EECE 568: Control Systems Problem Set \#3

Dr. Oishi
http://courses.ece.ubc.ca/568

Due November 12, 2009

Problems without asterisks emphasize basic material, problems marked with asterisks (*) are more difficult, time-consuming, or open-ended. All basic problems plus any two of the $\left(^{*}\right)$ problems should be handed in for full credit. If you hand in more than two $\left(^{*}\right)$ problems, all will be evaluated, but only the top two will be counted towards your mark.

1. LTI Stability ($20 / 20^{*}$ points)

Consider the system matrix

$$
A=\left[\begin{array}{rrr}
-.9 & 0 & -1 \tag{1}\\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

and non-zero input matrix $B \in \mathbb{R}^{3 \times 1}$ and non-zero output matrix $C \in \mathbb{R}^{1 \times 3}$. For the following questions, feel free to use Matlab to assist in any numerical calculations.

1. Is the system $\dot{x}=A x$ stable? Asymptotically stable? Unstable?
2. Is the system $x[k+1]=A x[k]$ stable? Asymptotically stable? Unstable?
*3. Is the system $\dot{x}=A x+B u, y=C x$, BIBO stable? BIBO unstable? Or is further information required to determine BIBO stability?
*4. Is the system $x[k+1]=A x[k]+B u[k], y[k]=C x[k]$, BIBO stable? BIBO unstable? Or is further information required to determine BIBO stability?

2. BIBO Stability ($10 / 10^{*}$ points)

1. Is the LTI system with impulse response $H(t)=\left[t e^{-t}, \frac{1}{1+t}\right], t \geq 0$, BIBO stable?

Now consider the following LC circuit with input current u and output y, the voltage across the capacitor. You may assume $L=C=1$ for simplicity.

${ }^{*}$ 2. Find the transfer function between input u and output y, then show that the system is not BIBO stable by finding a bounded input that produces an unbounded output.

3. LTV System Stability ($0 / 20^{*}$ points)

Consider the system

$$
\dot{x}=\left[\begin{array}{cc}
-1 & 0 \tag{2}\\
-e^{-3 t} & 0
\end{array}\right] x
$$

*1. Find the solution $\Phi\left(t, t_{0}\right)$.
*2. Is the system stable? Asymptotically stable?

4. Lyapunov Techniques (10/20* points)

1. Use the Lyapunov theorem for stability of continuous-time LTI systems to show that all eigenvalues of $A=\left[\begin{array}{rr}0 & 1 \\ -\frac{1}{2} & -1\end{array}\right]$ have negative real part. That is, show that the Lyapunov equation holds for any real, symmetric, negative definite Q and corresponding real, symmetric, positive definite P. Hint: The leading principal minors may be useful in evaluating definiteness.
*2. Show that all eigenvalues of $A \in \mathbb{R}^{n \times n}$ have real parts less than $-\mu<0$ if and only if, for any given positive definite symmetric matrix $Q \in \mathbb{R}^{n \times n}$, the equation $A^{T} P+P A+2 \mu P=-Q$ has a unique symmetric solution $P \in \mathbb{R}^{n \times n}$ that is positive definite. (You can reference (as opposed to duplicate) portions of the standard stability proof covered in class, as needed).
*3. Consider a system $x[k+1]=A x[x], x \in \mathbb{R}^{n}$. For each question, fill in the blank with one of the following: may be, must be, must not be.
(a) If the system is stable in the sense of Lyapunov, there \qquad a real, symmetric $P>0$ such that $A^{T} P A+A=Q$ for any real, symmetric $Q<0$.
(b) If the system is stable in the sense of Lyapunov, there \qquad a real, symmetric $P>0$ such that $A^{T} P A+A=Q$ for any real, symmetric $Q \leq 0$.
(c) If the system is asymptotically stable, there \qquad a real, symmetric $P<0$ such that $A^{T} P A+A=Q$ for any real, symmetric $Q<0$.
(d) If there exists real, symmetric $P>0, Q<0$ pair such that $A^{T} P A+A=Q$, the system
\qquad asymptotically stable.
