

Uncertainty and Robustness for SISO Systems

ELEC 571L – Robust Multivariable Control prepared by: Greg Stewart

Honeywell

Outline

- Nature of uncertainty (models and signals).
- Physical sources of model uncertainty.
- Mathematical descriptions of model uncertainty.
- Robust stability.
- Robust performance.

Honeywell

Summary of Robustness in Control Systems

- Determine the nominal model G(s) and uncertainty set $G(s) \in \Pi$
- Design controller, *K(s)*.
- Check robust stability (if not RS, return to 2).
- Check robust performance (if not RP, return to 2).

Some controller synthesis techniques (such as H_{∞}) automate steps 2-4.

Honeywell

Signal Uncertainty versus Model Uncertainty

Honeywell

Signal Uncertainty versus Model Uncertainty

• Suppose we are given an open-loop system model:

$$g(s) = 1 / (s+10)$$

• and a constant controller:

$$k(s) = -9$$

 These make a stable closed-loop with a single pole at s = -1.

Honeywell

Simulink Model of the Closed-Loop*

*Configured for System 2.

Honeywell

Modelled and Measured Responses

 Given that we designed a stabilizing controller for the nominal model (smooth line in red), can we say which of these two systems will perform better in closed-loop?

Honeywell

Closed-Loop Responses

- System 2 looked better in open-loop, but is far worse in closed-loop.
- Why did this happen?

Honeywell

Explanation

y(t) = g(s) u(t) + 10 d(t) then k(s) = -9, \Rightarrow closed-loop pole = -1 y(t) = 1.2 g(s) u(t) + d(t) then k(s) = -9, \Rightarrow closed-loop pole = +0.8

A 20% change in the gain of the process model destabilized the closed-loop.

Bounded additive disturbances have no effect on system stability.

Honeywell

Moral of the story

- Uncertainty is always present in both signals and models.
- Perturbations due to model uncertainty can destabilize a system. Bounded signal uncertainty will not.
- Feedback can create infinite signals. Be careful with it!
- Common sense "analysis" of model uncertainty can be misleading.

Honeywell

Physical Sources of Model Uncertainty

Sources of Model Uncertainty

Parameters in the linear model

- identified from noisy input/output data
- calculated from physical modelling

Nonlinearities in actuators and sensors

- actuator/sensor saturation
- actuator/sensor failure
- hardware deterioration over time
- physical systems are inherently nonlinear

Honeywell

Sources of Model Uncertainty

- At high frequencies, we know almost nothing about the process:
 - control and model identification concentrate on low frequencies.

- Deliberate simplification of the model
 - it is easier to design controllers for simple processes than for complicated processes.

Sources of Model Uncertainty

- Uncertainty in the controller (often neglected!)
 - deliberate reduction of controller order for simpler implementation
 - implementation issues, e.g.
 - finite floating point precision in computers
 - error/limit checking in the controller implementation
 - sometimes referred to as fragility (Keel et al, TAC, Aug 97)

Mathematical Descriptions of Model Uncertainty

Parametric Uncertainty

- Most intuitive kind of model uncertainty uncertainty in the parameters of the linear model.
- For example, consider a first-order transfer function:

with parameters

$$g = 1.0 \pm 0.2$$

 $a = 10 \pm 1.3$

Honeywell

Parametric Uncertainty

• Write the nominal process model as:

g(s) = 1.0 / (s+10)

• All possible models are given by:

 $\mathbf{g}_{p}(\mathbf{s}) \in \Pi$

where the uncertainty set is defined by:

Honeywell

Parametric Uncertainty

- Despite the intuitive nature of parametric uncertainty models, they are not used often.
 - The model structure is set, leaving no room for unmodelled dynamics.
 - You need to be very sure of the model in order to use such a "high-fidelity" uncertainty structure.
 - The mathematics of controller design and analysis is cumbersome in this framework.

Complex Model Perturbations

Additive model uncertainty

- where $\Delta_a(s)$ is <u>any</u> stable transfer function that satisfies $|\Delta_a(j\omega)| \le 1$, for all frequencies ω .
- we then use transfer function w_a(s) to model the physical uncertainty (typically high-pass filter).
 Honeywell

A Few Words About Delta

- Δ_a(s) is different than most transfer functions due to the fact that we assume so little about it.
- We only know that it is stable and $|\Delta_a(j\omega)| \le 1$.
- For example, *any* of the following are permitted:

$$\Delta_{a}(s) = +1, +0.5, \text{ etc.}$$
 $\Delta_{a}(s) = a / (s+a), \text{ for } a>0$
 $\Delta_{a}(s) = -1, -0.5, \text{ etc.}$ $\Delta_{a}(s) = 0$
 $\Delta_{a}(s) = e^{-\theta s}$

... and infinitely many others!

Honeywell

Additive Model Uncertainty

 The bounds of the possible models can be drawn in the frequency domain.

Additive Model Uncertainty

• This structure permits a family of potential models in a bounded neighbourhood of the nominal model.

Multiplicative Model Uncertainty

- configuration is different, but
- each transfer function block has a similar interpretation as with the additive case.

Honeywell

Multiplicative Model Uncertainty

- In SISO systems, we can find simple equivalence between additive and multiplicative model uncertainty.
- Multiplicative uncertainty seems to be used more often than additive.
- Robust stability and performance calculations are simpler with multiplicative than additive uncertainty.

Deliberate Model Uncertainty

 Sometimes a control engineer will deliberately simplify a process model before designing a controller.

where f(s) is a <u>known</u> transfer function,
g_p(s) = g(s) f(s)

Honeywell

Deliberate Model Uncertainty

This may be "covered" by a complex perturbation,

• if we create $w_{l}(s)$ such that $|w_{l}(j\omega)| \ge |f(j\omega) - 1|$

Honeywell

Deliberate Model Uncertainty

- This trick is used when the engineer believes that it will be easier to design a controller for a simple g(s) plus some perturbation (robust control).
- Used when "true" model $g_p(s)$ is complicated.
- Examples include time delays, high-order models, etc.
- Technique should be used carefully, since it "hides" model information from the controller design.

Honeywell

Robust Stability

Honeywell

Definition: Robust Stability

 A closed-loop system with controller K(s) is said to be robustly stable if it is stable for every possible plant in the uncertainty set,

G_p(s) ∈ Π

Honeywell

Nominal Stability: graphical interpretation

Remember that (nominal) closed-loop stability requires:

 $L(j\omega) = K(j\omega)G(j\omega)$ does not encircle {-1,0} in complex plane.

Robust Stability: graphical interpretation

Robust stability requires that

 $\mathsf{L}_\mathsf{p}(\mathsf{j}\omega)=\mathsf{K}(\mathsf{j}\omega)\mathsf{G}_\mathsf{p}(\mathsf{j}\omega)$

does not encircle {-1,0} in complex plane, for any $G_p(s) \in \Pi$

Derivation of Robust Stability

Assume multiplicative uncertainty for the moment:

$$L_{p}(s) = G_{p}(s) K(s)$$

= GK (1 + w₁\Delta₁) = L + w₁ L \Delta₁

which is a vector equation in the complex plane:

Now, since $\Delta_{I}(j\omega)$ can have any phase and $|\Delta_{I}(j\omega)| \leq 1$, then the vector

 $w_{I} L \Delta_{I}$ defines a disk of radius $|w_{I} L|$

Since RS is satisfied if $L_p(j\omega)$ does not encircle the {-1,0} point, then we need to ensure that the disk never touches {-1,0}.

Derivation of Robust Stability

The condition,

 $|w_{|}L| < |1+L|$

is equivalent to,

$$\left|\frac{L(j\omega)}{1+L(j\omega)}\right| < \left|\frac{1}{w_I(j\omega)}\right|$$

and finally in terms of the "complementary sensitivity"

Honeywell

Robust Stability: Comments

- Note the the left-hand-side is stated completely in terms of the nominal transfer functions.
- The right-hand-side is stated in terms of the magnitude of the model uncertainty.
- This robust stability condition is <u>not</u> conservative. It is both sufficient and necessary to guarantee stability.
- RS conditions for other model uncertainty structures are derived using similar calculations.

Honeywell

Robust Stability: Comments

- Similar RS conditions exist for other model uncertainty structures.
- For example, the RS condition for additive model uncertainty is derived using similar arguments:

RS for additive
uncertainty
$$\langle \Box \rangle = \left| \frac{K(j\omega)}{1 + L(j\omega)} \right| < \left| \frac{1}{w_A(j\omega)} \right|$$

Robust Stability: parting thought

 Like the majority of robustness tests, these magnitude-based conditions assume that the system is nominally stable.

RULE #1: Always check nominal stability (NS), before applying a robust stability (RS) condition.

Honeywell

Definition: Robust Performance

 A closed-loop system with controller K(s) is said to possess robust performance if the closed-loop satisfies performance specifications (whatever they may be) for every possible plant in the uncertainty set,

 Remark: In the vast majority (maybe all) of cases, performance specifications will include closed-loop stability.

Honeywell

- Let us consider the <u>special case</u> of
 - multiplicative uncertainty
 - a performance specification of

 $|\mathbf{w}_{p}(\mathbf{j}\omega) \mathbf{S}(\mathbf{j}\omega)| < 1$

- where S = (1+L)⁻¹ = (1+GK)⁻¹, and typically we will have the performance weight
 - $|w_p(j\omega)| >> 1$,for low frequencies ω $|w_p(j\omega)| < 1$,for high frequencies ω

Honeywell

• First, rewrite the nominal performance specification,

• which can be represented in a diagram as,

 Then to apply the performance specification to all loop gains defined by L_p(s), we can re-use our RS diagram.

• The disks do not touch if,

 $|1+L(j\omega)| > |w_p(j\omega)| + |w_I(j\omega)L(j\omega)|$

Honeywell

The RP condition

 $|1+L(j\omega)| > |w_p(j\omega)| + |w_I(j\omega)L(j\omega)|$

can be rewritten as,

$$\left|\frac{w_p(j\omega)}{1+L(j\omega)}\right| + \left|\frac{w_I(j\omega)L(j\omega)}{1+L(j\omega)}\right| < 1$$

• and is typically presented in the form:

$$|w_p(j\omega)S(j\omega)| + |w_I(j\omega)T(j\omega)| < 1$$

Honeywell

Robust Performance: Comments

 $|w_p(j\omega)S(j\omega)| + |w_I(j\omega)T(j\omega)| < 1$

- This is a RP condition for a <u>specific</u> performance criterion and a <u>specific</u> model uncertainty structure.
- RP conditions for other uncertainty structures may be derived.
- Note that satisfying this RP condition automatically includes the RS condition for multiplicative uncertainty $|w_I(j\omega) T(j\omega)| < 1$.

Honeywell

Robust Performance: Practically Speaking

 In practical robust performance, the size of these disks will depend on the frequency ω.

Robust Performance: Parting Thought

 $|w_p(j\omega)S(j\omega)| + |w_I(j\omega)T(j\omega)| < 1$

• The derivation of this result assumed nominal stability (NS).

RULE #2: Always check nominal stability (NS), before applying a robust performance (RP) condition.

Honeywell

Conclusions

- Control systems contain uncertainty in signals and in models.
- Perturbations due to model uncertainty can destabilize a closed-loop. Bounded signal perturbations cannot.
- Robust control concentrates on addressing model uncertainty.

Honeywell

Conclusions

- Complex model perturbations are commonly used to represent model uncertainty.
- Assuming nominal stability (NS):
 - a robust stability (RS) condition was derived in terms of the magnitude of these perturbations.
 - a robust performance (RP) condition was derived in terms of the model uncertainty and the performance specification.
- In practice, the assumption of NS is valid since practical design techniques produce a NS closedloop.

