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Outline

= Introduction
= Why nonlinear systems
= Motivating examples
= Some types of nonlinear phenomena

= Review
= Linear systems
« Equilibria
= Jacobian linearization
= Phase-plane
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Learning Objectives

At the end of this lecture, you should be able to...

= Introduction

= Distinguish linear systems from nonlinear systems
mathematically

= Qualitatively describe some phenomena particular to
nonlinear systems
= Review
= Linearize a nonlinear system about an equilibrium
point
= Relate behavior near an equilibrium point to
eigenvalues of Jacobian matrix

= Relate phase-plane plots and transient behavior for
2nd order systems
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References

= Khalil
= Section 1.1,
= Section 2.1, 2.2, 2.3
= Sastry
= Section1.1,1.2, 1.5
= Section 2.1,2.2
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Linear vs. Nonlinear

= Linear systems
) % = A(t)x(t), xz(to) = xo with z € R", A(t) € R"*"

= Wealth of developed tools for analysis, simulation,
and control

= Describes some behaviors of physical systems in a
certain “neighborhood”

= Nonlinear systems
= Most physical systems

= Exhibits behaviors simply NOT POSSIBLE in linear
systems
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Simulation vs. Analysis

= Simulation

= Enabled through continued advances in computing
= Parallel processing
= Grid computing
= Algorithms for scientific computing

= Coupled with good intuition, can predict system
behavior
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Simulation vs. Analysis

= Drawbacks to simulation
= May be inaccurate for nonlinear systems
= Non-Lipschitz dynamics
= “Stiff” ODEs
= Logic-based dynamics
= Chattering

= Can be highly dependent on particular choice of
initial conditions

= May be an unreliable predictor of system behavior
if critical test cases are missed

= No proofs are possible through simulation for
stability or reachability
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Simulation vs. Analysis

= Analysis
= Mathematical proofs of system behavior
« Stability
= Reachability
= Optimality
= Robustness
= Others...

= Independent of choice of initial conditions (within a
neighborhood)

= May yield non-intuitive results (e.g., conditions that may
not have been considered otherwise for simulation)
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Simulation vs. Analysis

= Drawbacks to analysis
= Requires analytic formulation of system dynamics (e.g.,
no look-up tables)
= Ordinary differential equations
dx(t
% — F(a(), 1), 2(ty) = x0, & € R”
= Difference equations
zlk+1) = fz(k), =)=z, x(k) € R"

= Computational tools for analysis are limited
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Simulation vs. Analysis

= Computational tools for simulation
= pplane
= Matlab’s ode23, ode45, etc.
« Mathematica integration routines
= SPICE, Xyce, etc.
= Computational tools for analysis

= SOStools

= Symbolic manipulation in Mathematical, Matlab
symbolic toolbox

= Reachability tools
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Practical examples

= Nonlinear analysis
= “Flutter” in aircraft wing structural dynamics
= Oscillations in nonlinear circuits
= Actuator hysteresis
= Population dynamics -- Atlantic cod collapse
= Human heart arrythmia
= Circadian clock
= Nonlinear control
= Helicopter flight control systems
= VTOL and fighter aircraft FMS
= Robot manipulation
= Automotive fuel injection systems
= Biochemical reactors
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UBC
Equilibrium Points

Definition: Equilibrium point
= Apoint ¥ € R" is an equilibrium point of

i = fla)

iff f(z*)=0.

= Finding and analyzing equilibria is key to predicting
the behavior of nonlinear systems
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Ex. #1: Heart rhythms

= Fitzhugh-Nagumo model of electric pulses in the heart
o1 3
Vo= (V=V3-W)
W = eV—-yW+p5)
= Heart tissue is excitable -- a small impulse can trigger a large

Ex. #1: Heart rhythms

= Null clines intersect at different points as p varies
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= Based on circuit models used to .
explain neuronal impulses . 2
_I_E
= References: L

o
s http://www.scholarpedia.org/article/FitzHugh-
Nagumo_model
s http://thevirtualheart.org/java/fhnphase.html
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W
= Intersection is an equilibrium
point, stable for $ = 0.8
=  What does this mean
physically?

recovery variable, W
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Ex. #1: Heart rhythms

= What happens to the stability of the equilibrium point when § <
7/157?

B =7/15

S

= This phenomena is known as a Hopf bifurcation.
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Ex. #1: Heart rhythms

= Notice that although the equilibrium point is unstable
for the lowest value of B, periodic motion is achieved.

= While not ‘stable’ according to our previous
definitions, trajectories converge to a particular path
in the state-space -- this is a limit cycle.

= This phenomena is unique to nonlinear systems.

= But how do we know whether limit cycles exist?
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Preliminaries

Some behaviors particular to nonlinear systems (not
possible in linear systems)

= Multiple isolated equilibrium points

= Limit cycles

= Bifurcations

= Subharmonic, harmonic, or almost-periodic
oscillations

= Complex dynamical behavior (chaos)
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Preliminaries

Nonlinear State Model

T = fl(t,:'ﬂl,...,iﬂn:ul:---sup)
j}z = fz(t, LlgeeesLpngUly.s. .,'u.p)
Ty = fn(t,ml,---,ﬂfmula---s“p)

x; denotes the derivative of z; with respect to the time

variable ¢
1, &2, ..., &n, are state variables x € R"”
u1, uz, ..., up are input variables u € R?

and the system dynamics are
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Preliminaries

Common forms
Autonomous System:

& = f(zx)
Time-Invariant System:

& = f(x,u)
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JBC
Preliminaries

What can go wrong with generic nonlinear DEs:
= Lack of existence of solutions

& = sign(x), =(0) =C

= Lack of uniqueness of solutions
@ = 3x%/3, 2(0) =0

= Finite escape time
i=1+2% 2(0)=0

These problems can be addressed by constraining f(x)
(e.g., Lipschitz continuity)
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Ex. #2: Lotka-Volterra comp.

= Competition between species (e.g., finite shared resources)

, na )
o no
K, b12K1<

ny = rn

n n
T2MN2 1-— K_22 — b21K_12/

ng =
= Population of species n,, n,
= Constant parameters
= Growth rates r,,r,
= Carrying capacities K, K,
= Competition coefficients b,,, by,

= Resources:
s http://fisher.forestry.uga.edu/popdyn/
LotkaVolterraCompetition.html

s http://www.tiem.utk.edu/bioed/bealsmodules/
competition.html
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Ex. #2: Lotka-Volterra comp.

= Non-dimensionalize

= Define new variables x; = n; K;, x, = n,/K,
= Define constant parameters
A = by, K,/K,, B =r,/r;, and C = b,; K,/K;

= "Normalized” dynamics

T, =
Ty =
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1 (1l — 21 — Azo)
CCQB (1 — T2 — C.I'l)
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Ex. #2: Lotka-Volterra comp.

Ex. #2: Lotka-Volterra comp.

Species 1 o Species 2
////”/' y 1 /////’/
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= Why does Species 1 dominate in the plot on the left,
and Species 2 dominate in the plot on the right?

= Is it possible for both species to co-exist in
perpetuity?

= How do birth/death rates and competition coefficients
affect which species dominates?
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= What happens if
the system starts
at x, = (1,0)?

= Multiple
equilibrium
points are
possible in
nonlinear systems
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Ex. #2: Lotka-Volterra comp.

= To find all equilibria of the normalized Lotka-Volterra
competition system, solve for all (x;, X,) such that

0 = x(1 -2 — Axy)
0 = 29B(1—29—Cxq)
= The 4 equilibria (for non-negative x;, x,) are
(0,0)
. (1,0)
T (0,1)
1-A 1

—C )
1-AC’ 1-AC )
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Linearization about an Eq. Pt.

= Given the nonlinear system
&= f(z), zeR", f: R" - R"
with equilibrium point x*, consider a nearby point
r=Ax+a"

= Use a Taylor’s series 15t order approximation to
determine the dynamics of (x-x*)
of
f(z) = f(z") + (9_3;’"1 -Ax+ H.O.T
ox

= These dynamics MAY indicate what happens near the
equilibrium point.
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Linearization about an Eq. Pt.

= As an example of when linearization fails, consider the following
two systems: . o
(a) & = x%/3, (b) & = —a?/*
= Which have the same linearization about 0
of 2

(a) E‘T:() =37 =0, (b) %\w:o = _gm—l/:s. —C
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Linearization about an Eq. Pt.

= The eigenvalues of the Jacobian D; = 9f/9X]|«
provide information about the behavior of trajectories
near the equilibrium point.

= Consider a 2D system
with two real, negative eigenvalues A, A, <0

= Time can be ‘eliminated’ by examining Ax; vs. Ax, --
this is a phase portrait or a phase-plane plot.
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Phase portraits of 2D linear systems

Unstable

Phase portraits of 2D linear systems

Stable
node ‘ node
MAo<0 o = AMA>0 0
Saddle
In all of these cases, })il ><%’
A1, Ao € R g
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Stable Unstable
focus : focus
Re(,)<0, . « . Re(M)>0, .
Re(A,)<0 Re(n,)>0
Center .
In all of these cases, 52&%28' =
A, X €C A Sy
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Phase portraits of 2D linear systems

= Stable equilibrium points have trajectories that tend towards the
origin and can be classified by eigenvalue characteristics:
= Both negative real numbers (stable node)
= Complex conjugate pair with negative real part (stable focus)

= Unstable equilibrium points have trajectories that tend towards
infinity and can be classified by eigenvalue characteristics:
= Both positive real numbers (unstable node)
= Complex conjugate pair with positive real part (unstable focus)
= Positive and negative real numbers (saddle)

= What happens when one eigenvalue has 0 real part?

= What happens when both eigenvalues have 0 real part?
= What happens when eigenvalues are repeated?
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Big picture for this course

= When analyzing nonlinear systems, it is often useful to quantify
= Stability -- e.g., steady-state behavior

= Changes in stability -- e.g., due to variations in initial conditions or
model parameters, model uncertainty, external disturbances, ...

= Invariance -- ability of the state to stay within a region of the state-
space

= When controlling nonlinear systems, it is often useful to quantify
= How the closed-loop system should behave
= How much of the open-loop system’s behavior can be changed
= Sensitivity to errors, disturbances, computational time...
= Actuation effort

= The goal of this course is to develop a set of basic tools
to analyze and control nonlinear systems.
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