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Industrial Applications Bleach Plant

Bleach Plant pH Control

First successfully tested on bleach plant extraction stage pH control in
1988 at Howe Sound Pulp

Laguerre network with N = 15

Choice of p can be guided by the fact that

e−sT = lim
N→∞

(1− sT/2N)N

1+ sT/2N)N

i.e. p = 2N/T should provide an acceptable approximation of the time
delay T

here, N = 15 and p = 0.25
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Industrial Applications Titanium Dioxide Rotary Calciner

TiO2 Kiln Control

Titanium dioxide is a substance used as a pigment in paints, textiles,
plastics, cosmetics and other materials

Raw material mostly available in a crystalline form known as anatase,
while another form rutile has the most interesting pigmentary properties

In the sulphate route to produce TiO2 pigment, the most critical step is
the calcination in a rotary kiln of a hydrous precipitate of titanium
dioxide, during which transformation from anatase to rutile occurs,
accompanied by crystal growth

Good control of the rutile content is essential as it affects most
pigmentary properties, in particular paint durability, plastics undertone
and lightfastness of laminated papers
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Industrial Applications Titanium Dioxide Rotary Calciner

TiO2 Kiln Control

The kiln dynamics can be represented by

l1(t +1) = Al1(t)+bu1(t)
l2(t +1) = Al2(t)+bu2(t)

y(t) = cT
1 l1(t)+ cT

2 l2(t)

where u1 is the main control variable, i.e. the fuel rate and u2 is the main
measured disturbance, i.e. the pulp feedrate
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Industrial Applications Titanium Dioxide Rotary Calciner

TiO2 Kiln Control

Identification experiments showed that N = 10 for each network suffices
to capture the essential dynamics

Significant and frequent feedrate changes

Rotational speed has to be changed as the feed rate changes

Kile retention time approximately inversely proportional to rotational
speed

Easily accounted for by Laguerre network by making Laguerre pole p
proportional to rotational speed ω

p = p0
ω

ω0

where p0 and ω0 are a reference point
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Industrial Applications Titanium Dioxide Rotary Calciner

TiO2 Kiln Control

Combined adaptive feedforward and adaptive feedback scheme
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Commercial Implementation Practical Considerations

Ensuring Successful Identification

Proper choice of Laguerre pole and sampling interval

Closed-loop identification

Switching between different linear controllers. A technique to improve
identifiability in predictive control is e.g. to implement the first two
control actions before computing the next set of two, in a pseudo-multirate
fashion. In this case, the control law switches continuously between
u(t) = f (r(t),y(t)) and u(t) = f (r(t), ŷ(t‖t−1)) = g(r(t),y(t−1)). As
shown by Kammer and Dumont this improves identifiability at minimal
cost.
Use of a known, external excitation to the plant. This is usually realized by
way of setpoint changes. A safe procedure is then to only estimate
parameters of the plant model following a setpoint change. This can be
termed event-triggered identification.
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Commercial Implementation Practical Considerations

Choosing Feedforward Variables

The use of feedforward variables does not come for free because models must
be built and estimated

The feedforward variable must contribute unique information about
disturbances on the process.

Using more than one variable that is correlated to the same process disturbance
will not only complicate the control strategy with no benefit, it will also make
the identification of unique feedforward models impossible.
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Commercial Implementation Practical Considerations

Choosing Feedforward Variables

Combining the variables into a single calculated feedforward can simplify the
control strategy and reduce the process modelling effort required to commission
the controller.

An example of this situation would be combining a density measurement with a
flow rate measurement to produce a single mass flow signal.

This approach also makes sense from a process point of view because often
such combined variables are more representative of the fundamental cause of
the process disturbance and the direct relationship to the process can be better
observed.
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Commercial Implementation BrainWave

From LUST to BrainWave

After successful bleach plant application
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Commercial Implementation BrainWave

From LUST to BrainWave

Standalone adaptive controller first developed in 1992 to control lime
kilns
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Commercial Implementation BrainWave

From LUST to BrainWave

Windows-based application developed in 1997

Version for integrating plants in 2000

BrainWave MultiMax, multivariable version in 2002
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Commercial Implementation BrainWave

BrainWave
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Commercial Implementation Industrial Applications

Fatty Acid Reactor
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DowTherm Batch Reactor
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Steam Header Pressure
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Paper Brightness
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Bleach Plant Control
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Glass Forehearth
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