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Abstract

We use singular value decomposition to approximate large, unmanage-
able matrices into smaller invertible square matrices. Topics include the
mathematics behind the singular value decomposition, the use of Matlab
with the singular value decomposition, and the application of the singular
value decomposition to image compression without significant data loss.

1 Introduction

The singular value decomposition (SVD), one of the most useful tools of linear
algebra, is a factorization and approximation technique which effectively reduces
any matrix into a smaller invertible and square matrix. The SVD provides
where other linear approximation techniques fail. With almost every tool and
technique discussed in linear algebra, there is a delimiter, “..provided that the
matriz is both invertible and square.” The singular value decomposition not
only approximates this special case scenario, but it will also work it’s magic on
every other possible scenario. The SVD works wonderfully with both under-
and over- determined matrices.

2 Mathematics Behind the SVD

Theorem 1 There exists matrices U, D, V' such that the matriz A, an m X n
matriz with rank r, can be factored into the form A = UDVT; where D is a
“diagonal” m x n matrix with real entries

01 >09> >0, >0, r=min(m,n)

and U &V are orthogonal matrices such that U is an m X m matriz and V' is an
n x n matriz. The diagonal entries of D, {01,042, -0} are called the singular
values of the matriz A, the columns of the matriz U are called the left singular
vectors of the matriz A, and the column space of the matriz V' (or the row space



of VT') are called the right singular vectors of the matriz A. Furthermore, the
matriz A can be condensed as A, = U.XV,., where ¥ is anr x r diagonal matriz
with entries {01,032 ...,0,}. Further still, the matriz A can be approzimated as
A = U Vi T, where i corresponds to the first i rows and i columns of each
individual matrix A, U, %3, V.

Proof. Given that A is an m X n matrix in the form

— — — —
A = aq as e a; e ap
such that
a1
- ;2
a; =
Qim
Therefore
ai; Qi - Qi ot Qlp
az1 Qg2 - Azttt Q2p
A =
Am1 Am2 e Amyi e Amn

2.1 Linear Transformations

The process of multiplying any typiczll vector = by a matrix A is_}known as
preforming a linear transformation of . If we use the notation T'( ) = A x,
where T'( ) maps any vector z onto the vector A z and is denoted by = — A
z, all that is required to maximize the transformation T(), is to maximize the
quantity A .

Exercise 2 If \ is an eigenvalue of the matriz A, and T is the corresponding
unit eigenvector, find the unit eigenvector at which ||Az|| is mazimized.

. . e . . . e . — .
Solution Since ||Az||? is maximized for the same x as is ||Az||, and since
— . . . . . . . .
||Az||? is easier to examine, this substitution in the problem will be made.

|AZ||? (Az)T (A7)
— TATAT
T

= = (ATA)x (1)

(AT A) is a symmetric matrix as is shown.

(ATA)T = ATATT = AT 4



Therefore the problem has become to maximize the quadratic form ?TSEZ
where S is an invertible square matrix and z is as before. It is known that the
unit eigenvector v; corresponding to the strictly dominant eigenvalue oy of the
matrix S maximizes this equation. This means that ||AZ|| is maximized for
T =

A relationship between o and A\ can be obtained by taking this step just
slightly farther. We notice that

Az =\z

(ATA)v =00
Therefore

Azl = |Ixz]]
RYRIER
= A

And substituting back into equation (1),

=T

A2 = = (ATA)T
N2 = TT (ATA)T

N2z = (ATA)x

AN?v = ov
T T
APvY = ovv
AP = o

2.2 Invertible Square Matrix

Let S = (AT A) such that S is an n x n invertible square matrix in the form

— — — —
S:|:Sl 82 ce e Si “e . S’IL
where
Sil
_ 5i2
S; =
Sin



Therefore S is an n X n matrix in the form

S11 S12 - Sin

S21 S22 - S2n
S = )

Spnl  Sn2 Snn

We have just shown that ||AZ|| is maximized for = v; where v; is the
eigenvector of S corresponding to the strictly dominant eigenvalue o;. Since
{1?1,1?2,...71)2} is an orthonormal set of the unit eigenvectors of S, then the
matrix V = [171, 1?2, e vjl] is an n x n orthogonal matrix comprised of the unit
eigenvectors of S in order of descending dominance. In addition, the eigenvalues
{01,092, ...,0n} of S are put into the ‘diagonal’ entries of the padded matrix D.

It is at this point that we must remember the goal which we are trying to
achieve. This is, that given any m X n matrix A, there exists a factorization
A = UDVT. We know the format of D, V,and A, so a matrix U can be

obtained in terms of the remaining three matrices in the very least.

A Uupv” (2)
U = AVD™!

We can consider the matrix D as an m X n matrix in the form
D=\a dy --- d --- d, }

where the vector d; is such that the only non-zero entry of the vector is the i**
term, which is the inverse of the i singular value of the matrix A. Now the
product V. D~! can be expressed as

——1

dy

-

-1 e e g d2

VD = [Ul U2 'Un}

—-1

dy,

— 10 1.0 ... L.”

= [Ulvl og U2 gnvn}

Therefore VD! is an n x n. The product of the left multiplication of A, an
m X n matrix, to VD™, an n x m matrix, yields that U is an m x m matrix
in the form

1 -
—Avn}
n

n

1 - 1 -
U= |:—A’U1,—A”U2,...,
g1 g9



2.3 Consolidating a Matrix Using SVD

Definition 3 The rank of a matrix is the number of linearly independent vectors
in the column space of the matriz.

Exercise 4 Letting A, U, D, V be as before, show that if the rank of the matrix
is less than the smallest dimension of the matriz, a smaller matrix A, can be
computed.

Solution If we let r = rank(A) and define ¥ to be an r x r diagonal
matrix where the main diagonal of the matrix are the first r eigenvalues of the
matrix S in order of descending dominance, then ¥ would be in the form

g1 0
02
0 or

and the values {01,049, ...,0,} would be called the singular values of the matrix
A. If we define the matrix D to be an m x n matrix with containing 3 and
augmented with zeros so as to give it the same dimensions as the matrix A, D
would be in the form

D 8 } (n —r) columns of zeros

(m — r) rows of zeros

If welet V, = [vl, Vayuey U ] and let the remaining vectors {v,+1, V2, oeny fn}

be the basis for the matrix V,,_,., then V can be written as
V=V, Vol

A similar argument can be made for U.
U = [U,, U]

Therefore, it can be shown that the matrix A can be written as a smaller r x
r matrix A,.

A = UDVT

> 0 v, T
- o3 8] [7]

A = UV, T=A,



2.4 Approximating a Matrix Using SVD

It can be shown from the previous example that the matrix A which equals the

matrix A, can be expressed as a linear combination of the singular values of the
. . — T
matrix A and the corresponding vectors u; and v;

A = UDVT
- T - T T — 7 =T
A = widivy Fugdave + - Fuidiv; 4o+ updyuy,
—_— — —_— — —_—— O Y
A = ojuivy +ougvs + -+ ojuivg + -+ updyvn

— — — — —

— . .
‘We know that the terms{olulvl, 09UV, ..., Ununvn} are in order of dominance

from greatest to least. Therefore, an approximation of the matrix A can be
achieved by reducing the number of iterations involved in the linear combination.

— — — — — —
A; = o1ugvy + oouguy + - - + ou0;

3 MATLAB and the SVD

It’s quite obvious that the mathematics behind the singular value decomposition
would become extraordinarily involved rather quickly. For this reason, once
the mathematics have been understood, it is a good idea to use a mathematics
software. Matlab is one example that works quite nicely. To find out more about
these commands and others while working in Matlab use the help command.
For example, if the command is linspace(0,5), type help linspace to find
out more about the linspace command.

Exercise 5 Create a random 8 x 10 matrix A with a rank of 6 and integer
values ranging from —64 to 64. Using Matlab’s svd command, find the matrices
U, D, &V corresponding to A.

To create a matrix of random integers, the easiest way is to use the randint
command (you must have ATLAST for this to work). The command with these
parameters reads:

>> A=randint (8,10,64,6)

Then, all that is required is the ability to type the next line into the com-
puter:

>> [U,D,V]=svd(A)

If you wish, it is possible to confirm the rank of the matrix A by typing the
command:

>> rank(A)

Or by typing



>> diag(D)

and seeing that two of the singular values of A are zero, or so nearly zero that
they are negligible. And, that’s it. The matrix A was inputted, and the
matrices U, D, & V were computed.

4 Image Processing and the SVD

In order to understand the following section, a brief discussion about how
Matlab constructs images from matrices is necessary. Basically, each entry
in the matrix corresponds to a small square of the image. The numerical value
of the entry corresponds to a color in Matlab. The color spectrum can be
seen in Matlab by typing the following commands, and the pictured screen will

appear (1).
>> C=1:64;

>> image(C)

10 20 0 a0 0 B0

With this in mind, entering a 3 x 3 matrix of random integers should give a
picture of nine square blocks comprising one large block. Furthermore, the color
of each individual block will correspond to the color pictured at that numerical
value in figure (1).

>> S=randint (3, 3)

>> image(S)



It has been shown that any matrix S can be approximated using the a
lesser number of iterations when calculating the linear combinations defining S.
This can be shown using the Matlab command (available through ATLAST)
svdimage. svdimage is an interactive program which shows the original image
produced by S and the image produced by the approximated A with the shown
number of iterations. The following demonstrates (figures will vary due to the
use of random integers).

>> [U,D,V]=svd(S)
>> svdimage(S,U,D,V)

One Iteration Two Iterations Three Iterations

The original image was not obtained until the third iteration, but this can
be explained by typing

>> rank(A)

Of course, realize that in the scope of a more detailed image, say 512 x 512
the discoloring of a pixel here or there might not be of concern. Use Matlab
to construct a 6 x 6 matrix of rank 4. This time allow color values from
between —64 and 64. The original image should be achieved by the fourth
approximation. Meaning that the 4 X 4 matrix .S, of only sixteen entries gives
the same image as the 6 x 6 matrix of 36 entries. A reduction of more than
50% in size.



>> S=randint (6,6,64,4)
>> [U,D,V]=svd(S)
>> svdimage(S,U,D,V)

One Iteration Two Iterations Three Iterations

Four Iterations Original Image

Up until now, the matrix S has been an invertible square matrix. It is
possible to show that the matrix A, an m X n matrix, can be approximated
using the same techniques. Using Matlab, construct A to be a 15 x 20 matrix
of random integers ranging from —64 to 64, with a rank of 12. An exact
representation of the original image should be obtained by the twelfth iteration.
Bear in mind however, that depending on the desired quality of the picture,
and the number of pixels used to construct the image, that it is possible for an
approximation of only ten iterations to be ‘good enough’.

>> A=randint (15,20,64,12)
>> [U,D,V]=svd(A)
>> svdimage(A,U,D,V)



Twelve Iterations Original Image

Again, the approximation of A5 having only 144 entries is an exact duplicate
of the original matrix A containing 300 entries, again a reduction of more than
half. Notice also that our ‘good enough’ matrix Ajg is a matrix of 100 entries,
one third the size of the original.

The following image is a 512 x 512 matrix.

Original Image One Iteration

10



Two Iterations Ten Iterations

As you can see, after only 10 iterations you can already tell what the image
is.

£ | M

25 Iterations

Yy

75 Iterations
By 25 iterations the picture is clearly evident. By 75 iterations we have

essentially the original image. A 75275 matrix, with 5625 entries is significantly
reduced compared to a 5122512 matrix with 262,144 entries.

11



5 Conclusion

Singular value decomposition has shown to be useful in linear algebra. When ap-
plied to image processing, a matrix can be compressed to a significantly smaller
sized matrix, and portray almost an identical image. This saves a lot of room!

6 Bibliography

Lay, David C. Linear Algebra and Its Applications. Addison Wesley
Longman, Inc., 1997

Leon, Steve. Atlast:Computer Exercises for Linear Algebra. Prentice-
Hall, Inc., 1996,

Mulcahy, Colm & Rossi, John. “Atlast:A Fresh Approach to Singular Value
Decomposition”

12



