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Abstract

In this paper, we address the analysis and state-feedback synthesis problems for linear parameter-varying (LPV) systems with
parameter-varying time delays. It is assumed that the state-space data and the time delays are dependent on parameters that are
measurable in real-time and vary in a compact set with bounded variation rates. We explore the stability and the induced L

2
norm

performance of these systems using parameter-dependent Lyapunov functionals. In addition, the design of parameter-dependent
state-feedback controllers that guarantee desired L

2
gain performance is examined. Both analysis and synthesis conditions are

formulated in terms of linear matrix inequalities (LMIs) that can be solved via e$cient interior-point algorithms. ( 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Time delays are often present in engineering systems
due to measurement, transmission and transport lags,
computational delays, or unmodeled inertias of system
components. The stability analysis and control of these
systems has been examined extensively in the controls
literature using both state-space and frequency domain
methods (e.g., see Malek-Zavarei & Jamshidi, 1987;
Watanabe, Nobuyama & Kojima, 1996; Dugard &
Verriest, 1998, and the references therein). In many engine-
ering systems, the time delays are known functions of
variable operating conditions or system parameters that
can be measured in real-time. For example, the transport
delay in an internal combustion engine is a known func-
tion of the engine speed. Similarly, parameter-dependent
time delays often appear in many manufacturing and
chemical processes, biomedical systems and robotic sys-
tems where changes in the system dynamics result in

variable delay times. Motivated by the linear parameter-
varying (LPV) control theory, in this work the stabiliz-
ation and the state-feedback control synthesis of such
LPV systems that include parameter-dependent time de-
lays is examined. LPV systems are systems that depend
on unknown but measurable time-varying parameters,
such that the measurement of these parameters provides
real-time information on the variations of the plant's
characteristics. Hence, it is desirable to design controllers
that are scheduled based on this information. The analy-
sis and control of LPV systems has been investigated
recently by Packard (1994), Becker and Packard (1994),
Apkarian and Gahinet (1995), Wu, Yang, Packard and
Becker (1996), and Gahinet, Apkarian and Chilali (1996).
These methods provide a systematic gain-scheduling
control approach for nonlinear systems (Rugh, 1991;
Shamma & Athans, 1990, 1992). The LPV analysis and
control synthesis problems can be formulated as linear
matrix inequality (LMI) constraints that can be solved
using recently developed e$cient interior-point optim-
ization algorithms (Boyd, El Ghaoui, Feron & Balakrish-
nan, 1994; Vandenberghe & Boyd, 1994).

Using the LPV framework, in this work we assume
that the state-space system matrices and the time delays
are functions of time-varying system parameters that
are measured in real-time. We seek to synthesize
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parameter-varying controllers to stabilize the time-
delayed LPV system and to provide disturbance attenu-
ation measured in terms of the induced L

2
norm of the

system. The proposed approach utilizes parameter-
dependent Lyapunov functionals to obtain su$cient
conditions for stabilization and induced L

2
norm

performance in terms of LMIs. Although the single delay
case is considered, the results can be easily extended to
treat systems with multiple delays.

The notation to be used is as follows: R stands for the
set of real numbers and R

`
for the non-negative real

numbers. RmCn is the set of real m]n matrices. The
transpose of a real matrix M is denoted by MT and its
orthogonal complements by M

M
. We use SnCn to denote

real, symmetric n]n matrices, and SnCn
`

for positive-
de"nite n]n matrices. If M3SnCn, then M'0 (M50)
indicates that M is a positive-de"nite (positive-semi-de"-
nite) matrix and M(0 (M40) denotes a negative-
de"nite (negative-semi-de"nite) matrix. The matrix norm
DDMDD is the maximum singular value of the matrix M, that
is DDMDD :"p6 (M)"[j

.!9
(MMT)]1@2. For x3Rn, its norm is

de"ned as DDxDD :"(xTx)1@2. The space of square integrable
functions is denoted by L

2
, that is, for any u3L

2
,

DDuDD
2

:"[:=
0
uT(t)u(t) dt]1@2 is "nite. The space of continu-

ous functions will be denoted by C and the correspond-
ing norm is DD/DD"sup

t
DD/(t)DD. In a symmetric block

matrix, the expression (*) will be used to denote the
submatrices that lie above the diagonal.

2. Analysis of time-delayed LPV systems

We consider the following state-space model of
a time-delayed LPV system:

&
d
: x5 (t)"A(o(t))x(t)#A

h
(o(t))x(t!h(o(t)))

#B(o(t))d(t), (1)

e(t)"C(o(t))x(t)#C
h
(o(t))x(t!h(o(t)))

#D(o(t))d(t), (2)

x(h)"/(h), h3[!h(o(0)), 0], (3)

where x(t)3Rn is the state vector, d(t)3Rnd is the vector
of exogenous inputs, e(t)3Rne in the output vector and
h is a di!erentiable scalar function representing the
parameter-varying delay. We assume that the delay
is bounded and that the function t!h(t) is mono-
tonically increasing, that is h lies in the set

H :"Mh3C(R,R): 04h(t)4H(R,

hQ (t)4q(1, ∀t3R
`

N.

The initial data function / in (3) is a given function in
C([!H, 0],Rn). We will use the notation x

t
(h) to denote

x(t#h) for h3[!H, 0], that is, x
t
is the in"nite-dimen-

sional state of the delay system.

We assume that the state-space matrices A( ) ), A
h
( ) ),

B( ) ), C( ) ), C
h
( ) ), D( ) ) and the delay h( ) ) are known con-

tinuous functions of a time-varying parameter vector
o( ) )3FlP , where FlP is the set of allowable parameter
trajectories. For our purposes, this set is de"ned as

FlP :"Mo3C(R, Rs): o(t)3P, Do5
i
(t)D4l

i
,

i"1,2,2, s, ∀t3R
`

N,

where P is a compact subset of Rs, Ml
i
Ns
i/1

are non-
negative numbers and l"[l

1
2 l

s
]T, i.e., we consider

bounded parameter trajectories with bounded variation
rates. Notice that the parametric dependence of the delay
on o results in a given delay bound H, since o is restricted
to lie on the given parameter set P. Bounding the rate of
variation of the parameter vector o allows the use of
parameter dependent Lyapunov functionals resulting in
less conservative analysis and control synthesis results
(Wu et al., 1996; Scherer, 1996; Apkarian & Adams,
1998). The rate of variation should be such that hQ (t) is
bounded below 1. It is assumed that at each time instant
t the parameter vector o(t) is accessible to be measured.
We seek to design controllers that are scheduled based
on the real-time measurement of o.

To examine the stabilization problem consider now
the unforced time-delayed LPV system

&
du

: x5 (t)"A(o(t))x(t)#A
h
(o(t))x(t!h(o(t))) (4)

with the initial data (3). The following result provides
a su$cient condition for asymptotic stability of &

du
. This

is an LMI formulation of a corresponding analysis result
by Verriest (1994).

Lemma 1. Consider the unforced delayed LPV system (4)
with the initial data (3). If there exists a continuously
diwerentiable matrix function P : RsPSnCn

`
and a matrix

Q3SnCn
`

such that

C
AT(o)P(o)#P(o)A(o)#

s
+
i/1
Aqi

LP

Lo
i
B#Q

AT
h
(o)P(o)

(*)

!C1!
s
+
i/1
Aqi

Lh

Lo
i
BDQD(0 (5)

for all o3P and Dq
i
D4l

i
then &

du
is asymptotically stable,

that is, the solution x( ) ) converges to zero as tPR for all
o( ) )3FlP .

Proof. Suppose that (5) holds and consider the following
Lyapunov}Krasovskii type functional

<(x
t
,o)"xT(t)P(o(t))x(t)#P

t

t~h(o(t))
xT(m)Qx(m) dm. (6)

222 F. Wu, K.M. Grigoriadis / Automatica 37 (2001) 221}229



C
AT(o(t))P(o(t))#P(o(t))A(o(t))#$P

$t
#Q (*) (*) (*)

AT
h
(o(t))P(o(t)) !(1!$h

$t
)Q (*) (*)

BT(o(t))P(o(t)) 0 !cI (*)

C(o(t)) C
h
(o(t)) D(o(t)) !cID(0 (8)

AT(o)P(o)#P(o)A(o)#
s
+
i/1

$Ali
LP

Lo
i
B#Q (*) (*) (*)

AT
h
(o)P(o) !C1!

s
+
i/1

$Ali
Lh

Lo
i
BD Q (*) (*)

BT(o)P(o) 0 !cI (*)

C(o) C
h
(o) D(o) !cI

(0 (7)

Let jM
P

:"maxo | P j
.!9

(P(o)), j
1 P

:"mino|P j
.*/

(P(o)), and
jM
Q

:"j
.!9

(Q). Notice that <(x
t
,o) is bounded from above

<(x
t
,o)4DDx(t)DD2jM

P
#P

t

t~H

xT(m)Qx(m) dm

4DDx(t)DD2jM
P
# max

~Hyhy0

DDx
t
(h)DD2HjM

.!9
(Q)

4(jM
P
#HjM

Q
)DDx

t
DD2

and it is positive-de"nite since

<(x
t
,o)5j

1 P
DDx(t)DD2.

Also, for any o( ) )3FlP

d<

dt
"

dxT

dt
P(o(t))x(t)#xT(t)P(o(t))

dx

dt

#xT(t)
dP

dt
x(t)#xT(t)Qx(t)

!A1!
dh

dtBxT(t!h(o(t)))Qx(t!h(o(t)))

"[xT(t) xT(t!h(o(t)))]

]C
ATP#PA#PQ #Q (*)

AT
h
P (!1#hQ )QD

]C
x(t)

x(t!h(o(t)))D
40,

where the last inequality follows from (5). Hence, <(x
t
,o)

is a Lyapunov functional and the system &
du

is asymp-
totically stable (Driver, 1977; Kolmanovskii & Shaikhet,
1996). h

An equivalent result based on Lyapunov}Krasovskii
functionals has been derived by Verriest (1994) to exam-
ine the stability of general linear time-varying (LTV)
systems resulting in a Riccati diwerential equation stability
conditions. In our case, the proposed LMI formulation of
this result will lead to computationally attractive analysis
and synthesis conditions for the time-delayed LPV sys-
tem (4). It is noted that the proposed Lyapunov}Krasov-
skii based analysis is a conservative one; however, it
provides easily computable results based on convex op-
timization. The restricted parameter dependency of the
Lyapunov}Krasovskii functional, with Q constant, is se-
lected to provide this computational advantage.

The following result provides a su$cient condition for
the induced L

2
gain performance of the forced time-

delayed LPV system (1), (2).

Theorem 2. Consider the delayed system &
d

(1), (2) with
initial data /,0. If there exists a continuously diwerenti-
able matrix function P : RsPSnCn

`
and a matrix Q3SnCn

`
,

such that

for all o3P then &
d

is asymptotically stable and has
induced L

2
norm less than c.

Remark 1. The notation +s
i/1

$( ) ) in (7) is used to
indicate that every combination of #( ) ) and !( ) )
should be included in the inequality. That is, inequality
(7) actually represents 2s di!erent inequalities that corres-
pond to the 2s di!erent combinations in the summation.

Proof of Theorem 2. From condition (7), it follows that

for any admissible trajectory o( ) )3FlP . From the top
2]2 sub-matrix and Lemma 1, it follows that the delayed
LPV system &

d
is asymptotically stable. Consider again

the parameter-dependent Lyapunov}Krasovskii func-
tional (6) and notice that
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d<

dt
#c~1eT(t)e(t)!cdT(t)d(t)"

dxT

dt
P(o(t))x(t)#xT(t)P(o(t))

dx

dt
#xT(t)

dP

dt
x(t)

#xT(t)Qx(t)!A1!
dh

dt BxT(t!h(o(t)))Qx(t!h(o(t)))#c~1eT(t)e(t)!cdT(t)d(t)

"[xT(t) xT(t!h(o(t)))dT(t)]

]C
ATP#PA#PQ #Q#c~1CTC (*) (*)

AT
h
P#c~1CT

h
C (!1#hQ )Q#c~1CT

h
C

h
(*)

BTP#c~1DTC c~1DTC
h

!cI#c~1DTDDC
x(t)

x(t!h(o(t)))

d(t) D
40.

C
AT(o)P(o)#P(o)A(o)#

s
+
i/1

$Ali
nf
+
j/1

Lf
j

Lo
i

P
jB#Q (*) (*) (*)

AT
h
(o)P(o) !C1!

s
+
i/1

$Ali
Lh

Lo
i
BDQ (*) (*)

BT(o)P(o) 0 !cI (*)

C(o) C
h
(o) D(o) !cID(0 (11)

for all o3P.

The last inequality follows from the Schur complement of
inequality (8) (see Skelton, Iwasaki & Grigoriadis, 1998).
Integrating both sides of the above inequality from 0 to
R, and noting that <(R)"0 due to the asymptotic
stability of the delayed LPV system, we obtain

DDeDD2
2
4c2DDdDD2

2
,

which implies that the induced L
2

norm of &
d

from d to
e is less than c. h

Notice that the LMI conditions (5) and (7) correspond
to in"nite-dimensional convex problems due to their
parametric dependence. To obtain a "nite-dimensional
optimization problem, the parameter-dependent matrix
function P(o) that appears in the stability and perfor-
mance conditions (5) and (7) can be approximated using
a "nite set of basis functions (Scherer, 1996; Wu et al.,
1996; Apkarian & Adams, 1998). Hence, by choosing
appropriate basis functions M f

j
(o)Nnf

j/1
such that

P(o)"
nf
+
j/1

f
j
(o)P

j
, P

j
"PT

j
, (9)

the analysis condition in Theorem 2 can be approxi-
mated as follows

Corollary 3. Consider the parametrization (9) of the
matrix function P(o). Then, the delayed LPV system &

d
is

asymptotically stable and has induced L
2

norm less
than c if there exist symmetric matrices MP

j
Nnf
j/1

and Q'0
satisfying the LMI constraints

P(o)"
nf
+
j/1

f
j
(o)P

j
'0 (10)

Conditions (10) and (11) represent (2s#1) LMIs on
the matrix variables MP

j
Nnf
j/1

and Q, and the scalar c. To
eliminate the dependence on the parameter vector o,
a "nite 6g-ridding Mo

k
NL
k/1

of the parameter space P can
be used resulting in ¸s(2s#1) "nite-dimensional LMIs
that can be solved numerically using convex optimiza-
tion techniques (Gahinet, Nemirovskii, Laub & Chilali,
1995). The basis functions f

j
, j"1,2, n

f
should be se-

lected by the designer. Notice that obviously the pro-
posed basis approximation restricts the allowable range
of Lyapunov functions. A detailed discussion on the
gridding technique and the selection of appropriate basis
functions for parameter dependent LMIs can be found in
Apkarian and Adams (1998).

Remark 2. It can be shown that in the absence of a delay,
conditions (7) result in the L

2
gain bounding conditions

for non-delayed LPV systems obtained in Wu et al.
(1996).

Remark 3. Using a similar approach, LMI-based stabil-
ity and induced L

2
norm performance analysis results

for a time-delayed LPV system

x5 (t)"A(o(t))x(t)#
k
+
i/1

A
hi
(o(t))x(t!h

i
(o(t)))

#B(o(t))d(t)

with multiple delays h
i
, i"1,2, k such that

04h
i
(R and dh

i
/dt(1 can be easily derived using

the following functional:

<(x
t
,o)"xT(t)P(o(t))x(t)#P

t

t~h1 (o(t))
xT(m)Q

1
x(m) dm
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GR(o)AK T(o)#AK (o)R(o)!
s
+
i/1

$Ali
LR

Lo
i
B

#tAK
h
(o)SAK T

h
(o)!cB

2
(o)BT

2
(o) H (*) (*) (*)

R(o) !S (*) (*)

BT
1
(o) 0 !cI (*)

C
11

(o)R(o)#tC
11h

(o)SAK T
h
(o) 0 0 !cI#tC

11h
(o)SCT

11h
(o)

(0, (17)

#P
t~h1(o(t))

t~h2 (o(t))
xT(m)Q

2
x(m) dm#2

#P
t~hk~1(o(t))

t~hk (o(t))
xT(m)Q

k
x(m) dm.

3. State-feedback control of time-delayed LPV systems

In this section, the analysis results presented in the
previous section are used to design state-feedback control-
lers for LPV systems with parameter-dependent state and
input time delays. We seek to design state-feedback gains
that are scheduled based on the real-time measurement of
the parameter vector o and guarantee prescribed induced
L

2
norm performance levels for the closed-loop system.

Consider the following time-delayed LPV system:

x5 (t)"A(o(t))x(t)#A
h
(o(t))x(t!h(o(t)))#B

1
(o(t))d(t)

#B
2
(o(t))u(t)#B

2h
(o(t))u(t!h(o(t))), (12)

e(t)"C
1
(o(t))x(t)#C

1h
(o(t))x(t!h(o(t)))

#D
12

(o(t))u(t)#D
12h

(o(t))u(t!h(o(t))), (13)

where o3FlP , x(t)3Rn, d(t)3Rnd , e(t)3Rne and u(t)3Rnu .
We assume that all state-space data and the delay h are
continuous functions of the parameter o. We will assume
that for all o3P

(A1) D
12

(o) has full column rank,
(A2) (A( ) ),B

2
( ) )) is asymptotically stabilizable, that is,

there exists a parameter-dependent state-feedback
controller u(t)"F(o(t))x(t), such that the closed-
loop LPV system is asymptotically stable.

Note that assumption (A1) can be easily relaxed, but we
will use it to simplify the presentation. Based on these

assumptions, we consider the following normalized struc-
ture for matrices C

1
(o),C

1h
(o) and D

12
(o):

C
1
"C

C
11

(o)

C
12

(o)D, C
1h
"C

C
11h

(o)

C
12h

(o)D, D
12

(o)"C
0

ID.

Also, the case where there is a feed-through
term D

11
(o(t))d(t) in the output equation (13) can be

easily handled, but it will not be discussed here for
simplicity.

3.1. LPV systems with state delay

We "rst consider the state-delayed LPV control syn-
thesis problem, that is, we assume that B

2h
(o)"0 and

D
12h

(o)"0. We seek to design a parameter-dependent
state-feedback controller

u(t)"F(o(t),o5 (t))x(t), (14)

such that the closed-loop system is asymptotically stable
and has induced L

2
norm less than a pre-speci"ed

bound c. Using the state-feedback control law (14) the
closed-loop system becomes

x5 (t)"A
F
(o(t),o5 (t))x(t)#A

h
(o(t))x(t!h(o(t)))

#B
1
(o(t))d(t), (15)

e(t)"C
F
(o(t),o5 (t))x(t)#C

1h
(o(t))x(t!h(o(t))), (16)

where

A
F
(o,o5 ) :"A(o)#B

2
(o)F(o,o5 ),

C
F
(o,o5 ) :"C

1
(o)#D

12
(o)F(o,o5 ).

The following result provides conditions for the closed-
loop system (15), (16) to be asymptotically stable and
have induced L

2
norm less than c.

Theorem 4. Consider the time-delayed LPV system (12),
(13) with B

2h
(o)"0 and D

12h
(o)"0. There exists a

parameter-dependent controller (14) such that the closed-
loop system is asymptotically stable and has induced L

2
norm less than c if there exists a continuously diweren-
tiable matrix function R :RsPSnCn

`
and a matrix S3SnCn

`
,

such that for all o3P

!cI#tC
1h

(o)SCT
1h

(o)(0, (18)

where

t"C1!
s
+
i/1

$Ali
Lh

Lo
i
BD

~1
,

AK (o) :"A(o)!B
2
(o)C

12
(o),

AK
h
(o) :"A

h
(o)!B

2
(o)C

12h
(o).
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=(o)"

GR(o)AT(o)#A(o)R(o)!
s
+
i/1

$Ali
LR

Lo
i
B

#tA
h
(o)SAT

h
(o) H (*) (*) (*)

C
1
(o)R(o)#tC

1h
(o)SAT

h
(o) !cI#tC

1h
(o)SCT

1h
(o) (*) (*)

BT
1
(o) 0 !cI (*)

R(o) 0 0 !S

,

;(o)"C
B
2
(o)

D
12

(o)

0

0 D, <(o)"[R(o) 0 0 0].

Moreover, one such state-feedback control law that pro-
vides a guaranteed L

2
gain performance c is given by

F(o(t),o5 (t))"!F~1
1

(o(t),o5 (t))F
2
(o(t),o5 (t)), (19)

where

F
1
(o,o5 )"I#c~1C

12h
(o)

]CA1!
s
+

i/1

o5
i

Lh

Lo
i
BS~1!c~1CT

1h
(o)C

1h
(o)D

~1
CT

12h
(o)

and

F
2
(o,o5 )"cBT

2
(o)R~1(o)#C

12
(o)#C

12h
(o)

]CA1!
s
+
i/1

o5
i

Lh

Lo
i
BS~1!c~1CT

1h
(o)C

1h
(o)D

~1

][AT
h
(o)R~1(o)#c~1CT

1h
(o)C

1
(o)].

Proof. Choosing F(o,o5 ) as in (19), P(o)"R~1(o) and
Q"S~1 it can be easily veri"ed that conditions (17) and
(18) are equivalent to the solvability conditions (Skelton
et al., 1998)

;T
M
(o)=(o);

M
(o)(0 and <

M
(o)=(o)<T

M
(o)(0

for the induced L
2

norm inequality (7), where

Hence, based on Theorem 2, the closed-loop system is
asymptotically stable and has induced L

2
norm less

than c. h

Remark 4. It can be easily shown that (17) and (18) are
also necessary for the time-delayed closed-loop LPV
system to satisfy the condition of Theorem 2.

The controller construction consists of solving a "nite-
dimensional approximation of the LMIs (17) and (18) for
R(o) and S as discussed in Section 2, and implementing
the parameter-dependent state-feedback control gain
given by (19). The optimal bounding L

2
gain perfor-

mance based on the proposed conditions can be obtained
by minimizing the scalar c with respect to the above
LMIs.

3.2. LPV systems with input delay

Next, we consider the control synthesis problem for
the input-delayed LPV system (12), (13), that is, we as-
sume that A

h
(o)"0 and C

1h
(o)"0. However, the analy-

sis results developed in Section 2 cannot be used directly
for input-delayed LPV control. To address this problem,
we introduce an arti"cial dynamic feedback control law
u
a
(t)3Rnu as follows:

u(s)"(sI#")~1Ku
a
(s),

where K is a non-singular gain matrix and "'0 is
a parameter matrix that can be selected as the bandwidth
of the actuators. Then, by de"ning the new state vector
xT
a
"[xT uT], we obtain a state-delayed LPV system as

follows:

x5
a
(t)"C

A(o(t)) B
2
(o(t))

0 !" Dxa
(t)

#C
0 B

2h
(o(t))

0 0 Dxa
(t!h(o(t)))

#C
B

1
(o(t))

0 Dd(t)#C
0

KDua(t) (20)

e(t)"[C
1
(o(t)) D

12
(o(t))]x

a
(t)

#[0 D
12h

(o(t))]x
a
(t!h(o(t))). (21)

It can be easily veri"ed that the stabilization assumption
(A2) holds for this augmented LPV plant. Assumption
(A1) is not satis"ed, but this can be remedied by slightly
perturbing the output vector e(t) using a small input
term. Now, Theorem 4 can be applied to this new `state-
delayeda LPV system (20), (21). Suppose that the result-
ing state-feedback control law is given by

u
a
(t)"F

a
(o(t))x

a
(t) :"[F

x
(o(t)) F

u
(o(t))]C

x(t)

u(t)D.
Then, the following parameter-dependent controller
provides induced L

2
norm performance c to the original
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Fig. 1. System response: x
1

(solid) and x
2

(dashed).

input-delayed LPV system

u5 (t)"KF
x
(o(t))x(t)#(KF

u
(o(t))!")u(t).

Therefore, in the proposed approximate approach the
control input u is governed by a di!erential equation
instead of a static feedback gain. This approach can be
extended to treat control synthesis problems for LPV
systems with both state and input delays.

4. Numerical example

Consider the following linear time-varying state-
delayed system adopted from Mahmoud and Al-
Muthairi (1994):

x5 (t)"C
0 1#/ sin t

!2 !3#d sin tDx(t)

#C
/ sin t 0.1

!0.2#d sin t !0.3Dx(t!kDcos(ut)D)

#C
0.2

0.2Dd(t)#C
/ sin t

0.1#d sin tDu(t), (22)

e(t)"C
0 1

0 0Dx(t)#C
0

1Du(t), (23)

where /"0.2, d"0.1, k"0.09 and u"5. To validate
our proposed time-delayed LPV design methodology, we
will assume that the sine and cosine terms in the above
model correspond to systems parameters whose func-
tional representation is not known a priori, but they can
be measured in real time. Hence, we de"ne o

1
(t) :"sin t

and o
2
(t) :"Dcos(ut)D and the original system is for-

mulated as a state-delayed LPV system as follows:

x5 (t)"C
0 1#/o

1
(t)

!2 !3#do
1
(t)Dx(t)

#C
/o

1
(t) 0.1

!0.2#do
1
(t) !0.3Dx(t!ko

2
(t))

#C
0.2

0.2Dd(t)#C
/o

1
(t)

0.1#do
1
(t)Du(t),

e(t)"C
0 1

0 0Dx(t)#C
0

1Du(t).

The parameter space is [!1 1]][0 1]. The time delay
h(t)"ko

2
(t) is varying from 0 to 0.09 and the condition

dh/dt(1 holds except for a countable number of points.
Moreover, Ddo

1
/dtD41 and Ddo

2
/dtD45. A controller

that only depends on the real-time measurement of
o(t)"[o

1
(t) o

2
(t)]T, thus not on future values of o(t), is

sought here.

To solve the synthesis problem, we pick three basis
functions in expansion (10) as follows:

f
1
(o)"1, f

2
(o)"o

1
, f

3
(o)"o

2
. (24)

Gridding the parameter space uniformly using a 9]9
grid, we obtain from Theorem 4 an induced L

2
norm

performance bound c
LPV

"2.38 with the following
parameter matrices

R
1
"C

0.04119 !0.02120

!0.02120 0.06044 D,

R
2
"C

1.6821]10~6 !3.4615]10~5

!3.4615]10~5 2.2543]10~5 D,

R
3
"C

2.6125]10~4 9.2482]10~4

9.2482]10~4 4.8084]10~3D.
Hence, the parameter-dependent state-feedback control
law given by (19) results in

F(o)"!2.38][/o
1

0.1#do
1
]

(R
1
#o

1
R

2
#o

2
R

3
)~1. (25)

For an initial condition (x
1
(0),x

2
(0))"(2,!1) and

a unit step disturbance d(t), we simulate the closed-loop
behavior of the system using the LPV state-feedback
control law (25). The states and control input pro"les are
shown in Figs. 1 and 2. Note that both states x

1
, x

2
converge to zero very rapidly.

The e!ect of the maximum delay magnitude k on the
attainable induced L

2
norm performance bound c is

shown in Fig. 3. Notice that as expected, increase of the
delay magnitude results in performance deterioration.
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Fig. 2. Control input.
Fig. 3. Maximum delay magnitude vs. induced L

2
norm performance.

R
1
"C

0.03594 !0.02023 0.01661

!0.02023 0.06441 !0.04863

0.01661 !0.04863 0.2183 D ,

R
2
"C

!3.1343]10~4 !2.0156]10~4 !8.9913]10~3

!2.0156]10~4 6.2186]10~4 !5.6514]10~3

!8.9913]10~3 !5.6514]10~3 3.4805]10~3 D ,

R
3
"C

1.9984]10~4 !5.8750]10~4 5.4119]10~5

!5.8750]10~4 1.7304]10~3 !9.7013]10~5

5.4119]10~5 !9.7013]10~5 2.8978]10~3 D .

Next, we consider the following input-delayed LPV
system by slightly modifying the previous model

x5 (t)"C
0 1#/o

1
(t)

!2 !3#do
1
(t)Dx(t)#C

0.2

0.2Dd(t)

#C
/o

1
(t)

0.1#do
1
(t)Du(t)#C

0.1

!0.3Du(t!ko
2
(t)), (26)

e(t)"C
0 1

0 0Dx(t)#C
0

1Du(t). (27)

where the scheduling parameters have been selected as
before. The input-delayed LPV system (26), (27) can be
transformed to a state-delayed dynamic model by the
state augmentation proposed in Section 3. Choosing the
parameter values K"10~3 and ""1, the converted
state-delayed LPV system is

C
x5 (t)

u5 (t)D"C
0 1#/o

1
(t) /o

1
(t)

!2 !3#do
1
(t) 0.1#do

1
(t)

0 0 !1 DCx(t)

u(t)D

#C
0.1

!0.3

0 Du(t!ko
2
(t))#C

0.2

0.2

0 Dd(t)#C
0

0

KDua(t),
e(t)"C

0 1 0

0 0 1DC
x(t)

u(t)D#C
0

10~3Dua(t).

Note that we have penalized the arti"cial control u
a

by
a small quantity in the output equation to avoid singular-
ity problems. Using Theorem 4 and the same basis
functions as before, we obtain a performance level
c
LPV

"2.30. In this case, our parameter-dependent con-
troller is given by

u5 (t)"!M[0 0 2.30]](R
1
#o

1
(t)R

2
#o

2
(t)R

3
)~1

#[0 0 2]NC
x(t)

u(t)D,
where
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5. Conclusions

In this paper, the analysis and state-feedback control
synthesis problems for LPV systems with parameter-
dependent state delays are addressed. The corresponding
analysis and synthesis conditions for stabilization and
induced L

2
norm performance are expressed in terms of

LMIs that can be solved e$ciently using recently de-
veloped interior-point algorithms. In addition, we con-
sidered the state-feedback control synthesis problem for
LPV systems with input delays by augmenting the sys-
tem dynamics and transforming the problem to a state-
delayed control problem. However, in this case a
dynamic state-feedback controller is required. These
results provide a systematic procedure to address
parameter-dependent time-delays in a gain-scheduling
control design framework for non-linear systems.
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