EECE 568: Control Systems
 Problem Set \#2

Dr. Oishi
http://courses.ece.ubc.ca/568

Due October 15, 2009

1. Linear transformations (30 points)

Consider the LTI system $\dot{x}=A x+B u, y=C x$, with

$$
A=\left[\begin{array}{rr}
0 & 1 \tag{1}\\
-2 & -2
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 3
\end{array}\right]
$$

1. Find the modal-form equivalent equation.
2. Compute the transfer function from input u to output y.
3. Compute the step response of the LTI system (assuming initial condition $x(0)=[0,0,0]$) using two different methods.

2. Controllability and Range Spaces (10 points)

Consider the equation

$$
\begin{equation*}
x[n]=A^{n} x[0]+A^{n-1} b u[0]+A^{n-2} b u[1]+\cdots+A b u[n-2]+b u[n-1] \tag{2}
\end{equation*}
$$

with $A \in \mathbb{R}^{n \times n}, b \in R^{n \times 1}$. Notice that this can be rewritten as

$$
x[n]-A^{n} x[0]=\left[\begin{array}{llll}
b & A b & \cdots & A^{n-1} b
\end{array}\right]\left[\begin{array}{c}
u[n-1] \tag{3}\\
u[n-2] \\
\vdots \\
u[0]
\end{array}\right]
$$

Under what conditions on A and b will there exist an input sequence $u[0], u[1], \cdots, u[n]$ to meet equation (2) for any $x[n]$ and $x[0]$?

3. State transition matrix (20 points)

Let $\Phi\left(t, t_{0}\right)$ be the state transition matrix $\dot{x}(t)=A(t) x(t)$, with

$$
\Phi\left(t, t_{0}\right)=\left[\begin{array}{ll}
\Phi_{11}\left(t, t_{0}\right) & \Phi_{12}\left(t, t_{0}\right) \tag{4}\\
\Phi_{21}\left(t, t_{0}\right) & \Phi_{22}\left(t, t_{0}\right)
\end{array}\right], \text { and } A(t)=\left[\begin{array}{cc}
A_{11}(t) & A_{12}(t) \\
\mathbf{0} & A_{22}(t)
\end{array}\right]
$$

Show that $\Phi_{21}\left(t, t_{0}\right)=\mathbf{0}$ for all t and t_{0}, and that $\frac{\partial}{\partial t} \Phi_{i i}\left(t, t_{0}\right)=A_{i i} \Phi_{i i}\left(t, t_{0}\right)$ for $i=1,2$.

4. Modes of a Spring-Mass System (40 points)

Consider a frictionless two-mass system as shown below, with forces u_{1} and u_{2} applied to masses m_{1} and m_{2}, respectively.

1. Show that the state-space representation of the system, with state $x=\left[y_{1}, y_{2}, \dot{y}_{1}, \dot{y}_{2}\right]$, input $u=\left[u_{1}, u_{2}\right]$, and output $y=\left[y_{1}, y_{2}\right]$ is given by:

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{cc}
\mathbf{0} & I \\
-M^{-1} K & \mathbf{0}
\end{array}\right] x+\left[\begin{array}{c}
\mathbf{0} \\
M^{-1}
\end{array}\right] u \tag{5}\\
y & =\left[\begin{array}{cc}
I & \mathbf{0}
\end{array}\right]
\end{align*}
$$

with $M=\left[\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right], m_{1}=m_{2}=1 \mathrm{~kg}$ and $K=\left[\begin{array}{cc}2 k & -k \\ -k & 2 k\end{array}\right], k=1 \mathrm{~N} / \mathrm{m}$.
2. Simulate the zero-input response from initial condition $x_{0}=[1,0,0,0]$. (Using lsim or initial is fine).
(a) What is the representation of x_{0} in modal coordinates? (The Matlab command eig may be useful.)
(b) Explain the observed output in terms of the modal dynamics.
3. Now consider the initial condition $x_{0}=[1,1,0,0]$. Simulate the zero-input response from this initial condition and explain the observed output. Why is the response a simple oscillation?
4. Find another initial condition which triggers a different "mode" of the system dynamics.

BONUS: (+2 points) How many modes does this system have? Why?

