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Outline

! Introduction
! Why nonlinear systems

! Motivating examples

! Some types of nonlinear phenomena

! Review
! Linear systems

! Equilibria

! Jacobian linearization

! Phase-plane
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Learning Objectives

At the end of this lecture, you should be able to…

! Introduction
! Distinguish linear systems from nonlinear systems

mathematically

! Qualitatively describe some phenomena particular to
nonlinear systems

! Review
! Linearize a nonlinear system about an equilibrium

point

! Relate behavior near an equilibrium point to
eigenvalues of Jacobian matrix

! Relate phase-plane plots and transient behavior for
2nd order systems
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References
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Linear vs. Nonlinear

! Linear systems
!

! Wealth of developed tools for analysis, simulation,
and control

! Describes some behaviors of physical systems in a
certain “neighborhood”

! Nonlinear systems
! Most physical systems

! Exhibits behaviors simply NOT POSSIBLE in linear
systems
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Simulation vs. Analysis

! Simulation
! Enabled through continued advances in computing

! Parallel processing

! Grid computing

! Algorithms for scientific computing

! Coupled with good intuition, can predict system
behavior
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Simulation vs. Analysis

! Drawbacks to simulation
! May be inaccurate for nonlinear systems

! Non-Lipschitz dynamics

! “Stiff” ODEs

! Logic-based dynamics

! Chattering

! Can be highly dependent on particular choice of
initial conditions

! May be an unreliable predictor of system behavior
if critical test cases are missed

! No proofs are possible through simulation for
stability or reachability
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Simulation vs. Analysis

! Analysis
! Mathematical proofs of system behavior

! Stability

! Reachability

! Optimality

! Robustness

! Others…

! Independent of choice of initial conditions (within a
neighborhood)

! May yield non-intuitive results (e.g., conditions that may
not have been considered otherwise for simulation)
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Simulation vs. Analysis

! Drawbacks to analysis
! Requires analytic formulation of system dynamics (e.g.,

no look-up tables)

! Ordinary differential equations

! Difference equations

! Computational tools for analysis are limited
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Simulation vs. Analysis

! Computational tools for simulation

! pplane

! Matlab’s ode23, ode45, etc.

! Mathematica integration routines

! SPICE, Xyce, etc.

! Computational tools for analysis

! SOStools

! Symbolic manipulation in Mathematical, Matlab
symbolic toolbox

! Reachability tools
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Practical examples

! Nonlinear analysis
! “Flutter” in aircraft wing structural dynamics

! Oscillations in nonlinear circuits

! Actuator hysteresis

! Population dynamics -- Atlantic cod collapse

! Human heart arrythmia

! Circadian clock

! Nonlinear control
! Helicopter flight control systems

! VTOL and fighter aircraft FMS

! Robot manipulation

! Automotive fuel injection systems

! Biochemical reactors
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Equilibrium Points

Definition: Equilibrium point

! A point                 is an equilibrium point of

 iff                 .

! Finding and analyzing equilibria is key to predicting
the behavior of nonlinear systems
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Ex. #1: Heart rhythms

! Fitzhugh-Nagumo model of electric pulses in the heart

! Heart tissue is excitable -- a small impulse can trigger a large
response

! Based on circuit models used to

explain neuronal impulses

! References:
! http://www.scholarpedia.org/article/FitzHugh-

Nagumo_model

! http://thevirtualheart.org/java/fhnphase.html
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Ex. #1: Heart rhythms

! Null clines intersect at different points as ! varies

! Intersection is an equilibrium

point, stable for ! = 0.8

! What does this mean

physically?
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Ex. #1: Heart rhythms

! What happens to the stability of the equilibrium point when ! <
7/15 ?

! This phenomena is known as a Hopf bifurcation.

! > 7/15 ! = 7/15 ! < 7/15
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Ex. #1: Heart rhythms

! Notice that although the equilibrium point is unstable
for the lowest value of !, periodic motion is achieved.

! While not ‘stable’ according to our previous
definitions, trajectories converge to a particular path
in the state-space -- this is a limit cycle.

! This phenomena is unique to nonlinear systems.

! But how do we know whether limit cycles exist?
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Preliminaries

Some behaviors particular to nonlinear systems (not
possible in linear systems)

! Multiple isolated equilibrium points

! Limit cycles

! Bifurcations

! Subharmonic, harmonic, or almost-periodic
oscillations

! Complex dynamical behavior (chaos)

EECE 571M Spring 2009 18

Preliminaries

and the system dynamics are
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Preliminaries

Common forms
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Preliminaries

What can go wrong with generic nonlinear DEs:

! Lack of existence of solutions

! Lack of uniqueness of solutions

! Finite escape time

These problems can be addressed by constraining f(x)
(e.g., Lipschitz continuity)
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Ex. #2: Lotka-Volterra comp.

! Competition between species (e.g., finite shared resources)

! Population of species n1, n2

! Constant parameters

! Growth rates r1,r2

! Carrying capacities K1, K2

! Competition coefficients b12, b21

! Resources:
! http://fisher.forestry.uga.edu/popdyn/

LotkaVolterraCompetition.html

! http://www.tiem.utk.edu/bioed/bealsmodules/
competition.html
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Ex. #2: Lotka-Volterra comp.

! Non-dimensionalize
! Define new variables x1 = n1/K1,  x2 = n2/K2

! Define constant parameters

A = b12 K1/K2,  B = r2/r1, and C = b21 K2/K1

! “Normalized” dynamics
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Species 1

Ex. #2: Lotka-Volterra comp.

Species 2

! Why does Species 1 dominate in the plot on the left,
and Species 2 dominate in the plot on the right?

! Is it possible for both species to co-exist in
perpetuity?

! How do birth/death rates and competition coefficients
affect which species dominates?
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Ex. #2: Lotka-Volterra comp.

! What happens if
the system starts
at x0 = (1,0)?

! At x0 = (0,1)?

! Multiple
equilibrium
points are
possible in
nonlinear systems
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Ex. #2: Lotka-Volterra comp.

! To find all equilibria of the normalized Lotka-Volterra
competition system, solve for all (x1, x2) such that

! The 4 equilibria (for non-negative x1, x2) are
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Linearization about an Eq. Pt.

! Given the nonlinear system

with equilibrium point x*, consider a nearby point

! Use a Taylor’s series 1st order approximation to
determine the dynamics of (x-x*)

! These dynamics MAY indicate what happens near the
equilibrium point.
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Linearization about an Eq. Pt.

! As an example of when linearization fails, consider the following
two systems:

! Which have the same linearization about 0

! Yet exhibit completely different behaviors.  Why?
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Linearization about an Eq. Pt.

! The eigenvalues of the Jacobian Df = ! f/!x|x*

provide information about the behavior of trajectories
near the equilibrium point.

! Consider a 2D system

with two real, negative eigenvalues "1, "2 < 0

! Time can be ‘eliminated’ by examining "x1 vs. "x2 --
this is a phase portrait or a phase-plane plot.
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Phase portraits of 2D linear systems

Stable
node

"1,"2<0

Unstable
node

"1,"2>0

In all of these cases,

Saddle
"1>0,
"2<0
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Phase portraits of 2D linear systems

Stable
focus

Re("1)<0,
Re("2)<0

Unstable
focus

Re("1)>0,
Re("2)>0

In all of these cases,

Center
Re("1)=0,
Re("2)=0
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Phase portraits of 2D linear systems

! Stable equilibrium points have trajectories that tend towards the
origin and can be classified by eigenvalue characteristics:

! Both negative real numbers (stable node)

! Complex conjugate pair with negative real part (stable focus)

! Unstable equilibrium points have trajectories that tend towards
infinity and can be classified by eigenvalue characteristics:

! Both positive real numbers (unstable node)

! Complex conjugate pair with positive real part (unstable focus)

! Positive and negative real numbers (saddle)

! What happens when one eigenvalue has 0 real part?

! What happens when both eigenvalues have 0 real part?

! What happens when eigenvalues are repeated?
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Big picture for this course

! When analyzing nonlinear systems, it is often useful to quantify

! Stability -- e.g., steady-state behavior

! Changes in stability -- e.g., due to variations in initial conditions or
model parameters, model uncertainty, external disturbances, …

! Invariance -- ability of the state to stay within a region of the state-
space

! When controlling nonlinear systems, it is often useful to quantify

! How the closed-loop system should behave

! How much of the open-loop system’s behavior can be changed

! Sensitivity to errors, disturbances, computational time…

! Actuation effort

! The goal of this course is to develop a set of basic tools
to analyze and control nonlinear systems.


