EECE 568: Control Systems Handout \#1: Solutions to Linear Differential and Difference Equations

Dr. Meeko Oishi
http://courses.ece.ubc.ca/568

September 28, 2009

Continuous-Time Systems

Time-Varying

Consider the multi-input, multi-output, linear time-varying system

$$
\begin{array}{ll}
\dot{x}(t)=A(t) x(t)+B(t) u(t), & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, \text { with } x\left(t_{0}\right)=x_{0} \\
y(t)=C(t) x(t)+D(t) u(t), & y \in \mathbb{R}^{p} \tag{1}
\end{array}
$$

with known initial condition x_{0} and known input signal $u(t), t \in \mathbb{R}$. Assume the system is causal and that $A(t), B(t), C(t), D(t)$ are continuous matrices of the appropriate dimensions. The state transition matrix, determined by the method of successive approximations,

$$
\begin{equation*}
\Phi\left(t, t_{0}\right)=\lim _{m \rightarrow \infty} \phi_{m}(t), \quad \phi_{m}(t)=x_{0}+\int_{t_{0}}^{t} A(s) \phi_{m-1}(s) d s, m \in R_{+}, \quad \phi_{0}(t)=x_{0} \tag{2}
\end{equation*}
$$

is required to determine the unique solution to the differential equation.

$$
\begin{equation*}
x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, s) B(s) u(s) d s \tag{3}
\end{equation*}
$$

Notice that the solution can be broken up into two components: the zero-input response, which occurs when the input is $u(t)=0$, and the zero-state response, which occurs when the initial condition is $x_{0}=0$. One the solution is known, the output signal can be calculated.

$$
\begin{equation*}
y(t)=C(t) \Phi\left(t, t_{0}\right) x_{0}+C(t) \int_{t_{0}}^{t} \Phi(t, s) B(s) u(s) d s+D(t) u(t) \tag{4}
\end{equation*}
$$

Time-Invariant

Consider the multi-input, multi-output, linear time-invariant system

$$
\begin{array}{rll}
\dot{x}(t) & =A x(t)+B u(t), & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, \text { with } x\left(t_{0}\right)=x_{0} \tag{5}\\
y(t) & =C x(t)+D u(t), & y \in \mathbb{R}^{p}
\end{array}
$$

with known initial condition x_{0} and known input signal $u(t), t \in \mathbb{R}$. Assume the system is causal and that A, B, C, D are constant-valued matrices of the appropriate dimensions.
The state transition matrix

$$
\begin{equation*}
\Phi\left(t, t_{0}\right)=e^{A\left(t-t_{0}\right)}=\sum_{k=0}^{\infty} A^{k} \frac{\left(t-t_{0}\right)^{k}}{k!} \tag{6}
\end{equation*}
$$

is the matrix exponential, often written as $\Phi\left(t-t_{0}\right)$. The solution to the differential equation is

$$
\begin{equation*}
x(t)=\Phi\left(t-t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t-s) B u(s) d s \tag{7}
\end{equation*}
$$

One the solution is known, the output signal can be calculated.

$$
\begin{equation*}
y(t)=C \Phi\left(t-t_{0}\right) x_{0}+C \int_{t_{0}}^{t} \Phi(t-s) B u(s) d s+D u(t) \tag{8}
\end{equation*}
$$

Properties of the State-Transition Matrix

$$
\begin{align*}
\Phi(t, t) & =I \\
\dot{\Phi}\left(t, t_{0}\right) & =A(t) \Phi\left(t, t_{0}\right) \\
\Phi\left(t, t_{0}\right) & =\Phi\left(t, t_{1}\right) \Phi\left(t_{1}, t_{0}\right) \tag{9}\\
\Phi^{-1}\left(t, t_{0}\right) & =\Phi\left(t_{0}, t\right)
\end{align*}
$$

In addition, some properties of the matrix exponential are:

$$
\begin{align*}
e^{A t_{1}} e^{A t_{2}} & =e^{A\left(t_{1}+t_{2}\right)} \\
A e^{A t} & =e^{A t} A \tag{10}\\
\left(e^{A t}\right)^{-1} & =e^{-A t}
\end{align*}
$$

Discrete-Time Systems

Time-Varying

For the multi-input, multi-output, linear time-varying system

$$
\begin{align*}
x[k+1] & =A(k) x[k]+B(k) u[k], & & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, \text { with } x\left(k_{0}\right)=x_{0} \\
y[k] & =C(k) x[k]+D(k) u[k], & & y \in \mathbb{R}^{p} \tag{11}
\end{align*}
$$

with known initial condition x_{0} and known input sequence $u[k], k \in \mathbb{Z}$. Assume the system is causal and that $A(k), B(k), C(k), D(k)$ are continuous matrices of the appropriate dimensions. The state transition matrix

$$
\begin{equation*}
\Phi\left(k, k_{0}\right)=\prod_{j=k_{0}}^{k-1} A(j), k \geq k_{0} \tag{12}
\end{equation*}
$$

determines the solution to the difference equation for $k>k_{0}$.

$$
\begin{equation*}
x[k]=\Phi\left(k, k_{0}\right) x_{0}+\sum_{j=k_{0}}^{k-1} \Phi(k, j+1) B(j) u[j], \tag{13}
\end{equation*}
$$

The solution can again be broken up into the zero-input response and the zero-state response. One the solution is known, the output sequence can be calculated.

$$
\begin{equation*}
y[k]=C(k) \Phi\left(k, k_{0}\right) x_{0}+C(k) \sum_{j=k_{0}}^{k-1} \Phi(k, j+1) B(j) u[j]+D(k) u[k], k \geq k_{0} \tag{14}
\end{equation*}
$$

Time-Invariant

For the multi-input, multi-output, linear time-invariant system

$$
\begin{align*}
x[k+1] & =A(k) x[k]+B(k) u[k], & & x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}, \text { with } x\left(k_{0}\right)=x_{0} \tag{15}\\
y[k] & =C(k) x[k]+D(k) u[k], & & y \in \mathbb{R}^{p}
\end{align*}
$$

with known initial condition x_{0} and known input sequence $u[k], k \in \mathbb{Z}$. Assume the system is causal and that A, B, C, D are constant-valued matrices of the appropriate dimensions.
With the state transition matrix

$$
\begin{equation*}
\Phi\left(k, k_{0}\right)=A^{k-k_{0}}, k \geq k_{0} \tag{16}
\end{equation*}
$$

the solution to the difference equation for $k>k_{0}$ is given by

$$
\begin{equation*}
x[k]=A^{k-k_{0}} x_{0}+\sum_{j=k_{0}}^{k-1} A^{k-(j+1)} B u[j] \tag{17}
\end{equation*}
$$

The solution can again be broken up into the zero-input response and the zero-state response. One the solution is known, the output sequence can be calculated.

$$
\begin{equation*}
y[k]=C A^{k-k_{0}} x_{0}+C \sum_{j=k_{0}}^{k-1} A^{k-(j+1)} B u[j]+D u[k], k \geq k_{0} \tag{18}
\end{equation*}
$$

Properties of the State-Transition Matrix

$$
\begin{align*}
\Phi(k, k) & =I, & & k \geq k_{0} \\
\Phi\left(k+1, k_{0}\right) & =A(k) \Phi\left(k, k_{0}\right), & & k \geq k_{0} \tag{19}\\
\Phi\left(k, k_{0}\right) & =\Phi\left(k, k_{1}\right) \Phi\left(k_{1}, k_{0}\right), & & k \geq k_{1} \geq k_{0}
\end{align*}
$$

Unlike the continuous-time case, the state-transition matrix is not always invertible since the system matrix $A(k)$ or A may be singular.

