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= Techniques based on linear systems analysis
= Phase-plane analysis
= Example: Neanderthal / Early man competition
= Hartman-Grobman theorem -- validity of linearizations
= Example: Duffing’s equation

= Nonlinear analysis of 2" order systems
= Closed orbits
= Bendixon’s theorem
= Limit cycles
= Index theory and Poincare theorem
= Poincare-Bendixon theorem
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Learning Objectives

= Stability through linearization

= Compute the similarity transformation that results in a Jordan-
form state matrix

= Analyze a linear system in modal coordinates and relate to
stability of nonlinear system near an equilibrium point
(Hartmann-Grobman)

= Closed orbits and limit cycles in 2D
= Distinguish between a closed orbit and a limit cycle
= Determine whether a closed orbit exists (Bendixson’s)

= Determine whether a closed orbit exists in a given set of the
state-space (Poincare-Bendixson)

= Use Index theory to determine how many equilibria exist in a
region of the state-space (n-dimensions)
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References

= Khalil
= Section 1.2
= Section 2.1, 2.3-2.6

= Sastry
= Section 2.2, 2.3
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Stability through Linearization

= Goal: Determine stability of the nonlinear system around a
given equilibrium point.
= Method: Analyze the linear system (an easy problem) and use

Hartman-Grobman Theorem to make claims about the nonlinear
system (a harder problem)

Linearization about an
equilibrium point

- Ax =2 —z* Linear system
Nonlinear system > Ag— 0f | A
i = f(x) ol
(dynamics of deviations

< § from the equilibrium point)

= The catch: Cannot apply blindly!
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Stability through Linearization

= Any linear system can be transformed via a
similarity transformation into real Jordan form

= The phase portrait of the system in modal
coordinates depends on the form of J
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Stability through Linearization

A O
0 A2

s Case la: J = {

] = Case 1b: A;=0or A,=0
MFEN

= Case lc: A=A, = A
(independent
eigenvectors)
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Stability through Linearization

-5 A1
.CaseZ:J:[g o = Case3: J—[O /\}

(dependent eigenvectors)
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Ex. #3: Neanderthal extinction

= Similar to Lotka-Volterra competition equations
= Neanderthals competed with Early Modern Man approximately

50,000 years ago
N = :EN(A — B — D(:L'N + ilZE))
tp = zp(A—sB—D(xn+2E))
= Parameters
= Birth rate A

= Death rate B (Neanderthals), s*B (Early Man)
= Competition coefficient D
= Similarity parameter s
= J. C. Flores, “A Mathematical Model for Neanderthal Extinction”,
Journal of Theoretical Biology, Volume 191, Issue 3, 7 April
1998, Pages 295-298.
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= Show that the equilibria are
= (0,0),
= (0,(A-sB)/D),
= ((A-B)/D, 0)

= Compute the eigenvalues of
the Jacobian matrix at each
isolated equilibium point.

= Show that the only stable
equilibrium point corresponds
to Neanderthals’ extinction and
a surviving population of Early
Modern Man.
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Ex. #3: Neanderthal extinction
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Hartman-Grobman Theorem

If the linearization about equilibrium point x*

Az =8| Az (1)
of the nonlinear system
&= f(x), x € R" 2)

Has no eigenvalues on the imaginary axis, then there
exists a continuous map h (that has a continuous

inverse),
h: B(x ,§) — R"

Which takes trajectories from (2) and maps them onto
those of (1).
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‘@00 PPLANE: (060103625, 0.15439856)
V' = 1/epsilon*(V-V*/3-W)
W’ = epsilon*(V+beta-gamma*W)

EECE 571M Spring 2009

12




ERRRRRRS=SRRROR = 2
=TTt =
- RTINS o) -
Cl|l & =T c| =
0 =2 e NS H
ol 3 o
m m 1o Q H
=] 2 il - n
ol & ° vl 5 :
al = Q| § 4
A R a E ) \ T e
| 2 T C| z Btttk
Ol 3 Hptrrorrrriimeen i 8 Ol = e
O T3.2233.5383.3578 @) > ; ?quxmMrmrwwrrmwrm/mvWufw/ﬂ
Q. AR
mm (48]
— | -
e M r //f«/ﬁu
+ L
S S
a 1
4 Y,
= -
o o
— S
—

N
N g S g
Ol | £ N1 g
N £ N g
< & ~ B a
F o s m:w n
RN 1 S
53 R N m EE w
== NECSERCNENEUENEN - R i) @ E
Eog PR SENENE i L E i}
R s -
3 2] rfx/ﬂ///»./.,)A“*\\\\x\&&u n
~—~ 0 .
gy . N Aot
= ~ A
c| = 3 :
u — .m s o — O .
— = ° - S g
] B — 3
-+ o ) o .
V| 5 ; 5
Q IO Qf s°
M ///N/JJ NS Jr \,, A /rM//f/f p W
| I g Ny, ol I~
= HM¢,¢J1¢¢J\..‘ //////.M/174ﬂ w_ > iz @
O 3 Bl ol 2 ¢
© - : (©
= RN A fu
A B Q
— It
@) @)
N EGE - g | =
i i e« « = [ S PRI =
© L S (o) NE s /,ﬂ/‘/ RGN S
” n R W ~ M\\Tﬁinnx ,(//J/atéué‘s o
~ = k N ceZ = @ £
to PasmrEEEs & wfd — i Y n,m.
NsooroooEe | Ky ‘ =
L ,/,,,//f/ihﬂf g H L EF e _m
N oo g o] . . . . . o)
T3 .3333.538¢ 55" % w T~ ¥ g o
: : ¢

16

-0.84829

0.7089,




Lotka-VoIterra Competition

8600 PPLANE Phase Plane

X' = x¥(1-x-A") A=3  B=2

Y = yBH(L-y-C') c=4
20 e el S
e IRV VN WY
oo ¢ Y/ SR A A )
L I O [T A Y A AV A I A )
0ol * kS / [ A S S
' WL
08 1, o B S YO A A A
07 {1 ) i idofod LA
' . R I AT
v 081, N IR I LM LN
05 {1 1 | b oy L 4
oal ! R Y VR L
A IR AU SV ST B A S i A AR
03 1+ 1 |y ey vl A R
o2l s *A e il uf /
RN Y 4 of v ¢ o fufe
0.1 p U R U I ‘ i
0 -~ T . o . L TUSS = - i
-0.1 T N I S T T T S R L R 7 ? El L

0.013188, 1.2282 X

EECE 571M Spring 2009 17

Non-hyperbolic eq. pt
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Phase-plane analysis

= Process for each equilibrium point:
= Linearize nonlinear system about equilibrium point.
= Compute eigenvalues and eigenvectors of D.
= Create similarity transformation.
= Sketch phase-plane plot in transformed coordinates.

= If eigenvalues do NOT have 0 real part, stability of linear
system is same as stability of nonlinear system near the
equilibrium point.

= Note that pplane5 plots are simulations. They do not provide
any guarantees of the actual system’s behavior.
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Closed orbits of planar systems

Closed orbits vs. limit cycles
Bendixon’s theorem
= Absence of closed orbits

Poincare-Bendixson theorem
= Existence of closed orbits within an invariant set

Index theory

Poincare theorem
= # of equilibria within a closed orbit
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Closed orbits of planar systems

Definition: Closed orbit
= A closed orbit y of the planar system
= f(x), v € R?
is the trace of the trajectory of a non-trivial periodic
solution.

Notes:
= An equilibrium point cannot be a closed orbit

= For any point z( € =, there exists a finite value T
such that z(nT) = zg, n € Z
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Closed orbits of planar systems

Definition: Limit cycle
= A limit cycle is a closed orbit g such that there is a
x(t) ¢ n such that
x(t) > vyast—o0ort— —x
(stable) (unstable)

Note:

= All limit cycles are closed orbits, but not all closed
orbits are limit cycles.

= The theorems to follow concern closed orbits, not
limit cycles necessarily.

EECE 571M Spring 2009 22

Closed orbits of planar systems

= Bendixson’s theorem
Suppose D is a simply connected region in R?, such that
. A Of of
d = —— 4 —— £
lV(f) 0.’1;1 * 0;::2 7&
and div(f) does not change sign in D.

Then D contains no closed orbits of

i = f(x), x € R*

Notes:
= "Simply connected” means one region with no holes.
= Proves the absence of closed orbits
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Closed orbits of planar systems

= Poincare-Bendixson Theorem
Consider the planar dynamical system
i = f(x), x € R*
Every closed, bounded, non-empty, positively

invariant set K € R? contains an equilibrium point or
a closed orbit.

Notes:

= If K contains equilibrium points, K’ may also contain a
union of trajectories connecting these equilibrium
points, but this is not create a closed orbit.

= An open set U that is enclosed by a closed orbit
contains an eq. point and possibly a closed orbit.
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Index theory

= Definition: The index of a region D with respect to
f(x) is defined as
If(D) = 5 [;dof()

_ L/ frdfa—fadfy
Ty i3

with Of(z) = tan~! é

J1
= Notes:
= 6 is the angle made by f(x) with the x, axis.
= I{D) is an integer

= For D that contains a single equilibrium point x,, we refer to
the index of the equilibrium point at I(x,)

EECE 571M Spring 2009 25

%
Index theory

= Poincare theorem:
Let N represent the number of nodes, centers, and
foci enclosed by a closed orbit, and let S represent
the number of enclosed saddle points. Then

N=S+1

= Notes:
= Index theory predicts the existence of equilibrium points
without doing detailed calculations.
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