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OutlineOutline

• Nature of uncertainty (models and signals).

• Physical sources of model uncertainty.

• Mathematical descriptions of model uncertainty.

• Robust stability.

• Robust performance.
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Summary of Robustness in Control SystemsSummary of Robustness in Control Systems

• Determine the nominal model G(s) and uncertainty
set G(s) ∈∈∈∈ ΠΠΠΠ

• Design controller, K(s).

• Check robust stability (if not RS, return to 2).

• Check robust performance (if not RP, return to 2).

Some controller synthesis techniques (such as H∞∞∞∞)
automate steps 2-4.
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Signal Uncertainty
versus

Model Uncertainty
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Signal Uncertainty versus Model UncertaintySignal Uncertainty versus Model Uncertainty

• Suppose we are given an open-loop system model:

g(s) = 1 / (s+10)

• and a constant controller:

k(s) = -9

• These make a stable closed-loop with a single pole
at s = -1.



Devron Profile Control Solutions 

Simulink Model of the Closed-LoopSimulink Model of the Closed-Loop**
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Modelled and Measured ResponsesModelled and Measured Responses
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• Given that we designed a stabilizing controller for the nominal
model (smooth line in red), can we say which of these two
systems will perform better in closed-loop?
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Closed-Loop ResponsesClosed-Loop Responses

• System 2 looked better in open-loop, but is far
worse in closed-loop.

• Why did this happen?

System 1: closed-loop
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ExplanationExplanation

A 20% change in the gain of the process model destabilized the
closed-loop.

Bounded additive disturbances have no effect on system stability.
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y(t) = 1.2 g(s) u(t) + d(t)
then k(s) = -9,    ����
closed-loop pole = +0.8

y(t) = g(s) u(t) + 10 d(t)
then k(s) = -9,    ����
closed-loop pole = -1
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Moral of the storyMoral of the story

• Uncertainty is always present in both signals and
models.

• Perturbations due to model uncertainty can
destabilize a system.  Bounded signal uncertainty
will not.

• Feedback can create infinite signals.  Be careful
with it!

• Common sense “analysis” of model uncertainty
can be misleading.
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Physical Sources of
Model Uncertainty
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Sources of Model UncertaintySources of Model Uncertainty

• Parameters in the linear model
– identified from noisy input/output data
– calculated from physical modelling

• Nonlinearities in actuators and sensors
– actuator/sensor saturation
– actuator/sensor failure
– hardware deterioration over time
– physical systems are inherently nonlinear



Devron Profile Control Solutions 

Sources of Model UncertaintySources of Model Uncertainty

• At high frequencies, we know almost nothing about
the process:
– control and model identification concentrate on low

frequencies.

• Deliberate simplification of the model
– it is easier to design controllers for simple processes than

for complicated processes.
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Sources of Model UncertaintySources of Model Uncertainty

• Uncertainty in the controller (often neglected!)

– deliberate reduction of controller order for simpler
implementation

– implementation issues, e.g.
� finite floating point precision in computers
�error/limit checking in the controller implementation

– sometimes referred to as fragility (Keel et al, TAC, Aug 97)
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Mathematical Descriptions
of

Model Uncertainty
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Parametric UncertaintyParametric Uncertainty

• Most intuitive kind of model uncertainty –
uncertainty in the parameters of the linear model.

• For example, consider a first-order transfer
function:

g / (s+a)
with parameters

g = 1.0 ±±±± 0.2
a = 10 ±±±± 1.3
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Parametric UncertaintyParametric Uncertainty

• Write the nominal process model as:

g(s) = 1.0 / (s+10)

• All possible models are given by:

gp(s) ∈∈∈∈ ΠΠΠΠ

where the uncertainty set is defined by:

ΠΠΠΠ = { g / (s+a) :   0.8 ≤≤≤≤ g ≤≤≤≤ 1.2,

8.7 ≤≤≤≤ a ≤≤≤≤ 11.3 }
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Parametric UncertaintyParametric Uncertainty

• Despite the intuitive nature of parametric
uncertainty models, they are not used often.

– The model structure is set, leaving no room for
unmodelled dynamics.

– You need to be very sure of the model in order to use such
a “high-fidelity” uncertainty structure.

– The mathematics of controller design and analysis is
cumbersome in this framework.
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Complex Model PerturbationsComplex Model Perturbations

• Additive model uncertainty

• where ∆∆∆∆a(s) is any stable transfer function that
satisfies |∆∆∆∆a(jωωωω)| ≤≤≤≤ 1,   for all frequencies ωωωω.

• we then use transfer function wa(s) to model the
physical uncertainty (typically high-pass filter).

nominal model

uncertainty
weight

perturbed
model

g(s)

wa(s)∆∆∆∆a(s)

gp(s)

|∆∆∆∆a(jωωωω)| ≤≤≤≤ 1
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A Few Words About DeltaA Few Words About Delta

• ∆∆∆∆a(s) is different than most transfer functions due
to the fact that we assume so little about it.

• We only know that it is stable and |∆∆∆∆a(jωωωω)| ≤≤≤≤ 1.

• For example, any of the following are permitted:

... and infinitely many others!

∆∆∆∆a(s) = +1, +0.5, etc. ∆∆∆∆a(s) = a / (s+a),    for a>0

∆∆∆∆a(s) = -1, -0.5, etc. ∆∆∆∆a(s) = 0

∆∆∆∆a(s) = e-θθθθs
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Additive Model UncertaintyAdditive Model Uncertainty

frequency, [rad/sec]

m
ag
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de

|g(jωωωω)| |g(jωωωω)| + |wa(jωωωω)|

|g(jωωωω)| - |wa(jωωωω)|

• The bounds of the possible models can be drawn
in the frequency domain.
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Additive Model UncertaintyAdditive Model Uncertainty

• This structure permits a family of potential models
in a bounded neighbourhood of the nominal model.

frequency, [rad/sec]

m
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tu

de
possible models

|gp(jωωωω)|



Devron Profile Control Solutions 

Multiplicative Model UncertaintyMultiplicative Model Uncertainty

perturbed
model

gp(s)

nominal model

uncertainty
weight

g(s)

wI(s)∆∆∆∆I(s)
|∆∆∆∆I(jωωωω)| ≤≤≤≤ 1

• configuration is different, but
• each transfer function block has a similar

interpretation as with the additive case.
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Multiplicative Model UncertaintyMultiplicative Model Uncertainty

• In SISO systems, we can find simple equivalence
between additive and multiplicative model
uncertainty.

• Multiplicative uncertainty seems to be used more
often than additive.

• Robust stability and performance calculations are
simpler with multiplicative than additive
uncertainty.
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Deliberate Model UncertaintyDeliberate Model Uncertainty

• Sometimes a control engineer will deliberately
simplify a process model before designing a
controller.

gp(s)

simple
model

g(s)f(s)

complicated model

perturbation

• where f(s) is a known transfer function,
gp(s) = g(s) f(s)
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Deliberate Model UncertaintyDeliberate Model Uncertainty

• This may be “covered” by a complex perturbation,

g(s)

wI(s)∆∆∆∆I(s)

• if we create wI(s) such that
| wI(jωωωω) |  ≥≥≥≥  | f(jωωωω) - 1 |

g(s)

f(s)-1
g(s)f(s)

equivalent
forms
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Deliberate Model UncertaintyDeliberate Model Uncertainty

• This trick is used when the engineer believes that it
will be easier to design a controller for a simple g(s)
plus some perturbation (robust control).

• Used when “true” model gp(s) is complicated.

• Examples include time delays, high-order models,
etc.

• Technique should be used carefully, since it “hides”
model information from the controller design.
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Robust Stability
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Definition: Robust StabilityDefinition: Robust Stability

• A closed-loop system with controller K(s) is said to
be robustly stable if it is stable for every possible
plant in the uncertainty set,

Gp(s) ∈∈∈∈ ΠΠΠΠ
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Nominal Nominal StabilityStability: graphical interpretation: graphical interpretation

• Remember that (nominal) closed-loop stability
requires:

L(jωωωω) = K(jωωωω)G(jωωωω) does not encircle
{-1,0} in complex plane.

{-1,0}

Im

Re

L(jωωωω)
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Robust Robust StabilityStability: graphical interpretation: graphical interpretation
Robust stability requires that

Lp(jωωωω) = K(jωωωω)Gp(jωωωω) does not encircle {-1,0} in
complex plane,
for any Gp(s) ∈∈∈∈ ΠΠΠΠ

{-1,0}

Im

Re

Lp(jωωωω)

How can we 
guarantee this?
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Derivation of Robust Derivation of Robust StabilityStability
Assume multiplicative uncertainty for the moment:

Lp(s) = Gp(s) K(s)
= GK (1 + wI∆∆∆∆I) = L + wI L ∆∆∆∆I

which is a vector equation in the complex plane:

wI L ∆∆∆∆I

L(jωωωω)

Lp(jωωωω)

Im

Re{-1,0}
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Derivation of Robust Derivation of Robust StabilityStability

Now, since ∆∆∆∆I(jωωωω) can have any phase and |∆∆∆∆I(jωωωω)| ≤≤≤≤ 1,
then the vector

wI L ∆∆∆∆I   defines a disk of radius |wI L|

Then the loop transfer
function Lp(jωωωω) is a vector
from {0,0} to any point in
this disk.

L(jωωωω)

Lp(jωωωω)

Im

Re

|wI L|

{-1,0}
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Derivation of Robust Derivation of Robust StabilityStability

Since RS is satisfied if Lp(jωωωω) does not encircle the
{-1,0} point, then we need to ensure that the disk
never touches {-1,0}.

L(jωωωω)

Im

Re

|wI L|

{-1,0}

|1 + L(jωωωω)| Diagram shows that the disk never
touches {-1,0} if

• L(jωωωω) does not encircle {-1,0}, and

• |wIL| < |1+L|  ,  for all ωωωω
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Derivation of Robust Derivation of Robust StabilityStability

• The condition,

 |wIL| < |1+L|

is equivalent to,

)(
1

)(1
)(

ωω
ω

jwjL
jL

I

<
+

and finally in terms of the “complementary sensitivity”

)(
1)(

ω
ω

jw
jT

I

<RS for multiplicative
uncertainty
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Robust Stability: CommentsRobust Stability: Comments

• Note the the left-hand-side is stated completely in
terms of the nominal transfer functions.

• The right-hand-side is stated in terms of the
magnitude of the model uncertainty.

• This robust stability condition is not conservative.
It is both sufficient and necessary to guarantee
stability.

• RS conditions for other model uncertainty
structures are derived using similar calculations.
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Robust Stability: CommentsRobust Stability: Comments

• Similar RS conditions exist for other model
uncertainty structures.

• For example, the RS condition for additive model
uncertainty is derived using similar arguments:

)(
1

)(1
)(

ωω
ω

jwjL
jK

A

<
+

RS for additive
uncertainty
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Robust Stability: parting thoughtRobust Stability: parting thought

• Like the majority of robustness tests, these
magnitude-based conditions assume that the
system is nominally stable.

RULE #1:  Always check nominal stability (NS),
before applying a robust stability (RS) condition.
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Robust Performance
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Definition: Robust PerformanceDefinition: Robust Performance

• A closed-loop system with controller K(s) is said to
possess robust performance if the closed-loop
satisfies performance specifications (whatever they
may be) for every possible plant in the uncertainty
set,

Gp(s) ∈∈∈∈ ΠΠΠΠ

– Remark: In the vast majority (maybe all) of cases,
performance specifications will include closed-loop
stability.
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Robust PerformanceRobust Performance

• Let us consider the special case of
– multiplicative uncertainty
– a performance specification of

|wp(jωωωω) S(jωωωω)|  <  1

• where S = (1+L)-1 = (1+GK)-1, and typically we will
have the performance weight

|wp(jωωωω)| >> 1, for low frequencies ωωωω
|wp(jωωωω)| < 1, for high frequencies ωωωω
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Robust PerformanceRobust Performance

• First, rewrite the nominal performance specification,

{-1,0}

Im

Re

L(jωωωω)
| 1+L(jωωωω) || wp(jωωωω) |

1
)(1
)(

<
+ ω

ω
jL
jwp )(1)( ωω jLjwp +<

• which can be represented in a diagram as,

-1
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Robust PerformanceRobust Performance

• Then to apply the performance specification to all loop
gains defined by Lp(s), we can re-use our RS diagram.

-1

Im

Re

L(jωωωω)

| 1+L(jωωωω) || wp(jωωωω) |

| wI L |

RP is achieved as long as
we keep these disks from
touching.
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Robust PerformanceRobust Performance

• The disks do not touch if,
 | 1+L(jωωωω) | > | wp(jωωωω) | + | wI(jωωωω) L(jωωωω) |

-1

Im

Re

L(jωωωω)

| 1+L(jωωωω) || wp(jωωωω) |

| wI L |



Devron Profile Control Solutions 

Robust PerformanceRobust Performance

• The RP condition

 | 1+L(jωωωω) | > | wp(jωωωω) | + | wI(jωωωω) L(jωωωω) |

can be rewritten as,

1
)(1
)()(

)(1
)(

<
+

+
+ ω

ωω
ω

ω
jL
jLjw

jL
jw Ip

1)()()()( <+ ωωωω jTjwjSjw Ip

• and is typically presented in the form:
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Robust Performance: CommentsRobust Performance: Comments

1)()()()( <+ ωωωω jTjwjSjw Ip

• This is a RP condition for a specific performance
criterion and a specific model uncertainty structure.

• RP conditions for other uncertainty structures may be
derived.

• Note that satisfying this RP condition automatically
includes the RS condition for multiplicative
uncertainty |wI(jωωωω) T(jωωωω)| < 1.
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Robust Performance: Practically SpeakingRobust Performance: Practically Speaking

• In practical robust performance, the size of these disks
will depend on the frequency ωωωω.

-1

Im

Re

Low frequencies, ωωωω
|wp(jωωωω)|  large
|wI(jωωωω)|  small

Im

Re

High frequencies, ωωωω
|wp(jωωωω)|  small
|wI(jωωωω)|  large
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Robust Performance: Parting ThoughtRobust Performance: Parting Thought

1)()()()( <+ ωωωω jTjwjSjw Ip

• The derivation of this result assumed nominal stability (NS).

RULE #2:  Always check nominal stability (NS),
before applying a robust performance (RP)
condition.
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ConclusionsConclusions

• Control systems contain uncertainty in signals and
in models.

• Perturbations due to model uncertainty can
destabilize a closed-loop.  Bounded signal
perturbations cannot.

• Robust control concentrates on addressing model
uncertainty.
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ConclusionsConclusions

• Complex model perturbations are commonly used to
represent model uncertainty.

• Assuming nominal stability (NS):
– a robust stability (RS) condition was derived in terms of the

magnitude of these perturbations.
– a robust performance (RP) condition was derived in terms of

the model uncertainty and the performance specification.

• In practice, the assumption of NS is valid since
practical design techniques produce a NS closed-
loop.


