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6 Equalization of Channels with ISI

� Many practical channels are bandlimited and linearly distort the

transmit signal.

� In this case, the resulting ISI channel has to be equalized for reliable

detection.

� There are many different equalization techniques. In this chapter,

we will discuss the three most important equalization schemes:

1. Maximum–Likelihood Sequence Estimation (MLSE)

2. Linear Equalization (LE)

3. Decision–Feedback Equalization (DFE)

Throughout this chapter we assume linear memoryless modula-

tions such as PAM, PSK, and QAM.
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6.1 Discrete–Time Channel Model

� Continuous–Time Channel Model

The continuous–time channel is modeled as shown below.

gR(t)
I [k]

c(t)

z(t)

kT
rb[k]rb(t)

gT (t)

– Channel c(t)

In general, the channel c(t) is not ideal, i.e., |C(f)| is not a

constant over the range of frequencies where GT (f) is non–zero.

Therefore, linear distortions are inevitable.

– Transmit Filter gT (t)

The transmit filter gT (t) may or may not be a
√

Nyquist–Filter,

e.g. in the North American D–AMPS mobile phone system a

square–root raised cosine filter with roll–off factor β = 0.35 is

used, whereas in the European EDGE mobile communication

system a linearized Gaussian minimum–shift keying (GMSK)

pulse is employed.

– Receive Filter gR(t)

We assume that the receive filter gR(t) is a
√

Nyquist–Filter.

Therefore, the filtered, sampled noise z[k] = gR(t) ∗ z(t)|t=kT

is white Gaussian noise (WGN).

Ideally, gR(t) consists of a filter matched to gT (t) ∗ c(t) and a

noise whitening filter. The drawback of this approach is that

gR(t) depends on the channel, which may change with time in

wireless applications. Therefore, in practice often a fixed but

suboptimum
√

Nyquist–Filter is preferred.
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– Overall Channel h(t)

The overall channel impulse response h(t) is given by

h(t) = gT (t) ∗ c(t) ∗ gR(t).

� Discrete–Time Channel Model

The sampled received signal is given by

rb[k] = rb(kT )

=

( ∞∑

m=−∞
I [m]h(t − mT ) + gR(t) ∗ z(t)

)∣
∣
∣
∣
∣
t=kT

=

∞∑

m=−∞
I [m] h(kT − mT )

︸ ︷︷ ︸

=h[k−m]

+ gR(t) ∗ z(t)

∣
∣
∣
∣
∣
t=kT︸ ︷︷ ︸

=z[k]

=

∞∑

l=−∞
h[l]I [k − l] + z[k],

where z[k] is AWGN with variance σ2
Z = N0, since gR(t) is a√

Nyquist–Filter.

In practice, h[l] can be truncated to some finite length L. If we

assume causality of gT (t), gR(t), and c(t), h[l] = 0 holds for l < 0,

and if L is chosen large enough h[l] ≈ 0 holds also for l ≥ L.

Therefore, rb[k] can be rewritten as

rb[k] =

L−1∑

l=0

h[l]I [k − l] + z[k]
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I [k] h[k]

z[k]

rb[k]

For all equalization schemes derived in the following, it is assumed

that the overall channel impulse response h[k] is perfectly known,

and only the transmitted information symbols I [k] have to be es-

timated. In practice, h[k] is unknown, of course, and has to be

estimated first. However, this is not a major problem and can be

done e.g. using a training sequence of known symbols.

6.2 Maximum–Likelihood Sequence Estimation (MLSE)

� We consider the transmission of a block of K unknown information

symbols I [k], 0 ≤ k ≤ K − 1, and assume that I [k] is known for

k < 0 and k ≥ K, respectively.

� We collect the transmitted information sequence {I [k]} in a vector

I = [I [0] . . . I [K − 1]]T

and the corresponding vector of discrete–time received signals is

given by

rb = [rb[0] . . . rb[K + L − 2]]T .

Note that rb[K + L − 2] is the last received signal that contains

I [K − 1].
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� ML Detection

For ML detection, we need the pdf p(rb|I) which is given by

p(rb|I) ∝ exp



− 1

N0

K+L−2∑

k=0

∣
∣
∣
∣
∣
rb[k] −

L−1∑

l=0

h[l]I [k − l]

∣
∣
∣
∣
∣

2


 .

Consequently, the ML detection rule is given by

Î = argmax
Ĩ

{
p(rb|Ĩ)

}

= argmax
Ĩ

{
ln[p(rb|Ĩ)]

}

= argmin
Ĩ

{
− ln[p(rb|Ĩ)]

}

= argmin
Ĩ







K+L−2∑

k=0

∣
∣
∣
∣
∣
rb[k] −

L−1∑

l=0

h[l]Ĩ [k − l]

∣
∣
∣
∣
∣

2





,

where Î and Ĩ denote the estimated sequence and a trial sequence,

respectively. Since the above decision rule suggest that we detect

the entire sequence I based on the received sequence rb, this op-

timal scheme is known as Maximum–Likelihood Sequence Esti-

mation (MLSE).

� Notice that there are MK different trial sequences/vectors Ĩ if M–

ary modulation is used. Therefore, the complexity of MLSE with

brute–force search is exponential in the sequence length K. This

is not acceptable for a practical implementation even for relatively

small sequence lengths. Fortunately, the exponential complexity

in K can be overcome by application of the Viterbi Algorithm

(VA).
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� Viterbi Algorithm (VA)

For application of the VA we need to define a metric that can be

computed, recursively. Introducing the definition

Λ[k + 1] =
k∑

m=0

∣
∣
∣
∣
∣
rb[m] −

L−1∑

l=0

h[l]Ĩ [m − l]

∣
∣
∣
∣
∣

2

,

we note that the function to be minimized for MLSE is Λ[K+L−1].

On the other hand,

Λ[k + 1] = Λ[k] + λ[k]

with

λ[k] =

∣
∣
∣
∣
∣
rb[k] −

L−1∑

l=0

h[l]Ĩ [k − l]

∣
∣
∣
∣
∣

2

is valid, i.e., Λ[k+1] can be calculated recursively from Λ[k], which

renders the application of the VA possible.

For M–ary modulation an ISI channel of length L can be described

by a trellis diagram with ML−1 states since the signal component

L−1∑

l=0

h[l]Ĩ[k − l]

can assume ML different values that are determined by the ML−1

states

S[k] = [Ĩ [k − 1], . . . , Ĩ [k − (L − 1)]]

and the M possible transitions Ĩ [k] to state

S[k + 1] = [Ĩ [k], . . . , Ĩ [k − (L − 2)]].

Therefore, the VA operates on a trellis with ML−1 states.
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Example:

We explain the VA more in detail using an example. We assume

BPSK transmission, i.e., I [k] ∈ {±1}, and L = 3. For k < 0 and

k ≥ K, we assume that I [k] = 1 is transmitted.

– There are ML−1 = 22 = 4 states, and M = 2 transitions per

state. State S[k] is defined as

S[k] = [Ĩ [k − 1], Ĩ [k − 2]]

– Since we know that I [k] = 1 for k < 0, state S[0] = [1, 1]

holds, whereas S[1] = [Ĩ [0], 1], and S[2] = [Ĩ [1], Ĩ [0]], and so

on. The resulting trellis is shown below.

k = 3

[1, 1]

[1,−1]

[−1, 1]

[−1,−1]

k = 0 k = 1 k = 2
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– k = 0

Arbitrarily and without loss of optimality, we may set the ac-

cumulated metric corresponding to state S[k] at time k = 0

equal to zero

Λ(S[0], 0) = Λ([1, 1], 0) = 0.

Note that there is only one accumulated metric at time k = 0

since S[0] is known at the receiver.

– k = 1

The accumulated metric corresponding to S[1] = [Ĩ [0], 1] is

given by

Λ(S[1], 1) = Λ(S[0], 0) + λ(S[0], Ĩ [0], 0)

= λ(S[0], Ĩ [0], 0)

Since there are two possible states, namely S[1] = [1, 1] and

S[1] = [−1, 1], there are two corresponding accumulated met-

rics at time k = 1.

– k = 2

Now, there are 4 possible states S[2] = [Ĩ [1], Ĩ [0]] and for each

state a corresponding accumulated metric

Λ(S[2], 2) = Λ(S[1], 1) + λ(S[1], Ĩ [1], 1)

has to be calculated.

Schober: Signal Detection and Estimation



252

– k = 3

At k = 3 two branches emanate in each state S[3]. However,

since of the two paths that emanate in the same state S[3] that

path which has the smaller accumulated metric Λ(S[3], 3) also

will have the smaller metric at time k = K+L−2 = K+1, we

need to retain only the path with the smaller Λ(S[3], 3). This

path is also referred to as the surviving path. In mathematical

terms, the accumulated metric for state S[3] is given by

Λ(S[3], 3) = argmin
Ĩ[2]

{Λ(S[2], 2) + λ(S[2], Ĩ[2], 2)}

If we retain only the surviving paths, the above trellis at time

k = 3 may be as shown be below.

[−1,−1]

[1, 1]

k = 0 k = 1 k = 2 k = 3

[1,−1]

[−1, 1]

– k ≥ 4

All following steps are similar to that at time k = 3. In each

step k we retain only ML−1 = 4 surviving paths and the cor-

responding accumulated branch metrics.
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– Termination of Trellis

Since we assume that for k ≥ K, I [k] = 1 is transmitted, the

end part of the trellis is as shown below.

[−1,−1]

[1, 1]
k = K − 2 k = K − 1 k = K k = K + 1

[1,−1]

[−1, 1]

At time k = K + L − 2 = K + 1, there is only one surviving

path corresponding to the ML sequence.

� Since only ML−1 paths are retained at each step of the VA, the

complexity of the VA is linear in the sequence length K, but

exponential in the length L of the overall channel impulse response.

� If the VA is implemented as described above, a decision can be

made only at time k = K +L−2. However, the related delay may

be unacceptable for large sequence lengths K. Fortunately, empir-

ical studies have shown that the surviving paths tend to merge

relatively quickly, i.e., at time k a decision can be made on the

symbol I [k − k0] if the delay k0 is chosen large enough. In prac-

tice, k0 ≈ 5(L − 1) works well and gives almost optimum results.
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� Disadvantage of MLSE with VA

In practice, the complexity of MLSE using the VA is often still too

high. This is especially true if M is larger than 2. For those cases

other, suboptimum equalization strategies have to be used.

� Historical Note

MLSE using the VA in the above form has been introduced by

Forney in 1972. Another variation was given later by Ungerböck

in 1974. Ungerböck’s version uses a matched filter at the receiver

but does not require noise whitening.

� Lower Bound on Performance

Exact calculation of the SEP or BEP of MLSE is quite involved and

complicated. However, a simple lower bound on the performance

of MLSE can be obtained by assuming that just one symbol I [0]

is transmitted. In that way, possibly detrimental interference from

neighboring symbols is avoided. It can be shown that the optimum

ML receiver for that scenario includes a filter matched to h[k] and

a decision can be made only based on the matched filter output at

time k = 0.

Î [0]I [0]
h[k]

z[k]

h∗[−k]
d[0]

The decision variable d[0] is given by

d[0] =
L−1∑

l=0

|h[l]|2 I [0] +
L−1∑

l=0

h∗[−l]z[−l].
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We can model d[0] as

d[0] = EhI [0] + z0[0],

where

Eh =

L−1∑

l=0

|h[l]|2

and z0[0] is Gaussian noise with variance

σ2
0 = E







∣
∣
∣
∣
∣

L−1∑

l=0

h∗[−l]z[−l]

∣
∣
∣
∣
∣

2






= Ehσ
2
Z = EhN0

Therefore, this corresponds to the transmission of I [0] over a non–

ISI channel with ES/N0 ratio

ES

N0
=

E2
h

EhN0
=

Eh

N0
,

and the related SEP or BEP can be calculated easily. For example,

for the BEP of BPSK we obtain

PMF = Q

(√

2
Eh

N0

)

.

For the true BEP of MLSE we get

PMLSE ≥ PMF.

The above bound is referred to as the matched–filter (MF) bound.

The tightness of the MF bound largely depends on the underlying

channel. For example, for a channel with L = 2, h[0] = h[1] = 1
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and BPSK modulation the loss of MLSE compared to the MF

bound is 3 dB. On the other hand, for random channels as typically

encountered in wireless communications the MF bound is relatively

tight.

Example:

For the following example we define two test channels of length

L = 3. Channel A has an impulse response of h[0] = 0.304, h[1] =

0.903, h[2] = 0.304, whereas the impulse response of Channel B is

given by h[0] = 1/
√

6, h[1] = 2/
√

6, h[2] = 1/
√

6. The received

energy per symbol is in both cases ES = Eh = 1. Assuming QPSK

transmission, the received energy per bit Eb is Eb = ES/2. The

performance of MLSE along with the corresponding MF bound is

shown below.

3 4 5 6 7 8 9 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

MF Bound
MLSE, Channel A
MLSE, Channel B

B
E

P

Eb/N0 [dB]
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6.3 Linear Equalization (LE)

� Since MLSE becomes too complex for long channel impulse re-

sponses, in practice, often suboptimum equalizers with a lower

complexity are preferred.

� The most simple suboptimum equalizer is the so–called linear

equalizer. Roughly speaking, in LE a linear filter

F (z) = Z{f [k]}

=
∞∑

k=−∞
f [k]z−k

is used to invert the channel transfer function H(z) = Z{h[k]},

and symbol–by–symbol decisions are made subsequently. f [k] de-

notes the equalizer filter coefficients.

z[k]

rb[k] d[k]
Î [k]I [k] H(z) F (z)

Linear equalizers are categorized with respect to the following two

criteria:

1. Optimization criterion used for calculation of the filter coef-

ficients f [k]. Here, we will adopt the so–called zero–forcing

(ZF) criterion and the minimum mean–squared error (MMSE)

criterion.

2. Finite length vs. infinite length equalization filters.
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6.3.1 Optimum Linear Zero–Forcing (ZF) Equalization

� Optimum ZF equalization implies that we allow for equalizer filters

with infinite length impulse response (IIR).

� Zero–forcing means that it is our aim to force the residual inter-

symbol interference in the decision variable d[k] to zero.

� Since we allow for IIR equalizer filters F (z), the above goal can be

achieved by

F (z) =
1

H(z)

where we assume that H(z) has no roots on the unit circle. Since

in most practical applications H(z) can be modeled as a filter with

finite impulse response (FIR), F (z) will be an IIR filter in general.

� Obviously, the resulting overall channel transfer function is

Hov(z) = H(z)F (z) = 1,

and we arrive at the equivalent channel model shown below.

I [k]
d[k]

Î [k]

e[k]
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� The decision variable d[k] is given by

d[k] = I [k] + e[k]

where e[k] is colored Gaussian noise with power spectral density

Φee(e
j2πfT ) = N0 |F (ej2πfT )|2

=
N0

|H(ej2πfT )|2 .

The corresponding error variance can be calculated to

σ2
e = E{|e[k]|2}

= T

1/(2T )∫

−1/(2T )

Φee(e
j2πfT ) df

= T

1/(2T )∫

−1/(2T )

N0

|H(ej2πfT )|2 df.

The signal–to–noise ratio (SNR) is given by

SNRIIR−ZF =
E{|I [k]|2}

σ2
e

=
1

T

1/(2T )∫

−1/(2T )

N0

|H(ej2πfT )|2 df
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� We may consider two extreme cases for H(z):

1. |H(ej2πfT )| =
√

Eh

If H(z) has an allpass characteristic |H(ej2πfT )| =
√

Eh, we

get σ2
e = N0/Eh and

SNRIIR−ZF =
Eh

N0
.

This is the same SNR as for an undistorted AWGN channel,

i.e., no performance loss is suffered.

2. H(z) has zeros close to the unit circle.

In that case σ2
e → ∞ holds and

SNRIIR−ZF → 0

follows. In this case, ZF equalization leads to a very poor per-

formance. Unfortunately, for wireless channels the probability

of zeros close to the unit circle is very high. Therefore, linear

ZF equalizers are not employed in wireless receivers.

� Error Performance

Since optimum ZF equalization results in an equivalent channel

with additive Gaussian noise, the corresponding BEP and SEP

can be easily computed. For example, for BPSK transmission we

get

PIIR−ZF = Q
(√

2 SNRIIR−ZF

)
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Example:

We consider a channel with two coefficients and energy 1

H(z) =
1

√

1 + |c|2
(1 − cz−1),

where c is complex. The equalizer filter is given by

F (z) =
√

1 + |c|2 z

z − c

In the following, we consider two cases: |c| < 1 and |c| > 1.

1. |c| < 1

In this case, a stable, causal impulse response is obtained.

f [k] =
√

1 + |c|2 cku[k],

where u[k] denotes the unit step function. The corresponding

error variance is

σ2
e = T

1/(2T )∫

−1/(2T )

N0

|H(ej2πfT )|2 df

= N0T

1/(2T )∫

−1/(2T )

|F (ej2πfT )|2 df

= N0

∞∑

k=−∞
|f [k]|2

= N0(1 + |c|2)
∞∑

k=0

|c|2k

= N0
1 + |c|2
1 − |c|2 .
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The SNR becomes

SNRIIR−ZF =
1

N0

1 − |c|2
1 + |c|2 .

2. |c| > 1

Now, we can realize the filter as stable and anti–causal with

impulse response

f [k] = −
√

1 + |c|2
c

ck+1u[−(k + 1)].

Using similar techniques as above, the error variance becomes

σ2
e = N0

1 + |c|2
|c|2 − 1

,

and we get for the SNR

SNRIIR−ZF =
1

N0

|c|2 − 1

1 + |c|2 .
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Obviously, the SNR drops to zero as |c| approaches one, i.e., as the
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root of H(z) approaches the unit circle.

6.3.2 ZF Equalization with FIR Filters

� In this case, we impose a causality and a length constraint on the

equalizer filter and the transfer function is given by

F (z) =

LF−1
∑

k=0

f [k]z−k

In order to be able to deal with ”non–causal components”, we

introduce a decision delay k0 ≥ 0, i.e., at time k, we estimate

I [k− k0]. Here, we assume a fixed value for k0, but in practice, k0

can be used for optimization.

...

...f [LF − 1]

d[k]

rb[k]

Î [k − k0]

T T T

f [0] f [1]

� Because of the finite filter length, a complete elimination of ISI is

in general not possible.
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� Alternative Criterion: Peak–Distortion Criterion

Minimize the maximum possible distortion of the signal at the

equalizer output due to ISI.

� Optimization

In mathematical terms the above criterion can be formulated as

follows.

Minimize

D =
∞∑

k=−∞
k 6=k0

|hov[k]|

subject to

hov[k0] = 1,

where hov[k] denotes the overall impulse response (channel and

equalizer filter).

Although D is a convex function of the equalizer coefficients, it

is in general difficult to find the optimum filter coefficients. An

exception is the special case when the binary eye at the equalizer

input is open

1

|h[k1]|

∞∑

k=−∞
k 6=k1

|h[k]| < 1

for some k1. In this case, if we assume furthermore k0 = k1 +

(LF − 1)/2 (LF odd), D is minimized if and only if the overall

impulse response hov[k] has (LF − 1)/2 consecutive zeros to the

left and to the right of hov[k0] = 1.
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k

hov[k]

LF−1
2

LF−1
2

k0

� This shows that in this special case the Peak–Distortion Criterion

corresponds to the ZF criterion for equalizers with finite order.

Note that there is no restriction imposed on the remaining coeffi-

cients of hov[k] (“don’t care positions”).

� Problem

If the binary eye at the equalizer input is closed, in general, D is

not minimized by the ZF solution. In this case, the coefficients at

the “don’t care positions” may take on large values.

� Calculation of the ZF Solution

The above ZF criterion leads us to the conditions

hov[k] =

qF∑

m=0

f [m]h[k − m] = 0

where k ∈ {k0 − qF/2, . . . , k0 − 1, k0 + 1, . . . , k0 + qF/2}, and

hov[k0] =

qF∑

m=0

f [m]h[k0 − m] = 1,

and qF = LF − 1. The resulting system of linear equations to be
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solved can be written as

Hf = [0 0 . . . 0 1 0 . . . 0]T ,

with the LF × LF matrix

H =
















h[k0 − qF/2] h[k0 − qF/2 − 1] · · · h[k0 − 3qF/2]

h[k0 − qF/2 + 1] h[k0 − qF/2] · · · h[k0 − 3qF/2 + 1]
... ... ... ...

h[k0 − 1] h[k0 − 2] · · · h[k0 − qF − 1]

h[k0] h[k0 − 1] · · · h[k0 − qF ]

h[k0 + 1] h[k0] · · · h[k0 − qF + 1]
... ... ... ...

h[k0 + qF/2] h[k0 + qF/2 − 1] · · · h[k0 − qF/2]
















and coefficient vector

f = [f [0] f [1] . . . f [qF ]]T .

The ZF solution is given by

f = H−1 [0 0 . . . 0 1 0 . . . 0]T

or in other words, the optimum vector is the (qF/2 + 1)th row of

the inverse of H .

Example:

We assume

H(z) =
1

√

1 + |c|2
(1 − cz−1),

and k0 = qF/2.
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1. First we assume c = 0.5, i.e., h[k] is given by h[0] = 2/
√

5 and

h[1] = 1/
√

5.
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2. In our second example we have c = 0.95, i.e., h[k] is given by

h[0] = 0.73 and h[1] = 0.69.
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We observe that the residual interference is larger for shorter equal-

izer filter lengths and increases as the root of H(z) approaches the

unit circle.

6.3.3 Optimum Minimum Mean–Squared Error (MMSE) Equal-

ization

� Objective

Minimize the variance of the error signal

e[k] = d[k] − Î [k].

z[k]

rb[k] d[k]

e[k]

Î [k]I [k] H(z) F (z)

� Advantage over ZF Equalization

The MMSE criterion ensures an optimum trade–off between resid-

ual ISI in d[k] and noise enhancement. Therefore, MMSE equal-

izers achieve a significantly lower BEP compared to ZF equalizers

at low–to–moderate SNRs.
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� Calculation of Optimum Filter F (z)

– The error signal e[k] = d[k] − Î [k] depends on the estimated

symbols Î [k]. Since it is very difficult to take into account the

effect of possibly erroneous decisions, for filter optimization it

is usually assumed that Î [k] = I [k] is valid. The corresponding

error signal is

e[k] = d[k] − I [k].

– Cost Function

The cost function for filter optimization is given by

J = E{|e[k]|2}

= E
{( ∞∑

m=−∞
f [m]rb[k − m] − I [k]

)

( ∞∑

m=−∞
f∗[m]r∗b [k − m] − I∗[k]

)}

,

which is the error variance.

– Optimum Filter

We obtain the optimum filter coefficients from

∂J

∂f∗[κ]
= E

{( ∞∑

m=−∞
f [m]rb[k − m] − I [k]

)

r∗b [k − κ]

}

= E {e[k]r∗b [k − κ]} = 0, κ ∈ {. . . , −1, 0, 1, . . .},

where we have used the following rules for complex differen-
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tiation

∂f∗[κ]

∂f∗[κ]
= 1

∂f [κ]

∂f∗[κ]
= 0

∂|f [κ]|2
∂f∗[κ]

= f [κ].

We observe that the error signal and the input of the MMSE

filter must be orthogonal. This is referred to as the orthogo-

nality principle of MMSE optimization.

The above condition can be modified to

E {e[k]r∗b [k − κ]} = E {d[k]r∗b [k − κ]} − E {I [k]r∗b [k − κ]}

The individual terms on the right hand side of the above equa-

tion can be further simplified to

E {d[k]r∗b [k − κ]} =
∞∑

m=−∞
f [m] E {rb[k − m]r∗b [k − κ]}

︸ ︷︷ ︸

φrr[κ−m]

,

and

E {I [k]r∗b [k − κ]} =
∞∑

m=−∞
h∗[m] E {I [k]I∗[k − κ − m]}

︸ ︷︷ ︸

φII [κ+m]

=
∞∑

µ=−∞
h∗[−µ]φII [κ − µ],

respectively. Therefore, we obtain

f [k] ∗ φrr[k] = h∗[−k] ∗ φII [k],
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and the Z–transform of this equation is

F (z)Φrr(z) = H∗(1/z∗)ΦII(z)

with

Φrr(z) =
∞∑

k=−∞
φrr[k]z−k

ΦII(z) =

∞∑

k=−∞
φII [k]z−k.

The optimum filter transfer function is given by

F (z) =
H∗(1/z∗)ΦII(z)

Φrr(z)

Usually, we assume that the noise z[k] and the data sequence

I [k] are white processes and mutually uncorrelated. We assume

furthermore that the variance of I [k] is normalized to 1. In that

case, we get

φrr[k] = h[k] ∗ h∗[−k] ∗ φII [k] + φZZ [k]

= h[k] ∗ h∗[−k] + N0 δ[k],

and

Φrr(z) = H(z)H∗(1/z∗) + N0

ΦII(z) = 1.

The optimum MMSE filter is given by

F (z) =
H∗(1/z∗)

H(z)H∗(1/z∗) + N0
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We may consider two limiting cases.

1. N0 → 0

In this case, we obtain

F (z) =
1

H(z)
,

i.e., in the high SNR region the MMSE solution approaches

the ZF equalizer.

2. N0 → ∞
We get

F (z) =
1

N0
H∗(1/z∗),

i.e., the MMSE filter approaches a discrete–time matched

filter.

� Autocorrelation of Error Sequence

The ACF of the error sequence e[k] is given by

φee[λ] = E{e[k]e∗[k − λ]}
= E {e[k](d[k − λ] − I [k − λ])∗}
= φed[λ] − φeI [λ]

φed[λ] can be simplified to

φed[λ] =
∞∑

m=−∞
f∗[m] E{e[k]r∗b [k − λ − m]}

︸ ︷︷ ︸
=0

= 0.

This means that the error signal e[k] is also orthogonal to the

equalizer output signal d[k]. For the ACF of the error we obtain

φee[λ] = −φeI [λ]

= φII [λ] − φdI [λ].
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� Error Variance

The error variance σ2
e is given by

σ2
e = φII [0] − φdI [0]

= 1 − φdI [0].

σ2
e can be calculated most easily from the the power spectral den-

sity

Φee(z) = ΦII(z) − ΦdI(z)

= 1 − F (z)H(z)

= 1 − H(z)H∗(1/z∗)

H(z)H∗(1/z∗) + N0

=
N0

H(z)H∗(1/z∗) + N0
.

More specifically, σ2
e is given by

σ2
e = T

1/(2T )∫

−1/(2T )

Φee(e
j2πfT ) df

or

σ2
e = T

1/(2T )∫

−1/(2T )

N0

|H(ej2πfT )|2 + N0
df
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� Overall Transfer Function

The overall transfer function is given by

Hov(z) = H(z)F (z)

=
H(z)H∗(1/z∗)

H(z)H∗(1/z∗) + N0

=
1

1 + N0

H(z)H∗(1/z∗)

= 1 − N0

H(z)H∗(1/z∗) + N0

Obviously, Hov(z) is not a constant but depends on z, i.e., there is

residual intersymbol interference. The coefficient hov[0] is obtained

from

hov[0] = T

1/(2T )∫

−1/(2T )

Hov(e
j2πfT ) df

= T

1/(2T )∫

−1/(2T )

(1 − Φee(e
j2πfT )) df

= 1 − σ2
e < 1.

Since hov[0] < 1 is valid, MMSE equalization is said to be biased.

� SNR

The decision variable d[k] may be rewritten as

d[k] = I [k] + e[k]

= hov[0]I [k] + e[k] + (1 − hov[0])I [k]
︸ ︷︷ ︸

=e′[k]

,
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where e′[k] does not contain I [k]. Using φee[λ] = −φeI [λ] the

variance of e′[k] is given by

σ2
e′ = E{|e[k]|2}

= (1 − hov[0])2 + 2(1 − hov[0])φeI [0] + σ2
e

= σ4
e − 2σ4

e + σ2
e

= σ2
e − σ4

e .

Therefore, the SNR for MMSE equalization with IIR filters is given

by

SNRIIR−MMSE =
h2

ov[0]

σ2
e′

=
(1 − σ2

e)
2

σ2
e(1 − σ2

e)

which yields

SNRIIR−MMSE =
1 − σ2

e

σ2
e
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Example:

We consider again the channel with one root and transfer function

H(z) =
1

√

1 + |c|2
(1 − cz−1),

where c is a complex constant. After some straightforward manip-

ulations the error variance is given by

σ2
e = E{|e[k]|2}

= T

1/(2T )∫

−1/(2T )

N0

|H(ej2πfT )|2 + N0
df

=
N0

1 + N0

1
√

1 − β2
,

where β is defined as

β =
2|c|

(1 + N0)(1 + |c|2).

It is easy to check that for N0 → 0, i.e., for high SNRs σ2
e ap-

proaches the error variance for linear ZF equalization.

We illustrate the SNR for two different cases.
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1. |c| = 0.5
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As expected, for high input SNRs (small noise variances), the (out-

put) SNR for ZF equalization approaches that for MMSE equal-

ization. For larger noise variances, however, MMSE equalization

yields a significantly higher SNR, especially if H(z) has zeros close

to the unit circle.

6.3.4 MMSE Equalization with FIR Filters

� In practice, FIR filters are employed. The equalizer output signal

in that case is given by

d[k] =

qF∑

m=0

f [m]rb[k − m]

= fHrb,

where qF = LF − 1 and the definitions

f = [f [0] . . . f [qF ]]H

rb = [rb[k] . . . rb[k − qF ]]T

are used. Note that vector f contains the complex conjugate filter

coefficients. This is customary in the literature and simplifies the

derivation of the optimum filter coefficients.

rb[k] F (z)
d[k]

Î [k − k0]

e[k]
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� Error Signal

The error signal e[k] is given by

e[k] = d[k] − I [k − k0],

where we allow for a decision delay k0 ≥ 0 to account for non–

causal components, and we assume again Î [k− k0] = I [k− k0] for

the sake of mathematical tractability.

� Cost Function

The cost function for filter optimization is given by

J(f ) = E{|e[k]|2}
= E

{(
fHrb − I [k − k0]

) (
fHrb − I [k − k0]

)H
}

= fH E{rbr
H
b }︸ ︷︷ ︸

Φrr

f − fH E{rbI
∗[k − k0]}

︸ ︷︷ ︸
ϕrI

−E{I [k − k0]r
H
b }f + E{|I [k − k0]|2}

= fHΦrrf − fHϕrI − ϕH
rIf + 1,

where Φrr denotes the autocorrelation matrix of vector rb, and

ϕrI is the crosscorrelation vector between rb and I [k− k0]. Φrr is

given by

Φrr =








φrr[0] φrr[1] · · · φrr[qF ]

φrr[−1] φrr[0] · · · φrr[qF − 1]
... ... . . . ...

φrr[−qF ] φrr[−qF + 1] · · · φrr[0]








,

where φrr[λ] = E{r∗b [k]rb[k + λ]}. The crosscorrelation vector can

be calculated as

ϕrI = [φrI [k0] φrI [k0 − 1] . . . φrI [k0 − qF ]]T ,
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where φrI [λ] = E{rb[k + λ]I∗[k]}. Note that for independent,

identically distributed input data and AWGN, we get

φrr[λ] = h[λ] ∗ h∗[−λ] + N0 δ[λ]

φrI [λ] = h[k0 + λ].

This completely specifies Φrr and ϕrI .

� Filter Optimization

The optimum filter coefficient vector can be obtained be setting

the gradient of J(f ) equal to zero

∂J(f )

∂f ∗ = 0.

For calculation of this gradient, we use the following rules for dif-

ferentiation of scalar functions with respect to (complex) vectors:

∂

∂f ∗f
HXf = Xf

∂

∂f ∗f
Hx = x

∂

∂f ∗x
Hf = 0,

where X and x denote a matrix and a vector, respectively.

With these rules we obtain

∂J(f )

∂f ∗ = Φrrf − ϕrI = 0

or

Φrrf = ϕrI.
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This equation is often referred to as the Wiener–Hopf equation.

The MMSE or Wiener solution for the optimum filter coefficients

f opt is given by

f opt = Φ−1
rr ϕrI

� Error Variance

The minimum error variance is given by

σ2
e = J(f opt)

= 1 − ϕH
rIΦ

−1
rr ϕrI

= 1 − ϕH
rIf opt

� Overall Channel Coefficient hov[k0]

The coefficient hov[k0] is given by

hov[k0] = fH
optϕrI

= 1 − σ2
e < 1,

i.e., also the optimum FIR MMSE filter is biased.

� SNR

Similar to the IIR case, the SNR at the output of the optimum

FIR filter can be calculated to

SNRFIR−MMSE =
1 − σ2

e

σ2
e
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Example:

Below, we show f [k] and hov[k] for a channel with one root and

transfer function

H(z) =
1

√

1 + |c|2
(1 − cz−1).

We consider the case c = 0.8 and different noise variances σ2
Z = N0.

Furthermore, we use qF = 12 and k0 = 7.
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We observe that the residual ISI in hov[k] is smaller for the smaller

noise variance, since the MMSE filter approaches the ZF filter for

N0 → 0. Also the bias decreases with decreasing noise variance,

i.e., hov[k0] approaches 1.
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6.4 Decision–Feedback Equalization (DFE)

� Drawback of Linear Equalization

In linear equalization, the equalizer filter enhances the noise, es-

pecially in severely distorted channels with roots close to the unit

circle. The noise variance at the equalizer output is increased and

the noise is colored. In many cases, this leads to a poor perfor-

mance.

� Noise Prediction

The above described drawback of LE can be avoided by application

of linear noise prediction.

noise predictor

H(z)I [k]
I [k] + e[k]

P (z)

Î [k]
d[k]

z[k]

1
H(z)

rb[k]

ê[k]T

The linear FIR noise predictor

P (z) =

LP−1
∑

m=0

p[m]z−m

predicts the current noise sample e[k] based on the previous LP

noise samples e[k − 1], e[k − 2], . . ., e[k −LP ]. The estimate ê[k]

for e[k] is given by

ê[k] =

LP−1
∑

m=0

p[m]e[k − 1 − m].
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Assuming Î [k − m] = I [k − m] for m ≥ 1, the new decision

variable is

d[k] = I [k] + e[k] − ê[k].

If the predictor coefficients are suitably chosen, we expect that the

variance of the new error signal e[k] − ê[k] is smaller than that of

e[k]. Therefore, noise prediction improves performance.

� Predictor Design

Usually an MMSE criterion is adopted for optimization of the pre-

dictor coefficients, i.e., the design objective is to minimize the error

variance

E{|e[k] − ê[k]|2}.

Since this is a typical MMSE problem, the optimum predictor

coefficients can be obtained from the Wiener–Hopf equation

Φeep = ϕe

with

Φee =








φee[0] φee[1] · · · φee[LP − 1]

φee[−1] φee[0] · · · φee[LP − 2]
... ... . . . ...

φee[−(LP − 1)] φee[−(LP − 2)] · · · φee[0]








,

ϕe = [φee[−1] φee[−2] . . . φee[−LP ]]T

p = [p[0] p[1] . . . p[LP − 1]]H,

where the ACF of e[k] is defined as φee[λ] = E{e∗[k]e[k + λ]}.
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� New Block Diagram

The above block diagram of linear equalization and noise prediction

can be rearranged as follows.

feedforward filter feedback filter

H(z) 1
H(z)

P (z) P (z)

Î [k]I [k]

z[k]

T T

The above structure consists of two filters. A feedforward filter

whose input is the channel output signal rb[k] and a feedback filter

that feeds back previous decisions Î [k − m], m ≥ 1. An equaliza-

tion scheme with this structure is referred to as decision–feedback

equalization (DFE). We have shown that the DFE structure can

be obtained in a natural way from linear equalization and noise

prediction.
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� General DFE

If the predictor has infinite length, the above DFE scheme cor-

responds to optimum zero–forcing (ZF) DFE. However, the DFE

concept can be generalized of course allowing for different filter

optimization criteria. The structure of a general DFE scheme is

shown below.

B(z) − 1

rb[k]
F (z)

d[k]
Î [k]I [k] H(z)

z[k]

y[k]

In general, the feedforward filter is given by

F (z) =
∞∑

k=−∞
f [k]z−k,

and the feedback filter

B(z) = 1 +

LB−1
∑

k=1

b[k]z−k

is causal and monic (b[k] = 1). Note that F (z) may also be

an FIR filter. F (z) and B(z) can be optimized according to any

suitable criterion, e.g. ZF or MMSE criterion.
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Typical Example:
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� Properties of DFE

– The feedforward filter has to suppress only the pre–cursor ISI.

This imposes fewer constraints on the feedforward filter and

therefore, the noise enhancement for DFE is significantly smaller

than for linear equalization.

– The post–cursors are canceled by the feedback filter. This

causes no additional noise enhancement since the slicer elimi-

nates the noise before feedback.

– Feedback of wrong decisions causes error propagation. Fortu-
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nately, this error propagation is usually not catastrophic but

causes some performance degradation compared to error free

feedback.

6.4.1 Optimum ZF–DFE

� Optimum ZF–DFE may be viewed as a combination of optimum

linear ZF equalization and optimum noise prediction.

P (z)

I [k] Î [k]H(z) 1
H(z)

z[k]

F (z)

T

B(z) − 1

TP (z)

� Equalizer Filters (I)

The feedforward filter (FFF) is the cascade of the linear equalizer

1/H(z) and the prediction error filter Pe(z) = 1 − z−1P (z)

F (z) =
Pe(z)

H(z)
.

The feedback filter (FBF) is given by

B(z) = 1 − z−1P (z).

� Power Spectral Density of Noise

The power spectral density of the noise component e[k] is given by

Φee(z) =
N0

H(z)H∗(1/z∗)
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� Optimum Noise Prediction

The optimum noise prediction error filter is a noise whitening

filter, i.e., the power spectrum Φνν(z) of ν[k] = e[k] − ê[k] is a

constant

Φνν(z) = Pe(z)P ∗
e (1/z∗)Φee(z) = σ2

ν,

where σ2
ν is the variance of ν. A more detailed analysis shows that

Pe(z) is given by

Pe(z) =
1

Q(z)
.

Q(z) is monic and stable, and is obtained by spectral factorization

of Φee(z) as

Φee(z) = σ2
ν Q(z)Q∗(1/z∗). (5)

Furthermore, we have

Φee(z) =
N0

H(z)H∗(1/z∗)

=
N0

Hmin(z)H∗
min(1/z

∗)
, (6)

where

Hmin(z) =

L−1∑

m=0

hmin[m]z−m

is the minimum phase equivalent of H(z), i.e., we get Hmin(z) from

H(z) by mirroring all zeros of H(z) that are outside the unit circle

into the unit circle. A comparison of Eqs. (5) and (6) shows that

Q(z) is given by

Q(z) =
hmin[0]

Hmin(z)
,
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where the multiplication by hmin[0] ensures that Q(z) is monic.

Since Hmin(z) is minimum phase, all its zeros are inside or on the

unit circle, therefore Q(z) is stable. The prediction error variance

is given by

σ2
ν =

N0

|hmin[0]|2 .

The optimum noise prediction–error filter is obtained as

Pe(z) =
Hmin(z)

hmin[0]
.

� Equalizer Filters (II)

With the above result for Pe(z), the optimum ZF–DFE FFF is

given by

F (z) =
Pe(z)

H(z)

F (z) =
1

hmin[0]

Hmin(z)

H(z)
,

whereas the FBF is obtained as

B(z) = 1 − z−1P (z) = 1 − (1 − Pe(z))

= Pe(z)

=
Hmin(z)

hmin[0]
.
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� Overall Channel

The overall forward channel is given by

Hov(z) = H(z)F (z)

=
Hmin(z)

hmin[0]

=

L−1∑

m=0

hmin[m]

hmin[0]
z−m

This means the FFF filter F (z) transforms the channel H(z) into

its (scaled) minimum phase equivalent. The FBF is given by

B(z) − 1 =
Hmin(z)

hmin[0]
− 1

=
L−1∑

m=1

hmin[m]

hmin[0]
z−m

Therefore, assuming error–free feedback the equivalent overall chan-

nel including forward and backward part is an ISI–free channel with

gain 1.

� Noise

The FFF F (z) is an allpass filter since

F (z)F ∗(1/z∗) =
1

|hmin[0]|2
Hmin(z)H∗

min(1/z
∗)

H(z)H∗(1/z∗)

=
1

|hmin[0]|2 .

Therefore, the noise component ν[k] is AWGN with variance

σ2
ν =

N0

|hmin[0]|2 .
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The equivalent overall channel model assuming error–free feedback

is shown below.

I [k]

ν[k]

d[k]
Î [k]

� SNR

Obviously, the SNR of optimum ZF–DFE is given by

SNRZF−DFE =
1

σ2
ν

=
|hmin[0]|2

N0
.

Furthermore, it can be shown that hmin[0] can be calculated in

closed form as a function of H(z). This leads to

SNRZF−DFE = exp

(

T
1/(2T )∫

−1/(2T )

ln
(
|H(ej2πfT )|2

N0

)

df

)

.

Schober: Signal Detection and Estimation



293

Example:

– Channel

We assume again a channel with one root and transfer function

H(z) =
1

√

1 + |c|2
(1 − cz−1).

– Normalized Minimum–Phase Equivalent

If |c| ≤ 1, H(z) is already minimum phase and we get

Pe(z) =
Hmin(z)

hmin[0]

= 1 − cz−1, |c| ≤ 1.

If |c| > 1, the root of H(z) has to be mirrored into the unit

circle. Therefore, Hmin(z) will have a zero at z = 1/c∗, and we

get

Pe(z) =
Hmin(z)

hmin[0]

= 1 − 1

c∗
z−1, |c| > 1.

– Filters

The FFF is given by

F (z) =







1√
1+|c|2

, |c| ≤ 1

1√
1+|c|2

z−1/c∗
z−c , |c| > 1

The corresponding FBF is

B(z) − 1 =

{

−cz−1, |c| ≤ 1

− 1
c∗ z−1, |c| > 1
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– SNR

The SNR can be calculated to

SNRZF−DFE = exp




T

1/(2T )∫

−1/(2T )

ln

(|H(ej2πfT )|2
N0

)

df




 .

= exp




T

1/(2T )∫

−1/(2T )

ln

(|1 − ce−2πfT |2
(1 + |c|2)N0

)

df




 .

After some straightforward manipulations, we obtain

SNRZF−DFE =
1

2N0

(

1 +
|1 − |c|2|
1 + |c|2

)

For a given N0 the SNR is minimized for |c| = 1. In that

case, we get SNRZF−DFE = 1/(2N0), i.e., there is a 3 dB loss

compared to the pure AWGN channel. For |c| = 0 and |c| →
∞, we get SNRZF−DFE = 1/N0, i.e., there is no loss compared

to the AWGN channel.

– Comparison with ZF–LE

For linear ZF equalization we had

SNRZF−LE =
1

N0

|1 − |c|2|
1 + |c|2 .

This means in the worst case |c| = 1, we get SNRZF−LE = 0 and

reliable transmission is not possible. For |c| = 0 and |c| → ∞
we obtain SNRZF−LE = 1/N0 and no loss in performance is

suffered compared to the pure AWGN channel.
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6.4.2 Optimum MMSE–DFE

� We assume a FFF with doubly–infinite response

F (z) =

∞∑

k=−∞
f [k]z−k

and a causal FBF with

B(z) = 1 +
∞∑

k=1

b[k]z−k
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B(z) − 1

rb[k]
F (z)

d[k]
Î [k]I [k] H(z)

z[k]

y[k]

� Optimization Criterion

In optimum MMSE–DFE, we optimize FFF and FBF for mini-

mization of the variance of the error signal

e[k] = d[k] − I [k].

This error variance can be expressed as

J = E
{
|e[k]|2

}

= E
{( ∞∑

κ=−∞
f [κ]rb[k − κ] −

∞∑

κ=1

b[κ]I [k − κ] − I [k]

)

( ∞∑

κ=−∞
f∗[κ]r∗b [k − κ] −

∞∑

κ=1

b∗[κ]I∗[k − κ] − I∗[k]

)}

.

� FFF Optimization

Differentiating J with respect to f∗[ν], −∞ < ν < ∞, yields

∂J

∂f∗[ν]
=

∞∑

κ=−∞
f [κ] E{rb[k − κ]r∗b [k − ν]}

︸ ︷︷ ︸

φrr[ν−κ]

−
∞∑

κ=1

b[κ] E{I [k − κ]r∗b [k − ν]}
︸ ︷︷ ︸

φIr[ν−κ]

−E{I [k]r∗b [k − ν]}
︸ ︷︷ ︸

φIr[ν]
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Letting ∂J/(∂f∗[ν]) = 0 and taking the Z-transform of the above

equation leads to

F (z)Φrr(z) = B(z)ΦIr(z),

where Φrr(z) and ΦIr(z) denote the Z-transforms of φrr[λ] and

φIr[λ], respectively.

Assuming i.i.d. sequences I [·] of unit variance, we get

Φrr(z) = H(z)H∗(1/z∗) + N0

ΦIr(z) = H∗(1/z∗)

This results in

F (z) =
H∗(1/z∗)

H(z)H∗(1/z∗) + N0
B(z).

Recall that

FLE(z) =
H∗(1/z∗)

H(z)H∗(1/z∗) + N0

is the optimum filter for linear MMSE equalization. This means

the optimum FFF for MMSE–DFE is the cascade of a optimum

linear equalizer and the FBF B(z).

� FBF Optimization

The Z–transform E(z) of the error signal e[k] is given by

E(z) = F (z)Z(z) + (F (z)H(z) − B(z))I(z).

Adopting the optimum F (z), we obtain for the Z–transform of
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the autocorrelation sequence

Φee(z) = E{E(z)E∗(1/z∗)}

=
B(z)B∗(1/z∗)H(z)H∗(1/z∗)

(H(z)H∗(1/z∗) + N0)2
N0

+
N2

0B(z)B∗(1/z∗)

(H(z)H∗(1/z∗) + N0)2

= B(z)B∗(1/z∗)
H(z)H∗(1/z∗) + N0

(H(z)H∗(1/z∗) + N0)2
N0

= B(z)B∗(1/z∗)
N0

H(z)H∗(1/z∗) + N0
︸ ︷︷ ︸

Φelel
(z)

,

where el[k] denotes the error signal at the output of the optimum

linear MMSE equalizer, and Φelel
(z) is the Z–transform of the

autocorrelation sequence of el[k].

The optimum FBF filter will minimize the variance of el[k]. There-

fore, the optimum prediction–error filter for el[k] is the optimum

filter B(z). Consequently, the optimum FBF can be defined as

B(z) =
1

Q(z)
,

where Q(z) is obtained by spectral factorization of Φelel
(z)

Φelel
(z) =

N0

H(z)H∗(1/z∗) + N0

= σ2
eQ(z)Q∗(1/z∗).

The coefficients of q[k], k ≥ 1, can be calculated recursively as

q[k] =

k−1∑

µ=0

k − µ

k
q[µ]β[k − µ], k ≥ 1
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with

β[µ] = T

1/(2T )∫

−1/(2T )

ln
[
Φelel

(ej2πfT )
]
ej2πµfT df.

The error variance σ2
e is given by

σ2
e = exp




T

1/(2T )∫

−1/(2T )

ln

[
N0

|H(ej2πfT )|2 + N0

]

df




 .

linear
MMSE
equalizer

feedback filter

prediction−error
filter for el[k]

I [k] H(z)

z[k]

F (z)
d[k]

Î [k]

B(z) − 1

B(z)FLE(z)

� Overall Channel

The overall forward transfer function is given by

Hov(z) = F (z)H(z)

=
H(z)H∗(1/z∗)

H(z)H∗(1/z∗) + N0
B(z)

=

(

1 − N0

H(z)H∗(1/z∗) + N0

)

B(z)

= B(z) − σ2
e

B∗(1/z∗)
.
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Therefore, the bias hov[0] is given by

hov[0] = 1 − σ2
e .

The part of the transfer function that characterizes the pre–cursors

is given by

−σ2
e

(
1

B∗(1/z∗)
− 1

)

,

whereas the part of the transfer function that characterizes the

post–cursors is given by

B(z) − 1

Hence, the error signal is composed of bias, pre–cursor ISI, and

noise. The post–cursor ISI is perfectly canceled by the FBF.

� SNR

Taking into account the bias, it can be shown that the SNR for

optimum MMSE DFE is given by

SNRMMSE−DFE =
1

σ2
e

− 1

= exp




T

1/(2T )∫

−1/(2T )

ln

[|H(ej2πfT )|2
N0

+ 1

]

df




− 1.

� Remark

For high SNRs, ZF–DFE and MMSE–DFE become equivalent. In

that case, the noise variance is comparatively small and also the

MMSE criterion leads to a complete elimination of the ISI.
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6.5 MMSE–DFE with FIR Filters

� Since IIR filters cannot be realized, in practice FIR filters have to

be employed.

� Error Signal e[k]

If we denote FFF length and order by LF and qF = LF − 1,

respectively, and the FBF length and order by LB and qB = LB−1,

respectively, we can write the slicer input signal as

d[k] =

qF∑

κ=0

f [κ]rb[k − κ] −
qB∑

κ=1

b[κ]I [k − k0 − κ],

where we again allow for a decision delay k0, k0 ≥ 0.
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Using vector notation, the error signal can be expressed as

e[k] = d[k] − I [k − k0]

= fHrb[k] − bHI [k − k0 − 1] − I [k − k0]

with

f = [f [0] f [1] . . . f [qF ]]H

b = [b[1] f [2] . . . b[qB]]H

rb[k] = [rb[k] rb[k − 1] . . . rb[k − qF ]]T

I [k − k0 − 1] = [I [k − k0 − 1] I [k − k0 − 2] . . . I [k − k0 − qB]]T .

� Error Variance J

The error variance can be obtained as

J = E{|e[k]|2}
= fHE{rb[k]rH

b [k]}f + bHE{I[k − k0 − 1]IH [k − k0 − 1]}b
−fHE{rb[k]IH [k − k0 − 1]}b − bHE{I[k − k0 − 1]rH

b [k]}f
−fHE{rb[k]I∗[k − k0]} − E{rH

b [k]I [k − k0]}f
+bHE{I[k − k0 − 1]I∗[k − k0]} + E{IH [k − k0 − 1]I [k − k0]}b.

Since I [k] is an i.i.d. sequence and the noise z[k] is white, the
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following identities can be established:

E{I[k − k0 − 1]I∗[k − k0]} = 0

E{I[k − k0 − 1]IH [k − k0 − 1]} = I

E{rb[k]IH [k − k0 − 1]} = H

H =








h[k0 + 1] . . . h[k0 + qB]

h[k0] . . . h[k0 + qB − 1]
... . . . ...

h[k0 + 1 − qF ] . . . h[k0 + qB − qF ]








E{rb[k]I∗[k − k0]} = h

h = [h[k0] h[k0 − 1] . . . h[k0 − qF ]]T

E{rb[k]rH
b [k]} = Φhh + σ2

nI,

where Φhh denotes the channel autocorrelation matrix. With these

definitions, we get

J = fH(Φhh + σ2
nI)f + bHb + 1

−fHHb − bHHHf − fHh − hHf

� Optimum Filters

The optimum filter settings can be obtained by differentiating J

with respect to f ∗ and b∗, respectively.

∂J

∂f ∗ = (Φhh + σ2
nI)f − Hb − h

∂J

∂b∗ = b − HHf

Setting the above equations equal to zero and solving for f , we get

f opt =
((

Φhh − HHH
)

+ σ2
nI
)−1

h
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The optimum FBF is given by

bopt = HHf = [hov[k0 + 1] hov[k0 + 1] . . . hov[k0 + qB]]H ,

where hov[k] denotes the overall impulse response comprising chan-

nel and FFF. This means the FBF cancels perfectly the postcursor

ISI.

� MMSE

The MMSE is given by

Jmin = 1 − hH
((

Φhh − HHH
)

+ σ2
nI
)−1

h

= 1 − fH
opth.

� Bias

The bias is given by

h[k0] = fH
opth = 1 − Jmin < 1.
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