EECE 550: Topics in Power Electronics 

Spring 2013: 3 ch


Course Format:

This is a reading course in which there will be no formal lectures.

The students are responsible for studying the material and doing the assignments

as well as the final project as outlined in this course. Biweekly meetings with instructor

will be arranged wherein the students can report on the progress.   



Instructor: Dr. Juri Jatskevich

Office:        KAISER 3057



This is a graduate course that may be useful for students interested in power electronics modeling and dynamics.

Recommended software for working on class assignments is Matlab/Simulink.

Please use Matlab as much as possible for carrying out calculations, simulations, and plotting the results.


Prerequisite: EECE 549 or approval by the instructor



This course would not have mid term or final exams. The final grade will be based on all

assignment reports and the final project report-presentation. The late assignments will be

penalized 10% per day for up to 3 days delay, and zero thereafter.


Course Outline:

1. Review of steady-state analysis of basic dc-dc converters, losses, and efficiency.

    Discontinuous conduction mode (DCM), analysis of conversion ratio.

    Converter topologies with transformer isolation

    Reading Material [B1, Chaps. 2, 5, 6]

    Assignment 1: Problems 2.3; 2.5; 2.9; 5.9; 5.10; 6.10 (Due on Friday Feb. 1: Postponed to Feb 22)


2. Converter dynamics and control, basic modeling, state-space-averaging, circuit averaging, canonical models.

    Equivalent circuit modeling of DCM, small-signal modeling, high-frequency dynamics.

    Energy conservation principle. Converter transfer function and impedance measurement.

    Design of PD, PI, and PID controllers, closed-loop stability, design of input filters;

    Average switch model, high frequency dynamics in DCM

    Current Controlled Converters

    Reading Material [B1, Chaps. 7, 8, 9, 11, 12, and Papers 1 – 5]

    Assignment 2: Textbook Problems, 7.10; 7.12; 8.9; 8.24; 9.3; 9.7; 11.7; 12.1; 12.2 (Due on Friday Feb 22: Postponed to Mar 1)

                            Additional Problem 2-A: Based on P2 and P5, re-derive the equivalent average switching cell for DCM and CCM.

                            Note: the correction due to energy conservation principle will be different for CCM as apposed to DCM. 

                            Additional Problem 2-B: Based on P1 and P3, explain the limitations of classical state-space-averaging for DCM and re-derive the corrected state-space-averaging model for DCM.


3. Power and Harmonics. Line-commutated rectifiers, DCM and CCM; 6-, 12-, 18-, and 24-poles topologies, modes of operation, average-value modeling.

    Reading Material [B1, Chaps. 16, 17; B2, Chap. 11 (In particular 11.3); and Papers 5 – 10]

   Assignment 3: Textbook Problems: Book B1 - 16.2; 16.3; 17.4; 17.7; Book B2 - Problem 11.6:  (Due on Friday Mar. 15)

                           Additional Problem 3-A: Based on B2 – Re-derive AVM depicted on p. 423, develop Simulink model and implement study shown on p.424 to confirm the correctness of your model.


4. Active PWM Rectifiers: Single- and three-phase rectifiers, power factor and harmonic correction; Resonant Converters, ARCP; Multi-level converters and MMC.

    Reading Material [B1, Chaps. 18, 19 and 20; and Papers 11 – 16]

    Assignment 4: Textbook Problems: Book B1 – 18.6; 18.8; 19.7; 20.6 (Due on Wed. Apr. 3)


Final Project: The project must include a design and modeling of a power-electronic module

(e.g. a PWM rectifier supplying a machine drive system from EECE 549 demonstrating transient

behavior of the power transfer from ac sources to load and back from load to ac source)

with appropriate controls altogether verified using a detailed computer simulation. (Due on Monday Apr. 8)

The students will be making presentations of their final projects on December 7. 

The location and time will be determined later, closer to the end of the term.



Recommended Books and Papers: 

B1. R. W. Erickson & D. Maksimović, Fundamentals of Power Electronics, 2nd Edition, Kluwer 2001, 912 pp.

       ISBN 0-7923-7270-0

B2. P.C. Krause, “Analysis of Electric Machinery and Drive Systems, 2nd Edition,” IEEE Press

       2002, ISBN: 0-471-14326-X (Same book as was used for EECE 549)


P1. A. Davoudi, J. Jatskevich, and T. DeRybel, “Numerical State-Space Average-Value Modeling of PWM DC-DC Converters Operating in DCM and CCM,” IEEE Transactions on Power Electronics, Vol. 21, No. 4, Jul. 2006, pp. 1002–1012.

P2. A. Davoudi, J. Jatskevich, and P. L. Chapman, “Averaged modeling of switched-inductor cells considering conduction losses in discontinuous mode,” IET Electric Power Applications, Vol. 1, Iss. 3, (Paper EPA-2006-0329), pp. 402–406, May 2007.

P3. A. Davoudi and J. Jatskevich, “Parasitics Realization in State-Space Average-Value Modeling of PWM Dc-Dc Converters Using an Equal Area Method,” IEEE Transactions on Circuits and Systems I, Regular Papers, (Paper TCAS-2801-2006) 8 pages, Accepted 23 April 2007.

P4. A. Davoudi, J. Jatskevich, and P. L. Chapman, “Computer-Aided Average-Value Modeling of Fourth-Order PWM DC-DC Converters,” Proc. of IEEE International Symposium on Circuits and Systems (ISCAS’07), New Orleans, USA, May 27-30, 2007, pp. 793–796.

P5. Czarkowski, D., and Kazimierczuk, M.K.: ‘Energy-conservation approach to modeling PWM dc-dc converters’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 1059–1063


P6. Yii-Shen Tzeng, Nanming Chen, Ruay-Nan Wu, “Modes of operation in parallel-connected 12-pulse uncontrolled bridge rectifiers without an interphase transformer,” IEEE Transactions on Industrial Electronics, Vol. 44, Iss. 3, June 1997, pp. 344 – 355.

P7. S. Choi,  P. N. Enjeti, I. J. Pitel, “Polyphase transformer arrangements with reduced kVA capacities for harmonic current reduction in rectifier-type utility interface,” IEEE Transactions on Power Electronics, Vol. 11, Iss. 5, Sept. 1996, pp. 680 – 690.

P8. B. Zhang, S. D. Pekarek, “Analysis and Average Value Model of a Source-Commutated 5-Phase Rectifier,” 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004.

P9. Z. Huiyu, R. P. Burgos, F. Lacaux, A. Uan-Zo-li, D. K. Lindner, F. Wang, D. Boroyevich, “Evaluation of average models for nine-phase diode rectifiers with improved AC and DC dynamics,” 21th IEEE Applied Power Electronics Conference and Exposition (APEC '06), March 19-23, 2006, pp. 7.

P10. S. Rosado, R. Burgos, F. Wang, D. Boroyevich, “Large- and Small-Signal Evaluation of Average Models for Multi-Pulse Diode Rectifiers,” IEEE Workshops on Computers in Power Electronics (COMPEL '06), July 16-19, 2006, pp. 89 – 94.


P11. Pickert, V.; Johnson, C.M. “Three-phase soft-switching voltage source converters for motor drives. I. Overview and analysis,” IEE Proceedings - Electric Power Applications, Vol. 146, Iss. 2, 1999, pp.  147 – 154.

P12.  Johnson, C.M.; Pickert, V. “Three-phase soft-switching voltage source converters for motor drives. II. Fundamental limitations and critical assessment,” IEE Proceedings -Electric Power Applications, Vol. 146, Iss. 2, 1999, pp. 155 – 162.

P13.  Divan, D.M.; Skibinski, G. “Zero-switching-loss inverters for high-power applications,” IEEE Transactions on Industry Applications, Vol. 25, Iss. 4, 1989, pp. 634 – 643.

P14.  Corzine, K.A.; Baker, J.R. “Multilevel voltage-source duty-cycle modulation: analysis and implementation,” IEEE Transactions on Industrial Electronics, Vol. 49, Iss. 5, 2002, pp. 1009 – 1016.

P15. A. Lesnicar and R.Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” presented at the IEEE Power Tech Conf., Bologna, Italy, 2003.

P16. M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2903–2912, Oct. 2010.



Interested students should contact the course instructor via email as soon as possible so

that appropriate number of spaces can be allocated.