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Outline

! Techniques based on linear systems analysis
! Phase-plane analysis

! Example: Neanderthal / Early man competition

! Hartman-Grobman theorem -- validity of linearizations

! Example: Duffing’s equation

! Nonlinear analysis of 2nd order systems
! Closed orbits

! Bendixon’s theorem

! Limit cycles

! Index theory and Poincare theorem

! Poincare-Bendixon theorem
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Learning Objectives

! Stability through linearization

! Compute the similarity transformation that results in a Jordan-
form state matrix

! Analyze a linear system in modal coordinates and relate to
stability of nonlinear system near an equilibrium point
(Hartmann-Grobman)

! Closed orbits and limit cycles in 2D

! Distinguish between a closed orbit and a limit cycle

! Determine whether a closed orbit exists (Bendixson’s)

! Determine whether a closed orbit exists in a given set of the
state-space (Poincare-Bendixson)

! Use Index theory to determine how many equilibria exist in a
region of the state-space (n-dimensions)
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References

! Khalil
! Section 1.2

! Section 2.1, 2.3-2.6

! Sastry
! Section 2.2, 2.3
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! Goal: Determine stability of the nonlinear system around a
given equilibrium point.

! Method:  Analyze the linear system (an easy problem) and use
Hartman-Grobman Theorem to make claims about the nonlinear
system (a harder problem)

! The catch: Cannot apply blindly!

Stability through Linearization

Linear system

(dynamics of deviations
from the equilibrium point)

Nonlinear system

Linearization about an
equilibrium point
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Stability through Linearization

! Any linear system can be transformed via a
similarity transformation into real Jordan form

! The phase portrait of the system in modal
coordinates depends on the form of J
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Stability through Linearization

! Case 1a:

!1 ! !2

! Case 1b: !1=0 or !2=0

! Case 1c: !1 = !2 = ! 

(independent
eigenvectors)
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Stability through Linearization

! Case 2: ! Case 3:

(dependent eigenvectors)
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Ex. #3: Neanderthal extinction

! Similar to Lotka-Volterra competition equations

! Neanderthals competed with Early Modern Man approximately
50,000 years ago

! Parameters

! Birth rate A

! Death rate B (Neanderthals), s!B (Early Man)

! Competition coefficient D

! Similarity parameter s

! J. C. Flores, “A Mathematical Model for Neanderthal Extinction”,
Journal of Theoretical Biology, Volume 191, Issue 3, 7 April
1998, Pages 295-298.
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Ex. #3: Neanderthal extinction

! Show that the equilibria are

! (0,0),

! (0,(A-sB)/D),

! ((A-B)/D, 0)

! Compute the eigenvalues of
the Jacobian matrix at each
isolated equilibium point.

! Show that the only stable
equilibrium point corresponds
to Neanderthals’ extinction and
a surviving population of Early
Modern Man.
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Hartman-Grobman Theorem

If the linearization about equilibrium point x*

(1)

of the nonlinear system

(2)

Has no eigenvalues on the imaginary axis, then there
exists a continuous map h (that has a continuous
inverse),

Which takes trajectories from (2) and maps them onto
those of (1).
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Heart Rhythms: stable foci
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Lotka-Volterra Competition

("V,"W around (1,0) )(z1, z2)
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Lotka Volterra Competition

("V,"W around (0,1) )(z1, z2)
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Lotka-Volterra Competition

("V,"W around (0,0) )(z1, z2)
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Lotka-Volterra Competition

("V,"W around (2/11,3/11) )(z1, z2)
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Lotka-Volterra Competition
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Non-hyperbolic eq. pt

#>0

#<0

(z1, z2)

(x1, x2)

(x1, x2)
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Phase-plane analysis

! Process for each equilibrium point:

! Linearize nonlinear system about equilibrium point.

! Compute eigenvalues and eigenvectors of Df.

! Create similarity transformation.

! Sketch phase-plane plot in transformed coordinates.

! If eigenvalues do NOT have 0 real part, stability of linear
system is same as stability of nonlinear system near the
equilibrium point.

! Note that pplane5 plots are simulations.  They do not provide
any guarantees of the actual system’s behavior.
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Closed orbits of planar systems

! Closed orbits vs. limit cycles

! Bendixon’s theorem
! Absence of closed orbits

! Poincare-Bendixson theorem
! Existence of closed orbits within an invariant set

! Index theory

! Poincare theorem
! # of equilibria within a closed orbit
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Closed orbits of planar systems

Definition: Closed orbit

! A closed orbit $ of the planar system

is the trace of the trajectory of a non-trivial periodic
solution.

Notes:

! An equilibrium point cannot be a closed orbit

! For any point      , there exists a finite value T
such that
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Closed orbits of planar systems

Definition: Limit cycle

! A limit cycle is a closed orbit g such that there is a
       such that

(stable) (unstable)

Note:

! All limit cycles are closed orbits, but not all closed
orbits are limit cycles.

! The theorems to follow concern closed orbits, not
limit cycles necessarily.
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Closed orbits of planar systems

! Bendixson’s theorem

Suppose D is a simply connected region in R2, such that

and div(f) does not change sign in D.

Then D contains no closed orbits of

Notes:

! “Simply connected” means one region with no holes.

! Proves the absence of closed orbits
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Closed orbits of planar systems

! Poincare-Bendixson Theorem

Consider the planar dynamical system

Every closed, bounded, non-empty, positively
invariant set             contains an equilibrium point or
a closed orbit.

Notes:

! If K contains equilibrium points, K may also contain a
union of trajectories connecting these equilibrium
points, but this is not create a closed orbit.

! An open set U that is enclosed by a closed orbit
contains an eq. point and possibly a closed orbit.
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Index theory

! Definition: The index of a region D with respect to
f(x) is defined as

with

! Notes:
! %f is the angle made by f(x) with the x1 axis.

! If(D) is an integer

! For D that contains a single equilibrium point x0, we refer to
the index of the equilibrium point at If(x0)
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Index theory

! Poincare theorem:

Let N represent the number of nodes, centers, and
foci enclosed by a closed orbit, and let S represent
the number of enclosed saddle points.  Then

N = S + 1

! Notes:
! Index theory predicts the existence of equilibrium points

without doing detailed calculations.


