MECH468
 Modern Control Engineering MECH550P

Foundations in Control Engineering

Realization

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

2008/09
MECH468/550P

From SS to TF (review)

- CT LTI SS model $\left\{\begin{aligned} \frac{d x(t)}{d t} & =A x(t)+B u(t) \\ y(t) & =C x(t)+D u(t)\end{aligned}\right.$
- Laplace transform with $x(0)=0$

$$
\left\{\begin{array}{cl}
s X(s)-x(0) & =A X(s)+B U(s) \\
Y(s) & =C X(s)+D U(s)
\end{array}\right.
$$

$\Longrightarrow\left\{\begin{array}{l}X(s)=(s I-A)^{-1} B U(s) \quad \text { Memorize this! } \\ Y(s)=C X(s)+D U(s)\end{array}\right.$
$\longrightarrow Y(s)=\underbrace{\left\{C(s I-A)^{-1} B+D\right\}}_{=: G(s)} U(s)$
2008/09
MECH468/550P

Motivation

- Now, we have learned two ways to describe LTI systems, i.e., TF and SS models.
$T F: y(s)=G(s) u(s) \quad$ SS: $: \begin{aligned} & \dot{x}(t)=A x(t)+B u(t) \\ & y(t)=C x(t)+D u(t)\end{aligned}$
- To use analysis \& design techniques for SS models, one may want to transform a TF model to an equivalent SS model. How?
- More generally, what is the relationship between two models?

2008/09
MECH468/550P
2

Realization: From TF to SS

- Given a rational proper transfer matrix $G(s)$ find matrices (A,B,C,D) s.t.

$$
G(s)=C(s I-A)^{-1} B+D
$$

- Rationality: (polynomial)/(polynomial)
Rational $\frac{s+1}{s+2} \quad$ Non-rational e^{-s}
- Properness: deg(num)<=deg(den)

Proper $\frac{s+1}{s+2}, \frac{1}{s+1}$ Non-proper $_{s+1}, \frac{s^{2}+2 s+3}{s+1}$

2008/09
MECH468/550P

Remarks

- For one SS model, there is a unique TF.
- For one TF model, there are infinitely many SS!

- After realization, check the correctness by recovering the original transfer matrix.

Controllable canonical form

- SISO example $G(s)=\frac{n_{1} s^{2}+n_{2} s+n_{3}}{s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}}, n_{i} \in \mathbb{R}$

$$
\Longrightarrow\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -\alpha_{2} & -\alpha_{1}
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{lll}
n_{3} & n_{2} & n_{1}
\end{array}\right] x(t)
\end{array}\right.
$$

First step for realization

- Always extract D-matrix first!

$$
G(s)=\underline{G(\infty)}+\frac{G(\infty)}{}=D
$$

$$
\text { - Ex }\left[\begin{array}{cc}
\frac{s+2}{s+1} & \frac{1}{s+2} \\
\frac{s}{s / 2+1} & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]+\underset{\text { constant }}{\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{s+2} \\
\frac{-4}{s+2} & 0
\end{array}\right]}
$$

- After extracting D, find (A,B,C) s.t.

$$
G_{s p}(s)=C(s I-A)^{-1} B
$$

Companion matrix

- The following form (and its transpose) of a matrix is called companion matrix (form):

$$
A:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_{n} & -\alpha_{n-1} & \cdots & -\alpha_{2} & -\alpha_{1}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- Important property of a companion matrix

$$
\operatorname{det}(s I-A)=s^{n}+\alpha_{1} s^{n-1}+\cdots+\alpha_{n-1} s+\alpha_{n}
$$

SISO example

- Ex. $1 \quad G(s)=\frac{5 s^{2}+3 s+2}{s^{3}+11 s^{2}+14 s+6}$
- Ex. 2

$$
G(s)=\frac{4 s^{2}+3 s+2}{2 s^{2}+5 s+6}
$$

Controllable canonical form

- MIMO case $G(s)=\underbrace{\frac{N_{1} s^{r-1}+N_{2} s^{r-2}+\cdots+N_{r-1} s+N_{r}}{s^{r}+\alpha_{1} s^{r-1}+\cdots+\alpha_{r-1} s+\alpha_{r}}}, N_{i} \in \mathbb{R}^{q \times p}$

Least common denominator

MIMO example

- Transfer matrix $\quad G(s)=\left[\begin{array}{ll}\frac{1}{s^{2}+4 s+3} & \frac{1}{s+3}\end{array}\right]$

$$
=\frac{1}{s^{2}+4 s+3}\left[\begin{array}{ll}
1 & s+1
\end{array}\right]
$$

$$
=\frac{1}{s^{2}+4 s+3}\left\{\left[\begin{array}{ll}
0 & 1
\end{array}\right] s+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right\}
$$

$$
\Longrightarrow\left\{\begin{array}{l}
\dot{x}=\left[\begin{array}{cc|cc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\hline-3 & 0 & -4 & 0 \\
0 & -3 & 0 & -4
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
\hline 1 & 0 \\
0 & 1
\end{array}\right] u \\
y=\left[\begin{array}{ll|ll}
1 & 1 & 0 & 1
\end{array}\right] x
\end{array}\right.
$$

Note that the size of A-matrix is four.

Observable canonical form

- SISO example $G(s)=\frac{n_{1} s^{2}+n_{2} s+n_{3}}{s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}}, n_{i} \in \mathbb{R}$
$\longrightarrow\left\{\begin{array}{l}\dot{x}(t)=\left[\begin{array}{lll}0 & 0 & -\alpha_{3} \\ 1 & 0 & -\alpha_{2} \\ 0 & 1 & -\alpha_{1}\end{array}\right] x(t)+\left[\begin{array}{l}n_{3} \\ n_{2} \\ n_{1}\end{array}\right] u(t) \\ 0\end{array}\right]$
or equivalently $\left\{\begin{array}{l}\dot{x}(t)=\left[\begin{array}{lll}-\alpha_{1} & 1 & 0 \\ -\alpha_{2} & 0 & 1 \\ -\alpha_{3} & 0 & 0\end{array}\right] x(t)+\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right] u(t) \\ y(t)=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right] x(t)\end{array}\right.$
2008/09
MECH468/550P
13

Observable canonical form

- MIMO case

Least common denominator

$$
\Longrightarrow \underbrace{A \in \mathbb{R}^{r q \times r q}}_{C \in \mathbb{R}^{q \times r q}} \begin{gathered}
\overbrace{\left[\begin{array}{ccccc}
\circ & 0 & \cdots & 0 & -\alpha_{r} I_{q} \\
I_{q} & 0 & \cdots & 0 & -\alpha_{r-1} I_{q} \\
0 & \cdots & \cdots & \vdots & \vdots \\
\vdots & 0 & I_{q} & 0 & -\alpha_{2} I_{q} \\
0 & \cdots & 0 & I_{q} & -\alpha_{1} I_{q}
\end{array}\right]}^{\dot{x}=\underbrace{\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & I_{q}
\end{array}\right] x}_{B \in \mathbb{R}^{r q \times p}} x} \begin{array}{l}
{\left[\begin{array}{c}
N_{r} \\
N_{r-1} \\
\vdots \\
N_{2} \\
N_{1}
\end{array}\right]} \\
y
\end{array}]
\end{gathered}
$$

2008/09

MIMO example

- Transfer matrix $G(s)=\left[\begin{array}{ll}\frac{1}{s^{2}+4 s+3} & \frac{1}{s+3}\end{array}\right]$
$=\frac{1}{s^{2}+4 s+3}\left\{\left[\begin{array}{ll}0 & 1\end{array}\right] s+\left[\begin{array}{ll}1 & 1\end{array}\right]\right\}$
$\Rightarrow\left\{\begin{array}{l}\dot{x}=\left[\begin{array}{l|l}0 & -3 \\ \hline 1 & -4\end{array}\right] x+\left[\begin{array}{ll}1 & 1 \\ \hline 0 & 1\end{array}\right] u \\ y=\left[\begin{array}{l|l}0 & 1\end{array}\right] x\end{array}\right.$
Note that the size of A-matrix is two, not four!
Q: What is the smallest size of A ?
(Minimal realization: next lecture)

Remark

- Note the duality between controllable and observable canonical form.
- Observable canonical realization is always observable (but not always controllable). Why?

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ccccc}
\mathrm{O} & \mathrm{O} & \cdots & \mathrm{O} & -\alpha_{r} I_{q} \\
I_{q} & \mathrm{O} & \cdots & \mathrm{O} & -\alpha_{r-1} I_{q} \\
\mathrm{O} & \cdots & \ddots & \vdots & \vdots \\
\vdots & \mathrm{O} & I_{q} & \mathrm{O} & -\alpha_{2} I_{q} \\
\mathrm{O} & \cdots & \mathrm{O} & I_{q} & -\alpha_{1} I_{q}
\end{array}\right] x+\left[\begin{array}{c}
N_{r} \\
N_{r-1} \\
\vdots \\
N_{2} \\
N_{1}
\end{array}\right] u \\
y=\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & I_{q}
\end{array}\right] x \\
\quad \Longleftrightarrow \mathcal{O}=
\end{gathered}
$$

2008/09 MECH468/550P

Review

- So far, we considered the realizations of the following transfer matrix:

$$
G(s)=\left[\begin{array}{ll}
\frac{1}{s^{2}+4 s+3} & \frac{1}{s+3}
\end{array}\right]=\frac{1}{s^{2}+4 s+3}\left\{\left[\begin{array}{ll}
0 & 1
\end{array}\right] s+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right\}
$$

Controllable canonical form Observable canonical form with order 4 with order 2
$\dot{x}=\left[\begin{array}{cc|cc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline-3 & 0 & -4 & 0 \\ 0 & -3 & 0 & -4\end{array}\right] x+\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ \hline 1 & 0 \\ 0 & 1\end{array}\right] u \quad \dot{x}=\left[\begin{array}{c|c}0 & -3 \\ \hline 1 & -4\end{array}\right] x+\left[\begin{array}{cc}1 & 1 \\ \hline 0 & 1\end{array}\right] u$
$y=\left[\begin{array}{ll|ll}1 & 1 & 0 & 1\end{array}\right] x \quad y=\left[\begin{array}{l|l}0 & 1\end{array}\right] x$

Topics from now on

- Realization of the smallest order
- How to characterize such realization?
- How to obtain such realization?
- Some terminologies:
- Minimal realization of G(s): Realization (A,B,C,D) of G that has the smallest dimension of A-matrix.
- McMillan degree of G(s):

The dimension of A of the minimal realization. (This indicates the "complexity" of a system G(s).)

Two important facts on minimal realization

- Fact 1: A realization (A, B, C, D) is minimal if and only if
(A, B) is controllable and (A, C) is observable.
- Fact 2: All minimal realizations of G(s) are related by coordinate transformations.
(Sketches of proofs are given in the appendix.)

Nonminimal realization examples

- Ex $\quad G(s)=\frac{s^{2}-1}{4\left(s^{3}-1\right)}=\frac{1 / 4 s^{2}-1 / 4}{s^{3}-1}$
- Controllable canonical form
$\left\{\begin{array}{l}\dot{x}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] u \quad \operatorname{rank}\left[\begin{array}{c}C \\ C A \\ C A^{2}\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right] / 4=2 \\ y=[-1 / 40\end{array}\right]$
- Observable canonical form

$$
\left\{\begin{array}{l}
\dot{x}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] x+\left[\begin{array}{c}
-1 / 4 \\
0 \\
1 / 4
\end{array}\right] \quad u \quad \operatorname{rank}\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -1 & 0 \\
1 & 0 & -1
\end{array}\right] / 4=2 \\
y=\left[\begin{array}{lll}
0 & 1
\end{array}\right] x
\end{array}\right.
$$

MECH468/550P
22

How to obtain minimal realization

- SISO (Single-Input-Single-Output) case
- Remove common factors from numerator and denominator of $\mathrm{G}(\mathrm{s})$. Then, realize G in a controllable (or observable) canonical form.

$$
\begin{aligned}
G(s)= & \frac{s^{2}-1}{4\left(s^{3}-1\right)}=\frac{1 / 4 s^{2}-1 / 4}{s^{3}-1}=\frac{1 / 4 s+1 / 4}{s^{2}+s+1} \\
& \Leftrightarrow \text { C.C.F. }\left\{\begin{array}{l}
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=[1 / 41 / 4] x
\end{array}\right.
\end{aligned}
$$

\square Observable! \quad Minimal! McMillan degree 2

How to obtain minimal realization

- SIMO case (G(s) is a column vector)
- Use the controllable canonical form.

$$
\begin{aligned}
G(s)=\frac{1}{s^{2}+4 s+3}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right] s+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \Rightarrow \dot{x} & =\left[\begin{array}{c|c}
0 & 1 \\
\hline-3 & -4
\end{array}\right] x+\left[\frac{0}{1}\right] u \\
y & =\left[\begin{array}{l|l}
1 & 0 \\
1 & 1
\end{array}\right] x
\end{aligned}
$$

- MISO case ($\mathrm{G}(\mathrm{s})$ is a row vector)
- Use the observable canonical form.

$$
\left.\begin{array}{rl}
G(s)=\frac{1}{s^{2}+4 s+3}\left\{\left[\begin{array}{ll}
0 & 1
\end{array}\right] s+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right\} \Rightarrow \quad \dot{x} & =\left[\begin{array}{l|l}
0 & -3 \\
\hline 1 & -4
\end{array}\right] x+\left[\begin{array}{ll}
\frac{1}{1} & 1
\end{array}\right] u \\
y & 1
\end{array}\right] u\left[\begin{array}{l|l}
0 & 1
\end{array}\right] x \text {. }
$$

How to obtain minimal realization

- MIMO (Multiple-Input-Multiple-Output) case

1. Realize $\mathrm{G}(\mathrm{s})$ in some non-minimal canonical form.
2. Use the Kalman decomposition to remove uncontrollable/unobservable parts. ("minreal.m")

Remark: Unfortunately, it is generally hard to compute the Kalman decomposition by hand. Remark: There is another famous algorithm, called Ho's algorithm, to compute a minimal realization. (Not covered in this course.)

Kalman decomposition (review)

- Conceptual figure (Not block diagram!)

System

Kalman decomposition (review)

- Every SS model can be transformed by z=Tx for some appropriate T into a canonical form:

$y=\underbrace{\left[\begin{array}{llll}C_{c o} & 0 & C_{\bar{c} o} & 0\end{array}\right]}_{C T^{-1}}\left[\begin{array}{l}z_{c o} \\ z_{c \bar{o}} \\ z_{\bar{c} o} \\ z_{\overline{c o}}\end{array}\right]+D u$
$\left(A_{c o}, B_{c o}\right)$ is controllable \& $\left(A_{c o}, C_{c o}\right)$ is observable

Example

$$
\begin{aligned}
& \text { - TF } \quad G(s)=\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{1}{(s+2)^{2}}
\end{array}\right] \\
& \text { sys11 }=\operatorname{tf}\left(\left[\begin{array}{ll}
4 & -10]
\end{array},\left[\begin{array}{ll}
2 & 1
\end{array}\right) ; \quad \gg G\right.\right. \\
& \text { sys12 }=\operatorname{tf}\left(3,\left[\begin{array}{ll}
1 & 2
\end{array}\right)\right. \text {; } \\
& \text { sys21 }=t f\left(\begin{array}{ll}
\left.1,\left[\begin{array}{ll}
2 & 5
\end{array}\right]\right) \text {; } ; \text {, }
\end{array}\right. \\
& \operatorname{sys} 22=t f\left(1,\left[\begin{array}{ll}
1 & 4
\end{array}\right]\right) \text {; } \\
& \text { sysG }=\text { [sys11 sys12; sys21 sys22]; } \\
& \mathrm{G}=\mathrm{ss}(\mathrm{sys} \mathrm{G}) ;
\end{aligned}
$$

[^0]MECH468/550P
28

Example (cont'd)

- Minimal realization

2008/09
MECH468/550P

Example (cont'd)

- After realization, check >> zpk(Gmin)
the correctness by recovering the original transfer matrix.
$G(s)=\left[\begin{array}{cc}\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\ \frac{1}{(2 s+1)(s+2)} & \frac{1}{(s+2)^{2}}\end{array}\right]$

Zero/pole/gain from input 1 to output ${ }_{\# 1} \quad 2(\mathrm{~s}-2.5)(\mathrm{s}+2)^{-2}$
\#1: ------------------
$(s+0.5)(s+2)^{\wedge}$
\#2: $\quad--\quad .5(\mathrm{~s}+2)$
($\mathrm{s}+0.5$) $(\mathrm{s}+2)^{\wedge}-2$
Zero/pole/gain from input 2 to output...
\#1: $\quad 3(\mathrm{~s}+2)(\mathrm{s}+0.5)$
$(\mathrm{s}+0.5)(\mathrm{s}+2)^{-2} \quad(1,2)$

2008/09
MECH468/550P
30

Summary

- Realization (In Matlab, ss.m)
- Controllable canonical form
- Observability canonical form
- Minimal realization
- Realization for DT systems is exactly the same as that for CT systems.

Exercises

- Obtain controllable canonical realizations for the following transfer matrices. By hand-calculation, check the correctness of your answers.

$$
\begin{array}{cc}
G_{1}(s)=\left[\begin{array}{cc}
\frac{4 s-10}{2 s+1} & \frac{3}{s+2} \\
\frac{1}{(2 s+1)(s+2)} & \frac{1}{(s+2)^{2}}
\end{array}\right] & G_{2}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{s+3}{s+1} \\
\frac{1}{(s+1)(s+2)} & \frac{1}{s+2}
\end{array}\right] \\
G_{3}(s)=\left[\begin{array}{ll}
\frac{1}{s+1} & \frac{1}{s+1}
\end{array}\right] & G_{4}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
0 & \frac{1}{s+1}
\end{array}\right]
\end{array}
$$

Exercises

- Obtain realizations in observable canonical forms for the following transfer matrices.

$$
G_{1}(s)=\left[\begin{array}{ll}
\frac{4 s-10}{2 s+2} & \frac{3}{2 s+2}
\end{array}\right] \quad G_{2}(s)=\left[\begin{array}{ll}
\frac{1}{s+1} & \frac{s+3}{s+1}
\end{array}\right]
$$

- Using the obtained realizations above, find realizations of the following TFs.

$$
G_{1}(s)+G_{2}(s) \quad \alpha G_{1}(s)+G_{2}(s) M, \alpha \in \mathbb{R}, M \in \mathbb{R}^{2 \times 2}
$$

By hand-calculation, check the correctness by recovering the original transfer matrix.

Appendix: Derivation of controllable canonical form

- TF

$$
G(s)=\frac{n_{1} s^{2}+n_{2} s+n_{3}}{s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}}, n_{i} \in \mathbb{R}
$$

- Introduce a variable x(s)

- We have $\left(s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}\right) x(s)=u(s)$

$$
y(s)=\left(n_{1} s^{2}+n_{2} s+n_{3}\right) x(s)
$$

2008/09
MECH468/550P

Exercises

- By both hand-calculation and Matlab, obtain minimal realization for:

$$
\begin{array}{ll}
G(s)=\frac{s^{3}-5 s+2}{s^{3}-7 s+6} & G(s)=\left[\begin{array}{ll}
\frac{1}{(s+1)(s+2)} & \frac{s+3}{s+2}
\end{array}\right] \\
G(s)=\left[\begin{array}{ll}
\frac{1}{s+1} & \frac{1}{s+1}
\end{array}\right] & G(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
0 & \frac{1}{s+1}
\end{array}\right]
\end{array}
$$

Appendix: Derivation (cont'd)

- Introduce state variables $\left\{\begin{array}{l}x_{1}(s):=x(s) \\ x_{2}(s):=s x(s) \\ x_{3}(s):=s^{2} x(s)\end{array}\right.$
- Then,

$$
\begin{aligned}
& \left(s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}\right) x(s)=u(s) \\
& \quad \Rightarrow s x_{3}(s)=-\alpha_{1} x_{3}(s)-\alpha_{2} x_{2}(s)-\alpha_{3} x_{1}(s)+u(s) \\
& y(s)=\left(n_{1} s^{2}+n_{2} s+n_{3}\right) x(s) \\
& \quad \Rightarrow y(s)=n_{1} x_{3}(s)+n_{2} x_{2}(s)+n_{3} x_{1}(s)
\end{aligned}
$$

- By inverse Laplace transform, done!

Appendix: Derivation of observable canonical form

- TF

$$
G(s)=\frac{n_{1} s^{2}+n_{2} s+n_{3}}{s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}}, n_{i} \in \mathbb{R}
$$

- Rewrite I/O relation as

$$
y(s)=\frac{n_{1} s^{2}+n_{2} s+n_{3}}{s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}} u(s)
$$

$\Rightarrow\left(s^{3}+\alpha_{1} s^{2}+\alpha_{2} s+\alpha_{3}\right) y(s)=\left(n_{1} s^{2}+n_{2} s+n_{3}\right) u(s)$
$\Rightarrow y(s)=-\frac{\alpha_{1}}{s} y(s)-\frac{\alpha_{2}}{s^{2}} y(s)-\frac{\alpha_{3}}{s^{3}} y(s)+\frac{n_{1}}{s} u(s)+\frac{n_{2}}{s^{2}} u(s)+\frac{n_{3}}{s^{3}} u(s)$

Appendix: Derivation (cont'd)

- Draw block-diagram

- By introducing state variables as in the figure, done!

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{lll}
0 & 0 & -\alpha_{3} \\
1 & 0 & -\alpha_{2} \\
0 & 1 & -\alpha_{1}
\end{array}\right] x(t)+\left[\begin{array}{l}
n_{3} \\
n_{2} \\
n_{1}
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] x(t)
\end{array}\right.
$$

Appendix: Proof of Fact 1

- "only if"-part : If (A, B) is not controllable or (A, C) is not observable, due to Kalman decomposition theorem, there is a realization with less state dimension.
- "if"-part : Suppose (A,B,C) controllable \& observable.
$G(s)=C\left(s I_{n}-A\right)^{-1} B+D=\bar{C}\left(s I_{\bar{n}}-\bar{A}\right)^{-1} \bar{B}+\bar{D}, \bar{n}<n$
$\Rightarrow C A^{m} B=\bar{C} \bar{A}^{m} \bar{B}, m=0,1, \ldots$
$\Rightarrow \mathcal{O C}=\overline{\mathcal{O}} \overline{\mathcal{C}} \quad \Rightarrow \operatorname{rank}(\mathcal{O} C)=\operatorname{rank}(\overline{\mathcal{O}} \overline{\mathcal{C}}) \Rightarrow n \leq \bar{n}$
$\mathcal{O}:=\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]$ $P \in \mathbb{R}^{l \times m}, Q \in \mathbb{R}^{m \times}$ $\operatorname{rank} P+\operatorname{rank} Q-m \leq \operatorname{rank}(P Q) \leq \min \{r a n k P$, rank $Q\}$

$$
\mathcal{C}:=\left[\begin{array}{llll}
B A B & \cdots & A^{n-1} B
\end{array}\right]
$$

Appendix: Proof of Fact 2

- Given a rational proper transfer matrix, assume two minimal realizations:

$$
C(s I-A)^{-1} B+D=\bar{C}(s I-\bar{A})^{-1} \bar{B}+\bar{D} \Rightarrow O C=\bar{O} \bar{C}, O A C=\bar{O} \bar{A} \bar{C} \star
$$

Define T as $T:=\left(\overline{\mathcal{O}}^{T} \overline{\mathcal{O}}\right)^{-1} \overline{\mathcal{O}}^{T} \mathcal{O}=\overline{\mathcal{C}} \mathcal{C}^{T}\left(\mathcal{C C}^{T}\right)^{-1} \quad$ (by $\left.\boldsymbol{\star}\right)$
Then, due to $\star \quad T^{-1}=\left(\mathcal{O}^{T} \mathcal{O}\right)^{-1} \mathcal{O}^{T} \overline{\mathcal{O}}=\mathcal{C} \overline{\mathcal{C}}^{T}\left(\overline{\mathcal{C}}^{T}\right)^{-1}$
One can verify the following by using \star

$$
\bar{A}=T A T^{-1}, \bar{B}=T B, \bar{C}=C T^{-1}
$$

[^0]: 2008/09

