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Problems without asterisks emphasize basic material, problems marked with asterisks (*) are more
difficult, time-consuming, or open-ended. All basic problems plus any two of the (*) problems should
be handed in for full credit. If you hand in more than two (*) problems, all will be evaluated, but
only the top two will be counted towards your mark.

1. LTI Stability (20/20∗ points)

Consider the system matrix

A =





−.9 0 −1
0 −1 −1
0 0 −1



 (1)

and non-zero input matrix B ∈ R
3×1 and non-zero output matrix C ∈ R

1×3. For the following
questions, feel free to use Matlab to assist in any numerical calculations.

1. Is the system ẋ = Ax stable? Asymptotically stable? Unstable?

2. Is the system x[k + 1] = Ax[k] stable? Asymptotically stable? Unstable?

*3. Is the system ẋ = Ax+Bu, y = Cx, BIBO stable? BIBO unstable? Or is further information
required to determine BIBO stability?

*4. Is the system x[k + 1] = Ax[k] + Bu[k], y[k] = Cx[k], BIBO stable? BIBO unstable? Or is
further information required to determine BIBO stability?

2. BIBO Stability (10/10∗ points)

1. Is the LTI system with impulse response H(t) =
[

te−t, 1

1+t

]

, t ≥ 0, BIBO stable?

Now consider the following LC circuit with input current u and output y, the voltage across the
capacitor. You may assume L = C = 1 for simplicity.

*2. Find the transfer function between input u and output y, then show that the system is not
BIBO stable by finding a bounded input that produces an unbounded output.
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3. LTV System Stability (0/20∗ points)

Consider the system

ẋ =

[

−1 0
−e−3t 0

]

x (2)

*1. Find the solution Φ(t, t0).

*2. Is the system stable? Asymptotically stable?

4. Lyapunov Techniques (10/20∗ points)

1. Use the Lyapunov theorem for stability of continuous-time LTI systems to show that all eigen-

values of A =

[

0 1
−

1

2
−1

]

have negative real part. That is, show that the Lyapunov equation

holds for any real, symmetric, negative definite Q and corresponding real, symmetric, positive
definite P . Hint: The leading principal minors may be useful in evaluating definiteness.

*2. Show that all eigenvalues of A ∈ R
n×n have real parts less than −µ < 0 if and only if, for any

given positive definite symmetric matrix Q ∈ R
n×n, the equation AT P + PA + 2µP = −Q

has a unique symmetric solution P ∈ R
n×n that is positive definite. (You can reference (as

opposed to duplicate) portions of the standard stability proof covered in class, as needed).

*3. Consider a system x[k + 1] = Ax[x], x ∈ R
n. For each question, fill in the blank with one of

the following: may be, must be, must not be.

(a) If the system is stable in the sense of Lyapunov, there a real, symmetric P > 0
such that AT PA + A = Q for any real, symmetric Q < 0.

(b) If the system is stable in the sense of Lyapunov, there a real, symmetric P > 0
such that AT PA + A = Q for any real, symmetric Q ≤ 0.

(c) If the system is asymptotically stable, there a real, symmetric P < 0 such that
AT PA + A = Q for any real, symmetric Q < 0.

(d) If there exists real, symmetric P > 0, Q < 0 pair such that AT PA + A = Q, the system
asymptotically stable.
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