the M∆∆∆∆ structure?”



Experimental Robust StabilityExperimental Robust Stability

• We will do a numerical experiment.

• Given the nominal system,

• Let us check the robust stability for
(1) full matrix perturbations, ∆∆∆∆full
(2) diagonal matrix perturbations, ∆∆∆∆diag
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Experimental Robust StabilityExperimental Robust Stability

• Each of these perturbations satisfies the
assumptions of Theorem 8.2.

• Which allows us to check RS by computing the
maximum eigenvalue magnitude,

ρρρρ(M∆∆∆∆) < 1

• In Matlab notation,
if max(abs(eig(M*Delta))) < 1

‘Delta is not destabilizing’

end



Experimental Robust StabilityExperimental Robust Stability

1.  We create full complex matrix perturbations in Matlab
with the commands:

Delta_full = rand(n,n) + sqrt(-1)*rand(n,n);
Delta_full = Delta_full /max(svd(Delta_full));

2.  Diagonal matrix perturbations with the commands:

Delta_diag = diag(rand(1,n)) + sqrt(-1)*diag(rand(1,n));
Delta_diag = Delta_diag /max(svd(Delta_diag));



Experimental Robust StabilityExperimental Robust Stability

• Using the program “finddelta.m”, we tested robust
stability using Theorem 8.2, for 1 000 000 randomly
generated full and diagonal matrices.

• Results:

0%0∆∆∆∆diag

~1%10 694∆∆∆∆full

Percentage# DestabilizingPerturbation



Experimental Robust StabilityExperimental Robust Stability

• In a million examples, we found several full
matrices ∆∆∆∆full which caused the system to be
unstable.

• But we did not find a single destabilizing diagonal
perturbation, ∆∆∆∆diag .

• This indicates (but does not prove) that we are safe
from instability since we are only concerned with
diagonal perturbations ∆∆∆∆diag .

• Look at Example 8.9 in your text for a related
example.



Experimental Robust StabilityExperimental Robust Stability

In addition, these results also indicate (but do not
prove) that the condition,

( ) 1<Mσ

may be too conservative for use checking robust
stability when we have knowledge of the structure
of the perturbation ∆∆∆∆.



Structured UncertaintyStructured Uncertainty

• In this case, we knew that ∆∆∆∆ was a diagonal matrix.

• This is common as robust control typically
imposes a band-diagonal structure on the ∆∆∆∆,
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with a separate ∆∆∆∆i for each independent source of
uncertainty.



The Structured Singular Value



Structured Singular Value: DefinitionStructured Singular Value: Definition

Find the smallest allowable ∆∆∆∆ (measured in terms
of σσσσ(∆∆∆∆)) which makes det(I - M ∆∆∆∆) = 0, then the
SSV is defined as,
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for ∆∆∆∆ ∈∈∈∈ ΠΠΠΠ, where ΠΠΠΠ is a set of structured
perturbations (not necessarily σσσσ(∆∆∆∆)≤≤≤≤1).



Robust Stability for Structured UncertaintyRobust Stability for Structured Uncertainty

Assume that the nominal system M and the
perturbations ∆∆∆∆ are stable and ||∆∆∆∆||∞∞∞∞ ≤≤≤≤ 1.  Then the
M∆∆∆∆-system is stable for all allowed perturbations if
and only if,

ωωµ  allfor        , 1))(( <jM

for all ∆∆∆∆ ∈∈∈∈ ΠΠΠΠ, where ΠΠΠΠ is the set of allowable
perturbations.



ExampleExample

• The m-file “calcmu.m” is a brute-force algorithm for
computing µµµµ.

• We randomly generated 4 000 000 perturbing
matrices ∆∆∆∆full and ∆∆∆∆diag.

• Then check to see the smallest matrices that
destabilized the M∆∆∆∆ system for our previous
example.



Example: full perturbationsExample: full perturbations

• For ∆∆∆∆full, the smallest destabilizing perturbation (for
frequency ωωωω) was found at 0.9872, therefore:

0130.1
9872.0
1)( =≈Mµ

• which indicates that (at this frequency) the system
is not robustly stable for full perturbations with
||∆∆∆∆full||∞∞∞∞ ≤≤≤≤ 1

• Remark: for full perturbations, we can verify this numerical value
against the true µµµµ:                                             .  So it is quite close!( ) 0162.1   )( == MM σµ



Example: structured perturbationsExample: structured perturbations

• For ∆∆∆∆diag, the smallest destabilizing perturbation
was found at 1.0014, therefore:

9986.0
0014.1
1)( =≈Mµ

• as expected, this number is smaller than for the full
perturbations!

• and since it is smaller than 1, we then satisfy (at
this frequency) robust stability for diagonal
perturbations with ||∆∆∆∆diag||∞∞∞∞ ≤≤≤≤ 1.



Structure: Special CasesStructure: Special Cases

• In general,

)()( MM σµ =

•The most common example of this is unstructured
uncertainty,

    ΠΠΠΠ = { ∆∆∆∆: ||∆∆∆∆||∞∞∞∞ ≤≤≤≤ 1}

)()( MM σµ ≤

• However, if the uncertainty set ΠΠΠΠ happens to
contain the worst case perturbation ∆∆∆∆, then we get
equality



Structure: Special CasesStructure: Special Cases

• Multiple sources of uncertainty.  Typically resulting
in a block-diagonal ∆∆∆∆:

ΠΠΠΠ = { ∆∆∆∆ = diag{∆∆∆∆1, ∆∆∆∆2,...} : ||∆∆∆∆i||∞∞∞∞ ≤≤≤≤ 1}

• Parametric uncertainty.  Typically resulting in real
∆∆∆∆:

ΠΠΠΠ = { ∆∆∆∆ ∈∈∈∈ ℜℜℜℜ : -1 ≤≤≤≤  ∆∆∆∆ ≤≤≤≤ 1}



Computation of Computation of µµµµµµµµ(M)(M)

• Unfortunately it is not straightforward to compute
µµµµ(M) in general.

• Various methods exist for computing µµµµ(M).

• Methods often depend on the structure of ∆∆∆∆ and M.

• It is worth reading Sections 8.8.2 and 8.8.3 to see
results for some special cases which arise in
practical work.



The Structured Singular Value
and

Robust Performance



Application: Application: Robust Performance withRobust Performance with  µµµµµµµµ

• We just discussed using the µµµµ(M) to test for robust
stability (RS).

• If we reconfigure our blocks, we can apply the
same concepts to test for robust performance (RP).



Our usual systemOur usual system

• Take our usual system with multiplicative output
uncertainty:
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• The only new feature is the additive output
disturbance, d.



Define PerformanceDefine Performance
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• We will use a familiar definition of performance:

1)( <SWpσ

• where the sensitivity function S = [I+GpK]-1.
• Wp is typically a low-pass filter (often an integrator).



Re-interpret PerformanceRe-interpret Performance

• Note that, the performance specification:

1)( <SWpσ

• Can be re-written as a RS condition using a
fictitious perturbation ∆∆∆∆p:
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with   ||∆∆∆∆p||∞∞∞∞ ≤≤≤≤ 1



ReconfiguringReconfiguring

∆∆∆∆p
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ReconfiguringReconfiguring

∆∆∆∆p
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by definition of 
sensitivity matrix S

• which now has two deltas:
– ∆∆∆∆O for model uncertainty,
– ∆∆∆∆p for performance.



Massaging Block DiagramMassaging Block Diagram
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Massaging Block DiagramMassaging Block Diagram
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Massaging Block DiagramMassaging Block Diagram
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• this is known as N∆∆∆∆-structure, because of the N
and the ∆∆∆∆.



Computing N and Computing N and ∆∆∆∆∆∆∆∆

• Using the same familiar techniques we can compute:
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• with the factors:



Equivalence!Equivalence!

• The performance condition:

pp GSW  allfor       ,1)( <σ

• has been transformed into the structured singular
value condition:
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with the “uncertainty” given by,



CommentsComments

• There may be several layers of uncertainty.

• For example, the uncertainty perturbation ∆∆∆∆O may
have further structure:
–∆∆∆∆O = ∆∆∆∆full full matrix (i.e. unstructured)
–∆∆∆∆O = ∆∆∆∆diag  diagonal matrix

• The µµµµ-condition can be applied to a wide variety of
RP problem statements.

• See Section 8.10 for general procedure.



ConclusionsConclusions

• The structure of model uncertainty is defined
during modelling.

• If a destabilizing perturbation is small but is not
included in the allowable structure, then it is not
considered a violation of robust stability.

• The structured singular value (µµµµ), is a non-
conservative definition of robust stability.

• Computing µµµµ typically requires approximation, and
the computation may introduce conservativeness.



ConclusionsConclusions

• The structured singular value µµµµ is a powerful tool
for robust control.

• Results were derived for robust stability (RS) and
robust performance (RP).


