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4 Optimum Reception in Additive White Gaussian
Noise (AWGN)

In this chapter, we derive the optimum receiver structures for the modu-

lation schemes introduced in Chapter 3 and analyze their performance.

4.1 Optimum Receivers for Signals Corrupted by AWGN

� Problem Formulation

– We first consider memoryless linear modulation formats. In

symbol interval 0 ≤ t ≤ T , information is transmitted using

one of M possible waveforms sm(t), 1 ≤ m ≤ M .

– The received passband signal r(t) is corrupted by real–valued

AWGN n(t):

r(t) = sm(t) + n(t), 0 ≤ t ≤ T.

n(t), N0/2

sm(t) r(t)

– The AWGN, n(t), has power spectral density

ΦNN(f) =
N0

2

[
W

Hz

]
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– At the receiver, we observe r(t) and the question we ask is:

What is the best decision rule for determining sm(t)?

– This problem can be equivalently formulated in the complex

baseband. The received baseband signal rb(t) is

rb(t) = sbm(t) + z(t)

where z(t) is complex AWGN, whose real and imaginary parts

are independent. z(t) has a power spectral density of

ΦZZ(f) = N0

[
W

Hz

]

z(t), N0

sbm(t) rb(t)

� Strategy: We divide the problem into two parts:

1. First we transform the received continuous–time signal r(t) (or

equivalently rb(t)) into an N–dimensional vector

r = [r1 r2 . . . rN ]T

(or rb), which forms a sufficient statistic for the detection of

sm(t) (sbm(t)). This transformation is referred to as demodu-

lation.

2. Subsequently, we determine an estimate for sm(t) (or sbm(t))

based on vector r (or rb). This process is referred to as detec-

tion.
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Detector
Decision

Demodulator
rr(t)

4.1.1 Demodulation

The demodulator extracts the information required for optimal detec-

tion of sm(t) and eliminates those parts of the received signal r(t) that

are irrelevant for the detection process.

4.1.1.1 Correlation Demodulation

� Recall that the transmit waveforms {sm(t)} can be represented by

a set of N orthogonal basis functions fk(t), 1 ≤ k ≤ N .

� For a complete representation of the noise n(t), 0 ≤ t ≤ T , an

infinite number of basis functions are required. But fortunately,

only the noise components that lie in the signal space spanned by

fk(t), 1 ≤ k ≤ N , are relevant for detection of sm(t).

� We obtain vector r by correlating r(t) with fk(t), 1 ≤ k ≤ N

rk =

T∫

0

r(t)f∗
k (t) dt =

T∫

0

[sm(t) + n(t)]f∗
k (t) dt

=

T∫

0

sm(t)f∗
k (t) dt

︸ ︷︷ ︸
smk

+

T∫

0

n(t)f∗
k (t) dt

︸ ︷︷ ︸
nk

= smk + nk, 1 ≤ k ≤ N
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... ...

rN

r(t)

∫ T

0 (·) dt

∫ T

0 (·) dt

∫ T

0 (·) dt

f∗
1 (t)

f∗
2 (t)

f∗
N(t)

r1

r2

� r(t) can be represented by

r(t) =
N∑

k=1

smkfk(t) +
N∑

k=1

nkfk(t) + n′(t)

=
N∑

k=1

rkfk(t) + n′(t),

where noise n′(t) is given by

n′(t) = n(t) −
N∑

k=1

nkfk(t)

Since n′(t) does not lie in the signal space spanned by the basis

functions of sm(t), it is irrelevant for detection of sm(t). There-

fore, without loss of optimality, we can estimate the transmitted

waveform sm(t) from r instead of r(t).
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� Properties of nk

– nk is a Gaussian random variable (RV), since n(t) is Gaussian.

– Mean:

E{nk} = E







T∫

0

n(t)f∗
k (t) dt







=

T∫

0

E{n(t)}f∗
k (t) dt

= 0

– Covariance:

E{nkn
∗
m} = E











T∫

0

n(t)f∗
k (t) dt









T∫

0

n(t)f∗
m(t) dt





∗




=

T∫

0

T∫

0

E{n(t)n∗(τ )}
︸ ︷︷ ︸

N0
2

δ(t−τ)

f∗
k (t)fm(τ ) dt dτ

=
N0

2

T∫

0

fm(t)f∗
k (t)dt

=
N0

2
δ[k − m]

where δ[k] denotes the Kronecker function

δ[k] =

{
1, k = 0

0, k 6= 0

We conclude that the N noise components are zero–mean, mu-

tually uncorrelated Gaussian RVs.

Schober: Signal Detection and Estimation



156

� Conditional pdf of r

r can be expressed as

r = sm + n

with

sm = [sm1 sm2 . . . smN ]T ,

n = [n1 n2 . . . nN ]T .

Therefore, conditioned on sm vector r is Gaussian distributed and

we obtain

p(r|sm) = pn(r − sm)

=
N∏

k=1

pn(rk − smk),

where pn(n) and pn(nk) denote the pdfs of the Gaussian noise

vector n and the components nk of n, respectively. pn(nk) is

given by

pn(nk) =
1√
πN0

exp

(

−n2
k

N0

)

since nk is a real–valued Gaussian RV with variance σ2
n = N0

2 .

Therefore, p(r|sm) can be expressed as

p(r|sm) =
N∏

k=1

1√
πN0

exp

(

−(rk − smk)
2

N0

)

=
1

(πN0)N/2
exp










−

N∑

k=1

(rk − smk)
2

N0










, 1 ≤ m ≤ M
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p(r|sm) will be used later to find the optimum estimate for sm (or

equivalently sm(t)).

� Role of n′(t)
We consider the correlation between rk and n′(t):

E{n′(t)r∗k} = E{n′(t)(smk + nk)
∗}

= E{n′(t)}
︸ ︷︷ ︸

=0

s∗mk + E{n′(t)n∗
k}

= E









n(t) −
N∑

j=1

njfj(t)



n∗
k







=

T∫

0

E{n(t)n∗(τ )}
︸ ︷︷ ︸

N0
2

δ(t−τ)

fk(τ ) dτ −
N∑

j=1

E{njn
∗
k}︸ ︷︷ ︸

N0
2

δ[j−k]

fj(t)

=
N0

2
fk(t) −

N0

2
fk(t)

= 0

We observe that r and n′(t) are uncorrelated. Since r and n′(t)
are Gaussian distributed, they are also statistically independent.

Therefore, n′(t) cannot provide any useful information that is rele-

vant for the decision, and consequently, r forms a sufficient statis-

tic for detection of sm(t).

Schober: Signal Detection and Estimation



158

4.1.1.2 Matched–Filter Demodulation

� Instead of generating the {rk} using a bank of N correlators, we

may use N linear filters instead.

� We define the N filter impulse responses hk(t) as

hk(t) = f∗
k (T − t), 0 ≤ t ≤ T

where fk, 1 ≤ k ≤ N , are the N basis functions.

� The output of filter hk(t) with input r(t) is

yk(t) =

t∫

0

r(τ )hk(t − τ ) dτ

=

t∫

0

r(τ )f∗
k (T − t + τ ) dτ

� By sampling yk(t) at time t = T , we obtain

yk(T ) =

T∫

0

r(τ )f∗
k (τ ) dτ

= rk, 1 ≤ k ≤ N

This means the sampled output of hk(t) is rk.
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... ...

sample at

yN(t)

r(t)

t = T

r1

r2

rN

f∗
1 (T − t)

f∗
2 (T − t)

f∗
N(T − t)

y1(t)

y2(t)

� General Properties of Matched Filters MFs

– In general, we call a filter of the form

h(t) = s∗(T − t)

a matched filter for s(t).

– The output

y(t) =

t∫

0

s(τ )s∗(T − t + τ ) dτ

is the time–shifted time–autocorrelation of s(t).
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Example:

s(t) h(t)

A

T t

A

T t

y(T )

y(t)

T 2T t

– MFs Maximize the SNR

∗ Consider the signal

r(t) = s(t) + n(t), 0 ≤ t ≤ T,

where s(t) is some known signal with energy

E =

T∫

0

|s(t)|2 dt

and n(t) is AWGN with power spectral density

ΦNN(f) =
N0

2
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∗ Problem: Which filter h(t) maximizes the SNR of

y(T ) = h(t) ∗ r(t)

∣
∣
∣
∣
∣
t=T

∗ Answer: The matched filter h(t) = s∗(T − t)!

Proof. The filter output sampled at time t = T is given by

y(T ) =

T∫

0

r(τ )h(T − τ ) dτ

=

T∫

0

s(τ )h(T − τ ) dτ

︸ ︷︷ ︸

yS(T )

+

T∫

0

n(τ )h(T − τ ) dτ

︸ ︷︷ ︸

yN (T )

Now, the SNR at the filter output can be defined as

SNR =
|yS(T )|2

E{|yN(T )|2}
The noise power in the denominator can be calculated as

E
{
|yN(T )|2

}
= E











T∫

0

n(τ )h(T − τ ) dτ









T∫

0

n(τ )h(T − τ ) dτ





∗




=

T∫

0

T∫

0

E{n(τ )n∗(t)}
︸ ︷︷ ︸

N0
2

δ(τ−t)

h(T − τ )h∗(T − t) dτ dt

=
N0

2

T∫

0

|h(T − τ )|2 dτ
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Therefore, the SNR can be expressed as

SNR =

∣
∣
∣
∣

T∫

0

s(τ )h(T − τ ) dτ

∣
∣
∣
∣

2

N0

2

T∫

0

|h(T − τ )|2 dτ

.

From the Cauchy–Schwartz inequality we know
∣
∣
∣
∣
∣
∣

T∫

0

s(τ )h(T − τ ) dτ

∣
∣
∣
∣
∣
∣

2

≤
T∫

0

|s(τ )|2 dτ ·
T∫

0

|h(T − τ )|2 dτ,

where equality holds if and only if

h(t) = Cs∗(T − t).

(C is an arbitrary non–zero constant). Therefore, the max-

imum output SNR is

SNR =

∣
∣
∣
∣

T∫

0

|s(τ )|2 dτ

∣
∣
∣
∣

2

N0

2

T∫

0

|s(τ )|2 dτ

=
2

N0

T∫

0

|s(τ )|2 dτ

= 2
E

N0
,

which is achieved by the MF h(t) = s∗(T − t).
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– Frequency Domain Interpretation

The frequency response of the MF is given by

H(f) = F{h(t)}

=

∞∫

−∞

s∗(T − t) e−j2πft dt

=

∞∫

−∞

s∗(τ ) ej2πfτe−j2πfT dτ

= e−j2πfT





∞∫

−∞

s(τ ) e−j2πfτ dτ





∗

= e−j2πfTS∗(f)

Observe that H(f) has the same magnitude as S(f)

|H(f)| = |S(f)|.

The factor e−j2πfT in the frequency response accounts for the

time shift of s∗(−t) by T .
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4.1.2 Optimal Detection

Problem Formulation:

� The output r of the demodulator forms a sufficient statistic for

detection of sm(t) (sm).

� We consider linear modulation formats without memory.

� What is the optimal decision rule?

� Optimality criterion: Probability for correct detection shall be

maximized, i.e., probability of error shall be minimized.

Solution:

� The probability of error is minimized if we choose that sm̃ which

maximizes the posteriori probability

P (sm̃|r), m̃ = 1, 2, . . . , M,

where the ”tilde” indicates that sm̃ is not the transmitted symbol

but a trial symbol.
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Maximum a Posteriori (MAP) Decision Rule

The resulting decision rule can be formulated as

m̂ = argmax
m̃

{P (sm̃|r)}

where m̂ denotes the estimated signal number. The above decision

rule is called maximum a posteriori (MAP) decision rule.

� Simplifications

Using Bayes rule, we can rewrite P (sm̃|r) as

P (sm̃|r) =
p(r|sm̃)P (sm̃)

p(r)
,

with

– p(r|sm̃): Conditional pdf of observed vector r given sm̃.

– P (sm̃): A priori probability of transmitted symbols. Nor-

mally, we have

P (sm̃) =
1

M
, 1 ≤ m̃ ≤ M,

i.e., all signals of the set are transmitted with equal probability.

– p(r): Probability density function of vector r

p(r) =

M∑

m=1

p(r|sm)P (sm).

Since p(r) is obviously independent of sm̃, we can simplify the

MAP decision rule to

m̂ = argmax
m̃

{p(r|sm̃)P (sm̃)}
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Maximum–Likelihood (ML) Decision Rule

� The MAP rule requires knowledge of both p(r|sm̃) and P (sm̃).

� In some applications P (sm̃) is unknown at the receiver.

� If we neglect the influence of P (sm̃), we get the ML decision rule

m̂ = argmax
m̃

{p(r|sm̃)}

� Note that if all sm are equally probable, i.e., P (sm̃) = 1/M , 1 ≤
m̃ ≤ M , the MAP and the ML decision rules are identical.

The above MAP and ML decision rules are very general. They can be

applied to any channel as long as we are able to find an expression for

p(r|sm̃).
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ML Decision Rule for AWGN Channel

� For the AWGN channel we have

p(r|sm̃) =
1

(πN0)N/2
exp










−

N∑

k=1

|rk − sm̃k|2

N0










, 1 ≤ m̃ ≤ M

� We note that the ML decision does not change if we maximize

ln(p(r|sm̃)) instead of p(r|sm̃) itself, since ln(·) is a monotonic

function.

� Therefore, the ML decision rule can be simplified as

m̂ = argmax
m̃

{p(r|sm̃)}

= argmax
m̃

{ln(p(r|sm̃))}

= argmax
m̃

{

−N

2
ln(πN0) −

1

N0

N∑

k=1

|rk − sm̃k|2
}

= argmin
m̃

{
N∑

k=1

|rk − sm̃k|2
}

= argmin
m̃

{
||r − sm̃||2

}

� Interpretation:

We select that vector sm̃ which has the minimum Euclidean dis-

tance

D(r, sm̃) = ||r − sm̃||
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from the received vector r. Therefore, we can interpret the above

ML decision rule graphically by dividing the signal space in deci-

sion regions.

Example:

4QAM

r

m̂ = 4

m̂ = 1

m̂ = 3

m̂ = 2
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� Alternative Representation:

Using the expansion

||r − sm̃||2 = ||r||2 − 2Re{r • sm̃} + ||sm̃||2,

we observe that ||r||2 is independent of sm̃. Therefore, we can

further simplify the ML decision rule

m̂ = argmin
m̃

{
||r − sm̃||2

}

= argmin
m̃

{
−2Re{r • sm̃} + ||sm̃||2

}

= argmax
m̃

{
2Re{r • sm̃} − ||sm̃||2

}

= argmax
m̃






Re







T∫

0

r(t)s∗m̃(t) dt






− 1

2
Em̃






,

with

Em̃ =

T∫

0

|sm̃(t)|2 dt.

If we are dealing with passband signals both r(t) and s∗m̃(t) are

real–valued, and we obtain

m̂ = argmax
m̃







T∫

0

r(t)sm̃(t) dt − 1

2
Em̃






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−

−

that

corresponds

to maximum

input

−

... ...r(t)

select m̃

m̂

1
2
EN

1
2
E2

1
2
E1

s2(t)

s1(t)

sN(t)

∫ T

0 (·) dt

∫ T

0 (·) dt

∫ T

0 (·) dt

Example:

M–ary PAM transmission (baseband case)

The transmitted signals are given by

sbm(t) = Amg(t),

with Am = (2m − 1 − M)d, m = 1, 2, . . . , M , 2d: distance

between adjacent signal points.

We assume the transmit pulse g(t) is as shown below.

T

g(t)

t

a
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In the interval 0 ≤ t ≤ T , the transmission scheme is modeled as

DetectionDemodulation
sbm(t)Am

g(t)
m̂

z(t), N0

rb

1. Demodulator

– Energy of transmit pulse

Eg =

T∫

0

|g(t)|2 dt = a2T

– Basis function f(t)

f(t) =
1

√
Eg

g(t)

=

{
1√
T
, 0 ≤ t ≤ T

0, otherwise
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– Correlation demodulator

rb =

T∫

0

rb(t)f
∗(t) dt

=
1√
T

T∫

0

rb(t) dt

=
1√
T

T∫

0

sbm(t) dt

︸ ︷︷ ︸
sbm

+
1√
T

T∫

0

z(t) dt

︸ ︷︷ ︸
z

= sbm + z

sbm is given by

sbm =
1√
T

T∫

0

Amg(t) dt

=
1√
T

T∫

0

Ama dt

= a
√

TAm =
√

EgAm.

On the other hand, the noise variance is

σ2
z = E{|z|2}

=
1

T

T∫

0

T∫

0

E{z(t)z∗(τ )}
︸ ︷︷ ︸

N0δ(t−τ)

dt dτ

= N0
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– pdf p(rb|Am):

p(rb|Am) =
1

πN0
exp

(

−|rb −
√

EgAm|2
N0

)

2. Optimum Detector

The ML decision rule is given by

m̂ = argmax
m̃

{ln(p(rb|Am̃))}

= argmax
m̃

{−|rb −
√

EgAm̃|2}

= argmin
m̃

{|rb −
√

EgAm̃|2}

Illustration in the Signal Space

m̂ = 4m̂ = 1 m̂ = 2 m̂ = 3
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4.2 Performance of Optimum Receivers

In this section, we evaluate the performance of the optimum receivers

introduced in the previous section. We assume again memoryless mod-

ulation. We adopt the symbol error probability (SEP) (also referred

to as symbol error rate (SER)) and the bit error probability (BEP)

(also referred to as bit error rate (BER)) as performance criteria.

4.2.1 Binary Modulation

1. Binary PAM (M = 2)

� From the example in the previous section we know that the

detector input signal in this case is

rb =
√

EgAm + z, m = 1, 2,

where the noise variance of the complex baseband noise is σ2
z =

N0.

� Decision Regions

√
Eg d

m̂ = 1 m̂ = 2

−
√

Eg d
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� Assuming s1 has been transmitted, the received signal is

rb = −
√

Egd + z

and a correct decision is made if

rR < 0,

whereas an error is made if

rR > 0,

where rR = Re{rb} denotes the real part of r. rR is given by

rR = −
√

Egd + zR

where zR = Re{z} is real Gaussian noise with variance σ2
zR

=

N0/2.

� Consequently, the (conditional) error probability is

P (e|s1) =

∞∫

0

prR
(rR|s1) drR.

Therefore, we get

P (e|s1) =

∞∫

0

1√
πN0

exp

(

−(rR − (−
√

Egd))2

N0

)

drR

=
1√
2π

∞∫

√

2Eg
N0

d

exp

(

−x2

2

)

dx

= Q

(√

2Eg

N0
d

)
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where we have used the substitution x =
√

2(rR+
√

Egd)/
√

N0

and the Q–function is defined as

Q(x) =
1√
2π

∞∫

x

exp

(

−t2

2

)

dt

� The BEP, which is equal to the SEP for binary modulation, is

given by

Pb = P (s1)P (e|s1) + P (s2)P (e|s2)

For the usual case, P (s1) = P (s2) = 1
2, we get

Pb =
1

2
P (e|s1) +

1

2
P (e|s2)

= P (e|s1),

since P (e|s1) = P (e|s2) is true because of the symmetry of the

signal constellation.

� In general, the BEP is expressed as a function of the received

energy per bit Eb. Here, Eb is given by

Eb = E{|
√

EgAm|2}

= Eg

(
1

2
(−d)2 +

1

2
(d)2

)

= Egd
2.

Therefore, the BEP can be expressed as

Pb = Q

(√

2
Eb

N0

)
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� Note that binary PSK (BPSK) yields the same BEP as 2PAM.

2. Binary Orthogonal Modulation

� For binary orthogonal modulation, the transmitted signals can

be represented as

s1 =

[ √
Eb

0

]

s2 =

[
0√
Eb

]

� The demodulated received signal is given by

r =

[ √
Eb + n1

n2

]

and

r =

[
n1√

Eb + n2

]

if s1 and s2 were sent, respectively. The noise variances are

given by

σ2
n1

= E{n2
1} = σ2

n2
= E{n2

2} =
N0

2
,

and n1 and n2 are mutually independent Gaussian RVs.
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� Decision Rule

The ML decision rule is given by

m̂ = argmax
m̃

{
2r • sm̃ − ||sm̃||2

}

= argmax
m̃

{r • sm̃} ,

where we have used the fact that ||sm̃||2 = Eb is independent

of m̃.

� Error Probability

– Let us assume that m = 1 has been transmitted.

– From the above decision rule we conclude that an error is

made if

r • s1 < r • s2

– Therefore, the conditional BEP is given by

P (e|s1) = P (r • s2 > r • s1)

= P (
√

Ebn2 > Eb +
√

Ebn1)

= P (n2 − n1︸ ︷︷ ︸
X

>
√

Eb)

Note that X is a Gaussian RV with variance

σ2
X = E

{
|n2 − n1|2

}

= E
{
|n2|2

}
− 2E {n1n2} + E

{
|n1|2

}

= N0
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Therefore, P (e|s1) can be calculated to

P (e|s1) =
1√

2πN0

∞∫

√
Eb

exp

(

− x2

2N0

)

dx

=
1√
2π

∞∫

√

Eb
N0

exp

(

−u2

2

)

du

= Q

(√

Eb

N0

)

Finally, because of the symmetry of the signal constellation

we obtain Pb = P (e|s1) = P (e|s2) or

Pb = Q

(√

2
Eb

N0

)
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� Comparison of 2PAM and Binary Orthogonal Mod-

ulation

– PAM:

Pb = Q

(√

2
Eb

N0

)

– Orthogonal Signaling (e.g. FSK)

Pb = Q

(√

Eb

N0

)

– We observe that in order to achieve the same BEP the Eb–

to–N0 ratio (SNR) has to be 3 dB higher for orthogonal sig-

naling than for PAM. Therefore, orthogonal signaling (FSK)

is less power efficient than antipodal signaling (PAM).
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– Signal Space

2FSK2PAM

−
√

Eb

d12
d12

√
Eb

√
Eb

√
Eb

We observe that the (minimum) Euclidean distance between

signal points is given by

dPAM
12 = 2

√

Eb

and

dFSK
12 =

√

2Eb

for 2PAM and 2FSK, respectively. The ratio of the squared

Euclidean distances is given by
(

dPAM
12

dFSK
12

)2

= 2.

Since the average energy of the signal points is identical for

both constellations, the higher power efficiency of 2PAM can

be directly deduced from the higher minimum Euclidean

distance of the signal points in the signal space. Note that

the BEP for both 2PAM and 2FSK can also be expressed

as

Pb = Q





√

d2
12

2N0




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– Rule of Thumb:

In general, for a given average energy of the signal points,

the BEP of a linear modulation scheme is larger if the min-

imum Euclidean distance of the signals in the signal space

is smaller.

4.2.2 M–ary PAM

� The transmitted signal points are given by

sbm =
√

EgAm, 1 ≤ m ≤ M

with pulse energy Eg and amplitude

Am = (2m − 1 − M)d, 1 ≤ m ≤ M.

� Average Energy of Signal Points

ES =
1

M

M∑

m=1

Em

=
1

M
Egd

2
M∑

m=1

(2m − 1 − M)2

=
Egd

2

M

[

4

M∑

m=1

m2

︸ ︷︷ ︸
1
6
M(M+1)(2M+1)

−4(M + 1)

M∑

m=1

m

︸ ︷︷ ︸
1
2
M(M+1)

+

M∑

m=1

(M + 1)2

︸ ︷︷ ︸

M(M+1)2

]

=
M 2 − 1

3
d2Eg
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� Received Baseband Signal

rb = sbm + z,

with σ2
z = E{|z|2} = N0. Again only the real part of the received

signal is relevant for detection and we get

rR = sbm + zR,

with noise variance σ2
zR

= E{z2
R} = N0/2.

� Decision Regions for ML Detection

m̂ = Mm̂ = 1 m̂ = 2

√
Eg d

� We observe that there are two different types of signal points:

1. Outer Signal Points

We refer to the signal points with m̂ = 1 and m̂ = M as outer

signal points since they have only one neighboring signal point.

In this case, we make on average 1/2 symbol errors if

|rR − sbm| > d
√

Eg

2. Inner Signal Points

Signal points with 2 ≤ m̂ ≤ M − 1 are referred to as inner

signal points since they have two neighbors. Here, we make

on average 1 symbol error if |rR − sbm| > d
√

Eg.
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� Symbol Error Probability (SEP)

The SEP can be calculated to

PM =
1

M

[

(M − 2) +
1

2
· 2
]

P
(

|rR − sbm| > d
√

Eg

)

=
M − 1

M
P
(

[rR − sbm > d
√

Eg] ∨ [rR − sbm < −d
√

Eg]
)

=
M − 1

M

(

P
(

rR − sbm > d
√

Eg

)

+ P
(

rR − sbm < −d
√

Eg

))

=
M − 1

M
2P
(

rR − sbm > d
√

Eg

)

= 2
M − 1

M

1√
πN0

∞∫

d
√

Eg

exp

(

− x2

N0

)

dx

= 2
M − 1

M

1√
2π

∞∫

√

2d2 Eg
N0

exp

(

−y2

2

)

dy

= 2
M − 1

M
Q

(√

2d2
Eg

N0

)

� Using the identity

d2Eg = 3
ES

M 2 − 1
,

we obtain

PM = 2
M − 1

M
Q

(√

6ES

(M 2 − 1)N0

)

.
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We make the following observations

1. For constant ES the error probability increases with increasing

M .

2. For a given SEP the required ES/N0 increases as

10 log10(M
2 − 1) ≈ 20 log10 M.

This means if we double the number of signal points, i.e., M =

2k is increased to M = 2k+1, the required ES/N0 increases

(approximately) as

20 log10

(
2k+1/2k

)
= 20 log10 2 ≈ 6 dB.

� Alternatively, we may express PM as a function of the average

energy per bit Eb, which is given by

Eb =
ES

k
=

ES

log2 M

Therefore, the resulting expression for PM is

PM = 2
M − 1

M
Q

(√

6 log2(M)Eb

(M 2 − 1)N0

)

.

� An exact expression for the bit error probability (BEP) is more

difficult to derive than the expression for the SEP. However, for

high ES/N0 ratios most errors only involve neighboring signal

points. Therefore, if we use Gray labeling we make approximately

one bit error per symbol error. Since there are log2 M bits per

symbol, the PEP can be approximated by

Pb ≈
1

log2 M
PM .
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4.2.3 M–ary PSK

� For 2PSK the same SEP as for 2PAM results.

P2 = Q

(√

2Eb

N0

)

.

� For 4PSK the SEP is given by

P4 = 2 Q

(√

2Eb

N0

)[

1 − 1

2
Q

(√

2Eb

N0

)]

.

� For optimum detection of M–ary PSK the SEP can be tightly

approximated as

PM ≈ 2 Q





√

2 log2(M)Eb

N0
sin

π

M



 .
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� The approximate SEP is illustrated below for several values of M .

For M = 2 and M = 4 the exact SEP is shown.
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4.2.4 M–ary QAM

� For M = 4 the SEP of QAM is identical to that of PSK.

� In general, the SEP can be tightly upper bounded by

PM ≤ 4Q

(√

3 log2(M)Eb

(M − 1)N0

)

.

� The bound on SEP is shown below. For M = 4 the exact SEP is

shown.
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4.2.5 Upper Bound for Arbitrary Linear Modulation Schemes

Although exact (and complicated) expressions for the SEP and BEP of

most regular linear modulation formats exist, it is sometimes more con-

venient to employ simple bounds and approximation. In this sections,

we derive the union upper bound valid for arbitrary signal constella-

tions and a related approximation for the SEP.

� We consider an M–ary modulation scheme with M signal points

sm, 1 ≤ m ≤ M , in the signal space.

� We denote the pairwise error probability of two signal points sµ

and sν , µ 6= ν by

PEP(sµ → sν) = P (sµ transmitted, sν, detected)

� The union bound for the SEP can be expressed as
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PM ≤ 1

M

M∑

µ=1

M∑

ν=1

ν 6=µ

PEP(sµ → sν)

which is an upper bound since some regions of the signal space

may be included in multiple PEPs.

� The advantage of the union bound is that the PEP can be usu-

ally easily obtained. Assuming Gaussian noise and an Euclidean

distance of dµν = ||sµ − sν|| between signal points sµ and sν , we

obtain

PM ≤ 1

M

M∑

µ=1

M∑

ν=1

ν 6=µ

Q





√

d2
µν

2N0





� Assuming that each signal point has on average CM nearest neigh-

bor signal points with minimum distance dmin = minµ 6=ν{dµν} and

exploiting the fact that for high SNR the minimum distance terms

will dominate the union bound, we obtain the approximation

PM ≈ CMQ





√

d2
min

2N0





Note: The SEP approximation given above for MPSK can be

obtained with this approximation.

� For Gray labeling, approximations for the BEP are obtained from

the above equations with Pb ≈ PM/ log2(M)
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4.2.6 Comparison of Different Linear Modulations

We compare PAM, PSK, and QAM for different M .

� M = 4
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� M = 16
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� M = 64
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� Obviously, as M increases PAM and PSK become less favorable

and the gap to QAM increases. The reason for this behavior is the

smaller minimum Euclidean distance dmin of PAM and PSK. For

a given transmit energy dmin of PAM and PSK is smaller since the

signal points are confined to a line and a circle, respectively. For

QAM on the other hand, the signal points are on a rectangular

grid, which guarantees a comparatively large dmin.

4.3 Receivers for Signals with Random Phase in AWGN

4.3.1 Channel Model

� Passband Signal

We assume that the received passband signal can be modeled as

r(t) =
√

2Re
{(

ejφsbm(t) + z(t)
)
ej2πfct

}
,

where z(t) is complex AWGN with power spectral density Φzz(f) =

N0, and φ is an unknown, random but constant phase.

– φ may originate from the local oscillator or the transmission

channel.

– φ is often modeled as uniformly distributed, i.e.,

pΦ(φ) =

{
1
2π

, −π ≤ φ < π

0, otherwise
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1/(2π)

π−π φ

pΦ(φ)

� Baseband Signal

The received baseband signal is given by

rb(t) = ejφsbm(t) + z(t).

� Optimal Demodulation

Since the unknown phase results just in the multiplication of the

transmitted baseband waveform sbm(t) by a constant factor ejφ,

demodulators that are optimum for φ = 0 are also optimum for

φ 6= 0. Therefore, both correlation demodulation and matched–

filter demodulation are also optimum if the channel phase is un-

known. The demodulated signal in interval kT ≤ t ≤ (k + 1)T

can be written as

rb[k] = ejφ
sbm[k] + z[k],

where the components of the AWGN vector z[k] are mutually

independent, zero–mean complex Gaussian processes with variance

σ2
z = N0.

Demodulation Detection
sbm(t)

ejφ z(t)

rb(t) m̂[k]rb[k]
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4.3.2 Noncoherent Detectors

In general, we distinguish between coherent and noncoherent detec-

tion.

1. Coherent Detection

� Coherent detectors first estimate the unknown phase φ using

e.g. known pilot symbols introduced into the transmitted signal

stream.

� For detection it is assumed that the phase estimate φ̂ is perfect,

i.e., φ̂ = φ, and the same detectors as for the pure AWGN

channel can be used.

Phase

Coherent
Detection

Estimation

sbm[k]

ejφ
z[k]

rb[k]

φ̂

e−j(·)

m̂[k]

� The performance of ideal coherent detection with φ̂ = φ con-

stitutes an upper bound for any realizable non–ideal coherent

or noncoherent detection scheme.

� Disadvantages

– In practice, ideal coherent detection is not possible and the

ad hoc separation of phase estimation and detection is sub-

optimum.

Schober: Signal Detection and Estimation



195

– Phase estimation is often complicated and may require pilot

symbols.

2. Noncoherent Detection

� In noncoherent detectors no attempt is made to explicitly es-

timate the phase φ.

� Advantages

– For many modulation schemes simple noncoherent receiver

structures exist.

– More complex optimal noncoherent receivers can be de-

rived.

4.3.2.1 A Simple Noncoherent Detector for PSK with Dif-

ferential Encoding (DPSK)

� As an example for a simple, suboptimum noncoherent detector we

derive the so–called differential detector for DPSK.

� Transmit Signal

The transmitted complex baseband waveform in the interval kT ≤
t ≤ (k + 1)T is given by

sbm(t) = b[k]g(t − kT ),

where g(t) denotes the transmit pulse of length T and b[k] is the

transmitted PSK signal which is given by

b[k] = ejΘ[k].

The PSK symbols are generated from the differential PSK (DPSK)

symbols a[k] as

b[k] = a[k]b[k − 1],
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where a[k] is given by

a[k] = ej∆Θ[k], ∆Θ[k] = 2π(m − 1)/M, m ∈ {1, 2, . . . , M}.

For simplicity, we have dropped the symbol index m in ∆Θ[k]

and a[k]. Note that the absolute phase Θ[k] is related to the

differential phase ∆Θ[k] by

Θ[k] = Θ[k − 1] + ∆Θ[k].

� For demodulation, we use the basis function

f(t) =
1

√
Eg

g(t)

� The demodulated signal in the kth interval can be represented as

r′b[k] = ejφ
√

Eg b[k] + z′[k],

where z′[k] is an AWGN process with variance σ2
z′ = N0. It is

convenient to define the new signal

rb[k] =
1

√
Eg

r′b[k]

= ejφ b[k] + z[k],

where z[k] has variance σ2
z = N0/Eg.

b[k]a[k]

T

z[k]ejφ

rb[k]
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� Differential Detection (DD)

– The received signal in the kth and the (k−1)st symbol intervals

are given by

rb[k] = ejφa[k]b[k − 1] + z[k]

and

rb[k − 1] = ejφb[k − 1] + z[k − 1],

respectively.

– If we assume z[k] ≈ 0 and z[k − 1] ≈ 0, the variable

d[k] = rb[k]r∗b [k − 1]

can be simplified to

d[k] = rb[k]r∗b [k − 1]

≈ ejφa[k]b[k − 1](ejφa[k]b[k − 1])∗

= a[k] |b[k]|2
= a[k].

This means d[k] is independent of the phase φ and is suitable

for detecting a[k].

– A detector based on d[k] is referred to as (conventional) dif-

ferential detector. The resulting decision rule is

m̂[k] = argmin
m̃

{
|d[k] − am̃[k]|2

}
,

where am̃[k] = ej2π(m̃−1)/M , 1 ≤ m̃ ≤ M . Alternatively, we

may base our decision on the location of d[k] in the signal space,

as usual.
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(·)∗

rb[k] d[k] m̂[k]

T

� Comparison with Coherent Detection

– Coherent Detection (CD)

An upper bound on the performance of DD can be obtained

by CD with ideal knowledge of φ. In that case, we can use

the decision variable rb[k] and directly make a decision on

the absolute phase symbols b[k] = ejΘ[k] ∈ {ej2π(m−1)/M |m =

1, 2, . . . , M}.

b̂[k] = argmin
b̃[k]

{

|b̃[k] − e−jφrb[k]|2
}

,

and obtain an estimate for the differential symbol from

am̂[k] = b̂[k] · b̂∗[k − 1].

b̂[k] and b̃[k] = ejΘ̃[k] ∈ {ej2π(m−1)/M |m = 1, 2, . . . , M} de-

note the estimated transmitted symbol and a trial symbol, re-

spectively. The above decision rule is identical to that for PSK

except for the inversion of the differential encoding operation.

T

rb[k]

e−jφ

b̂[k]

(·)∗

am̂[k]
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Since two successive absolute symbols b̂[k] are necessary for

estimation of the differential symbol am̂[k] (or equivalently m̂),

isolated single errors in the absolute phase symbols will lead to

two symbol errors in the differential phase symbols, i.e., if all

absolute phase symbols but that at time k0 are correct, then all

differential phase symbols but the ones at times k0 and k0 + 1

will be correct. Since at high SNRs single errors in the absolute

phase symbols dominate, the SEP SEPCD
DPSK of DPSK with CD

is approximately by a factor of two higher than that of PSK

with CD, which we refer to as SEPCD
PSK.

SEPCD
DPSK ≈ 2SEPCD

PSK

Note that at high SNRs this factor of two difference in SEP

corresponds to a negligible difference in required Eb/N0 ratio

to achieve a certain BER, since the SEP decays approximately

exponentially.

– Differential Detection (DD)

The decision variable d[k] can be rewritten as

d[k] = rb[k]r∗b [k − 1]

= (ejφa[k]b[k − 1] + z[k])(ejφb[k − 1] + z[k − 1])∗

= a[k] + e−jφb∗[k − 1]z[k] + ejφb[k]z∗[k − 1] + z[k]z∗[k − 1]
︸ ︷︷ ︸

zeff [k]

,

where zeff [k] denotes the effective noise in the decision vari-

able d[k]. It can be shown that zeff [k] is a white process with
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variance

σ2
zeff

= 2σ2
z + σ4

z

= 2
N0

Eg
+

(
N0

Eg

)2

For high SNRs we can approximate σ2
zeff

as

σ2
zeff

≈ 2σ2
z

= 2
N0

Eg
.

– Comparison

We observe that the variance σ2
zeff

of the effective noise in the

decision variable for DD is twice as high as that for CD. How-

ever, for small M the distribution of zeff [k] is significantly dif-

ferent from a Gaussian distribution. Therefore, for small M

a direct comparison of DD and CD is difficult and requires a

detailed BEP or SEP analysis. On the other hand, for large

M ≥ 8 the distribution of zeff [k] can be well approximated

as Gaussian. Therefore, we expect that at high SNRs DPSK

with DD requires approximately a 3 dB higher Eb/N0 ratio to

achieve the same BEP as CD. For M = 2 and M = 4 this dif-

ference is smaller. At a BEP of 10−5 the loss of DD compared

to CD is only about 0.8 dB and 2.3 dB for M = 2 and M = 4,

respectively.
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4.3.2.2 Optimum Noncoherent Detection

� The demodulated received baseband signal is given by

rb = ejφ
sbm + z.

� We assume that all possible symbols sbm are transmitted with

equal probability, i.e., ML detection is optimum.

� We already know that the ML decision rule is given by

m̂ = argmax
m̃

{p(r|sbm̃)}.

Thus, we only have to find an analytic expression for p(r|sbm̃). The

problem we encounter here is that, in contrast to coherent detec-

tion, there is an additional random variable, namely the unknown

phase φ, involved.
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� We know the pdf of rb conditioned on both φ and sbm̃. It is given

by

p(rb|sbm̃, φ) =
1

(πN0)N
exp

(

−||rb − ejφ
sbm̃||2

N0

)

� We obtain p(rb|sbm̃) from p(rb|sbm̃, φ) as

p(rb|sbm̃) =

∞∫

−∞

p(rb|sbm̃, φ) pΦ(φ) dφ.

Since we assume for the distribution of φ

pΦ(φ) =

{
1
2π , −π ≤ φ < π

0, otherwise

we get

p(rb|sbm̃) =
1

2π

π∫

−π

p(rb|sbm̃, φ) dφ

=
1

(πN0)N
1

2π

π∫

−π

exp

(

−||rb − ejφ
sbm̃||2

N0

)

dφ

=
1

(πN0)N
1

2π

π∫

−π

exp

(

−||rb||2 + ||sbm̃||2 − 2Re{rb • ejφ
sbm̃}

N0

)

dφ

Now, we use the relations

Re{rb • ejφ
sbm̃} = Re{|rb • sbm̃| ejαejφ}

= |rb • sbm̃|cos(φ + α),
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where α is the argument of rb • sbm̃. With this simplification

p(rb|sbm̃) can be rewritten as

p(rb|sbm̃) =
1

(πN0)N
exp

(

−||rb||2 + ||sbm̃||2
N0

)

· 1

2π

π∫

−π

exp

(
2

N0
|rb • sbm̃|cos(φ + α)

)

dφ

Note that the above integral is independent of α since α is inde-

pendent of φ and we integrate over an entire period of the cosine

function. Therefore, using the definition

I0(x) =
1

2π

π∫

−π

exp(xcosφ) dφ

we finally obtain

p(rb|sbm̃) =
1

(πN0)N
exp

(

−||rb||2 + ||sbm̃||2
N0

)

· I0

(
2

N0
|rb • sbm̃|

)
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Note that I0(x) is the zeroth order modified Bessel function of

the first kind.
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� ML Detection

With the above expression for p(rb|sbm̃) the noncoherent ML de-

cision rule becomes

m̂ = argmax
m̃

{p(r|sbm̃)}.

= argmax
m̃

{ln[p(r|sbm̃)]}.

= argmax
m̃

{

−||sbm̃||2
N0

+ ln

[

I0

(
2

N0
|rb • sbm̃|

)]}

Schober: Signal Detection and Estimation



205

� Simplification

The above ML decision rule depends on N0, which may not be

desirable in practice, since N0 (or equivalently the SNR) has to be

estimated. However, for x ≫ 1 the approximation

ln[I0(x)] ≈ x

holds. Therefore, at high SNR (or small N0) the above ML metric

can be simplified to

m̂ = argmax
m̃

{
−||sbm̃||2 + 2|rb • sbm̃|

}
,

which is independent of N0. In practice, the above simplification

has a negligible impact on performance even for small arguments

(corresponding to low SNRs) of the Bessel function.

4.3.2.3 Optimum Noncoherent Detection of Binary Orthog-

onal Modulation

� Transmitted Waveform

We assume that the signal space representation of the complex

baseband transmit waveforms is

sb1 = [
√

Eb 0]T

sb2 = [0
√

Eb]
T

� Received Signal

The corresponding demodulated received signal is

rb = [ejφ
√

Eb + z1 z2]
T

and

rb = [z1 ejφ
√

Eb + z2]
T
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if sb1 and sb2 have been transmitted, respectively. z1 and z2 are

mutually independent complex Gaussian noise processes with iden-

tical variances σ2
z = N0.

� ML Detection

For the simplification of the general ML decision rule, we exploit

the fact that for binary orthogonal modulation the relation

||sb1||2 = ||sb2||2 = Eb

holds. The ML decision rule can be simplified as

m̂ = argmax
m̃

{

−||sbm̃||2
N0

+ ln

[

I0

(
2

N0
|rb • sbm̃|

)]}

= argmax
m̃

{

−Eb

N0
+ ln

[

I0

(
2

N0
|rb • sbm̃|

)]}

= argmax
m̃

{

ln

[

I0

(
2

N0
|rb • sbm̃|

)]}

= argmax
m̃

{|rb • sbm̃|}

= argmax
m̃

{
|rb • sbm̃|2

}

We decide in favor of that signal point which has a larger correla-

tion with the received signal.

� We decide for m̂ = 1 if

|rb • sb1| > |rb • sb2|.

Using the definition

rb = [rb1 rb2]
T ,
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we obtain
∣
∣
∣
∣

[
rb1

rb2

]

•
[√

Eb

0

]∣
∣
∣
∣

2

>

∣
∣
∣
∣

[
rb1

rb2

]

•
[

0√
Eb

]∣
∣
∣
∣

2

|r1|2 > |r2|2.

In other words, the ML decision rule can be simplified to

m̂ = 1 if |r1|2 > |r2|2
m̂ = 2 if |r1|2 < |r2|2

Example:

Binary FSK

– In this case, in the interval 0 ≤ t ≤ T we have

sb1(t) =

√

Eb

T

sb2(t) =

√

Eb

T
ej2π∆ft

– If sb1(t) and sb2(t) are orthogonal, the basis functions are

f1(t) =

{
1√
T
, 0 ≤ t ≤ T

0, otherwise

f2(t) =

{
1√
T
ej2π∆ft, 0 ≤ t ≤ T

0, otherwise
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– Receiver Structure

sample 
at

− m̂ = 2

rb(t)

t = T

| · |2

| · |2
rb1

rb2

d>
<
0

f∗
1 (T − t)

f∗
2 (T − t)

m̂ = 1

– If sb2(t) was transmitted, we get for rb1

rb1 =

T∫

0

rb(t)f
∗
1 (t) dt

=

T∫

0

ejφsb2(t)f
∗
1 (t) dt + z1

= ejφ 1√
T

T∫

0

sb2(t) dt + z1

=
√

Ebe
jφ 1

T

T∫

0

ej2π∆ft dt + z1

=
√

Ebe
jφ 1

j2π∆fT
ej2π∆ft

∣
∣
∣
∣
∣

T

0

+ z1

=
√

Ebe
jφ 1

j2π∆fT
ejπ∆fT

(
ejπ∆fT − e−jπ∆fT

)
+ z1

=
√

Ebe
j(π∆fT+φ) sinc(π∆fT ) + z1
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For the proposed detector to be optimum we require orthogo-

nality, i.e., rb1 = z1 has to be valid. Therefore,

sinc(π∆fT ) = 0

is necessary, which implies

∆fT =
1

T
+

k

T
, k ∈ {. . . , −1, 0, 1, . . .}.

This means that for noncoherent detection of FSK signals the

minimum required frequency separation for orthogonality is

∆f =
1

T
.

Recall that the transmitted passband signals are orthogonal

for

∆f =
1

2T
,

which is also the minimum required separation for coherent

detection of FSK.

– The BEP (or SEP) for binary FSK with noncoherent detection

can be calculated to

Pb =
1

2
exp

(

− Eb

2N0

)
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4.3.2.4 Optimum Noncoherent Detection of On–Off Keying

� On–off keying (OOK) is a binary modulation format, and the

transmitted signal points in complex baseband representation are

given by

sb1 =
√

2Eb

sb2 = 0

� The demodulated baseband signal is given by

rb =

{
ejφ

√
2Eb + z if m = 1

z if m = 2

where z is complex Gaussian noise with variance σ2
z = N0.
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� ML Detection

The ML decision rule is

m̂ = argmax
m̃

{

−|sbm̃|2
N0

+ ln

[

I0

(
2

N0
|rbs

∗
bm̃|
)]}

� We decide for m̂ = 1 if

−2Eb

N0
+ ln

[

I0

(
2

N0
|
√

2Ebrb|
)]

> ln(I0(0))

ln

[

I0

(
2

N0

√

2Eb|rb|
)]

︸ ︷︷ ︸

≈ 2

N0

√
2Eb|rb|

>
2Eb

N0

|rb| >

√

Eb

2

Therefore, the (approximate) ML decision rule can be simplified

to

m̂ = 1 if |rb| >
√

Eb
2

m̂ = 2 if |rb| <
√

Eb
2
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� Signal Space Decision Regions

m̂ = 1

m̂ = 2

4.3.2.5 Multiple–Symbol Differential Detection (MSDD) of

DPSK

� Noncoherent detection of PSK is not possible, since for PSK the

information is represented in the absolute phase of the transmitted

signal.

� In order to enable noncoherent detection differential encoding is

necessary. The resulting scheme is referred to as differential PSK

(DPSK).

Schober: Signal Detection and Estimation



213

� The (normalized) demodulated DPSK signal in symbol interval k

is given by

rb[k] = ejφb[k] + z[k]

with b[k] = a[k]b[k − 1] and noise variance σ2
z = N0/ES, where

ES denotes the received energy per DPSK symbol.

� Since the differential encoding operation introduces memory, it is

advantageous to detect the transmitted symbols in a block–wise

manner.

� In the following, we consider vectors (blocks) of length N

rb = ejφ
b + z,

where

rb = [rb[k] rb[k − 1] . . . rb[k − (N − 1)]T

b = [b[k] b[k − 1] . . . b[k − (N − 1)]T

z = [z[k] z[k − 1] . . . z[k − (N − 1)]T

� Since z is a Gaussian noise vector, whose components are mutu-

ally independent and have variances of σ2
z = N0, respectively, the

general optimum noncoherent ML decision rule can also be applied

in this case.

� In the following, we interpret b as the transmitted baseband signal

points, i.e., sb = b, and introduce the vector of N − 1 differential

information bearing symbols

a = [a[k] a[k − 1] . . . a[k − (N − 2)]]T .

Note that the vector b of absolute phase symbols corresponds to

just the N − 1 differential symbol contained in a.
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� The estimate for a is denoted by â, and we also introduce the

trial vectors ã and b̃. With these definitions the ML decision rule

becomes

â = argmax
ã

{

−||b̃||2
N0

+ ln

[

I0

(
2

N0
|rb • b̃|

)]}

= argmax
ã

{

−N

N0
+ ln

[

I0

(
2

N0
|rb • b̃|

)]}

= argmax
ã

{

|rb • b̃|
}

= argmax
ã

{∣
∣
∣
∣
∣

N−1∑

ν=0

rb[k − ν]b̃∗[k − ν]

∣
∣
∣
∣
∣

}

In order to further simplify this result we make use of the relation

b̃[k − ν] =
N−2∏

µ=ν

ã[k − µ]b̃[k − (N − 1)]

and obtain the final ML decision rule

â = argmax
ã

{∣
∣
∣
∣
∣

N−1∑

ν=0

rb[k − ν]
N−2∏

µ=ν

ã∗[k − µ]b̃∗[k − (N − 1)]

∣
∣
∣
∣
∣

}

= argmax
ã

{∣
∣
∣
∣
∣

N−1∑

ν=0

rb[k − ν]
N−2∏

µ=ν

ã∗[k − µ]

∣
∣
∣
∣
∣

}

Note that this final result is independent of b̃[k − (N − 1)].

� We make a joint decision on N − 1 differential symbols a[k − ν],

0 ≤ ν ≤ N − 2, based on the observation of N received signal

points. N is also referred to as the observation window size.
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� The above ML decision rule is known as multiple symbol differ-

ential detection (MSDD) and was reported first by Divsalar &

Simon in 1990.

� In general, the performance of MSDD increases with increasing

N . For N → ∞ the performance of ideal coherent detection is

approached.

� N = 2

For the special case N = 2, we obtain

â[k] = argmax
ã[k]

{∣
∣
∣
∣
∣

1∑

ν=0

rb[k − ν]

0∏

µ=ν

ã∗[k − µ]

∣
∣
∣
∣
∣

}

= argmax
ã[k]

{|rb[k]ã∗[k] + rb[k − 1]|}

= argmax
ã[k]

{

|rb[k]ã∗[k] + rb[k − 1]|2
}

= argmax
ã[k]

{
|rb[k]|2 + |rb[k − 1]|2 + 2Re{rb[k]ã∗[k]r∗b [k − 1]}

}

= argmin
ã[k]

{−2Re{rb[k]ã∗[k]r∗b [k − 1]}}

= argmin
ã[k]

{
|rb[k]r∗b [k − 1]|2 + |ã[k]|2 − 2Re{rb[k]ã∗[k]r∗b [k − 1]}

}

= argmin
ã[k]

{
|d[k] − ã[k]|2

}

with

d[k] = rb[k]r∗b [k − 1].

Obviously, for N = 2 the ML (MSDD) decision rule is identical to

the heuristically derived conventional differential detection decision

rule. For N > 2 the gap to coherent detection becomes smaller.
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� Disadvantage of MSDD

The trial vector ã has N − 1 elements and each element has M

possible values. Therefore, there are MN−1 different trial vectors

ã. This means for MSDD we have to make MN−1/(N − 1) tests

per (scalar) symbol decision. This means the complexity of MSDD

grows exponentially with N . For example, for M = 4 we have to

make 4 and 8192 tests for N = 2 and N = 9, respectively.

� Alternatives

In order to avoid the exponential complexity of MSDD there are

two different approaches:

1. The first approach is to replace the above brute–force search

with a smarter approach. In this smarter approach the trial

vectors ã are sorted first. The resulting fast decoding algorithm

still performs optimum MSDD but has only a complexity of

N log(N) (Mackenthun, 1994). For fading channels a similar

approach based on sphere decoding exists (Pauli et al.).

2. The second approach is suboptimum but achieves a similar

performance as MSDD. Complexity is reduced by using de-

cision feedback of previously decided symbols. The resulting

scheme is referred to as decision–feedback differential detection

(DF–DD). The complexity of this approach is only linear in N

(Edbauer, 1992).
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� Comparison of BEP (BER) of MSDD (MSD) and DF–DD for

4DPSK
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4.4 Optimum Coherent Detection of Continuous Phase Mod-

ulation (CPM)

� CPM Modulation

– CPM Transmit Signal

Recall that the CPM transmit signal in complex baseband rep-

resentation is given by

sb(t, I) =

√

E

T
exp(j[φ(t, I) + φ0]),

where I is the sequence {I [k]} of information bearing symbols

I [k] ∈ {±1, ±3, . . . , ±(M − 1)}, φ(t, I) is the information

carrying phase, and φ0 is the initial carrier phase. Without

loss of generality, we assume φ0 = 0 in the following.

– Information Carrying Phase

In the interval kT ≤ t ≤ (k + 1)T the phase φ(t, I) can be

written as

φ(t, I) = Θ[k] + 2πh
L−1∑

ν=1

I [k − ν]q(t − [k − ν]T )

+2πhI [k]q(t − kT ),

where Θ[k] represents the accumulated phase up to time kT , h

is the so–called modulation index, and q(t) is the phase shaping

pulse with

q(t) =







0, t < 0

monotonic, 0 ≤ t ≤ LT

1/2, t > LT
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– Trellis Diagram

If h = q/p is a rational number with relative prime integers

q and p, CPM can be described by a trellis diagram whose

number of states S is given by

S =

{
pML−1, even q

2pML−1, odd q

� Received Signal

The received complex baseband signal is given by

rb(t) = sb(t, I) + z(t)

with complex AWGN z(t), which has a power spectral density of

ΦZZ(f) = N0.

� ML Detection

– Since the CPM signal has memory, ideally we have to observe

the entire received signal rb(t), −∞ ≤ t ≤ ∞, in order to

make a decision on any I [k] in the sequence of transmitted

signals.

– The conditional pdf p(rb(t)|sb(t, Ĩ)) is given by

p(rb(t)|sb(t, Ĩ)) ∝ exp



− 1

N0

∞∫

−∞

|rb(t) − sb(t, Ĩ)|2 dt



 ,

where Ĩ ∈ {±1, ±3, . . . , ±(M − 1)} is a trial sequence. For
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ML detection we have the decision rule

Î = argmax
Ĩ

{
p(rb(t)|sb(t, Ĩ))

}

= argmax
Ĩ

{
ln[p(rb(t)|sb(t, Ĩ))]

}

= argmax
Ĩ






−

∞∫

−∞

|rb(t) − sb(t, Ĩ)|2 dt







= argmax
Ĩ






−

∞∫

−∞

|rb(t)|2 dt −
∞∫

−∞

|sb(t, Ĩ)|2 dt

+

∞∫

−∞

2Re{rb(t)s
∗
b(t, Ĩ)} dt







= argmax
Ĩ







∞∫

−∞

Re{rb(t)s
∗
b(t, Ĩ)} dt,







where Î refers to the ML decision. If I is a sequence of length

K, there are MK different sequences Ĩ. Since we have to cal-

culate the function
∫∞
−∞ Re{rb(t)s

∗
b(t, Ĩ)} dt for each of these

sequences, the complexity of ML detection with brute–force

search grows exponentially with the sequence length K, which

is prohibitive for a practical implementation.
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� Viterbi Algorithm

– The exponential complexity of brute–force search can be avoided

using the so–called Viterbi algorithm (VA).

– Introducing the definition

Λ[k] =

(k+1)T∫

−∞

Re{rb(t)s
∗
b(t, Ĩ)} dt,

we observe that the function to be maximized for ML detection

is Λ[∞]. On the other hand, Λ[k] may be calculated recursively

as

Λ[k] =

kT∫

−∞

Re{rb(t)s
∗
b(t, Ĩ)} dt +

(k+1)T∫

kT

Re{rb(t)s
∗
b(t, Ĩ)} dt

Λ[k] = Λ[k − 1] +

(k+1)T∫

kT

Re{rb(t)s
∗
b(t, Ĩ)} dt

Λ[k] = Λ[k − 1] + λ[k],

where we use the definition

λ[k] =

(k+1)T∫

kT

Re{rb(t)s
∗
b(t, Ĩ)} dt.

=

(k+1)T∫

kT

Re

{

rb(t) exp

(

− j

[

Θ̃[k] + 2πh
L−1∑

ν=1

Ĩ [k − ν]

·q(t − [k − ν]T ) + 2πhĨ [k]q(t − kT )

])}

dt.
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Λ[k] and λ[k] are referred to as the accumulated metric and

the branch metric of the VA, respectively.

– Since CPM can be described by a trellis with a finite number

of states S = pML−1 (S = 2pML−1), at time kT we have to

consider only S different Λ[S[k − 1], k − 1]. Each Λ[S[k −
1], k − 1] corresponds to exactly one state S[k − 1] which is

defined by

S[k − 1] = [Θ̃[k − 1], Ĩ [k − (L − 1)], . . . , Ĩ [k − 1]].

1

2

3

4

S[k]S[k − 2] S[k − 1]

For the interval kT ≤ t ≤ (k + 1)T we have to calculate

M branch metrics λ[S[k − 1], Ĩ [k], k] for each state S[k − 1]

corresponding to the M different Ĩ [k]. Then at time (k + 1)T

the new states are defined by

S[k] = [Θ̃[k], Ĩ [k − (L − 2)], . . . , Ĩ [k]],

with Θ̃[k] = Θ̃[k− 1] +πhĨ [k− (L− 1)]. M branches defined

by S[k− 1] and Ĩ [k] emanate in each state S[k]. We calculate
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the M accumulated metrics

Λ[S[k − 1], Ĩ [k], k] = Λ[S[k − 1], k − 1] + λ[S[k − 1], Ĩ [k], k]

for each state S[k].

1

2

3

4

S[k]S[k − 2] S[k − 1]

From all the paths (partial sequences) that emanate in a state,

we have to retain only that one with the largest accumulated

metric denoted by

Λ[S[k], k] = maxĨ[k]

{
Λ[S[k − 1], Ĩ [k], k]

}
,

since any other path with a smaller accumulated metric at time

(k +1)T cannot have a larger metric Λ[∞]. Therefore, at time

(k + 1)T there will be again only S so–called surviving paths

with corresponding accumulated metrics.
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1

2

3

4

S[k]S[k − 2] S[k − 1]

– The above steps are carried out for all symbol intervals and at

the end of the transmission, a decision is made on the trans-

mitted sequence. Alternatively, at time kT we may use the

symbol Ĩ [k− k0] corresponding to the surviving path with the

largest accumulated metric as estimate for I [k − k0]. It has

been shown that as long as the decision delay k0 is large enough

(e.g. k0 ≥ 5 log2(S)), this method yields the same performance

as true ML detection.

– The complexity of the VA is exponential in the number of

states, but only linear in the length of the transmitted se-

quence.

� Remarks:

– At the expense of a certain loss in performance the complexity

of the VA can be further reduced by reducing the number of

states.

– Alternative implementations receivers for CPM are based on

Laurent’s decomposition of the CPM signal into a sum of PAM

signals
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