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Model-Reference Adaptive Systems

The MRAC or MRAS is an important adaptive control methodology '
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Isee Chapter 5 of the Astrém and Wittenmark textbook, or H. Butler, "Model-Reference
Adaptive Control-From Theory to Practice”, Prentice-Hall, 1992
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Model-Reference Adaptive Systems

The MIT rule

Lyapunov stability theory

Design of MRAS based on Lyapunov stability theory
Hyperstability and passivity theory

The error model

Augmented error

A model-following MRAS
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MIT Rule The Basics

The MIT Rule

@ Original approach to MRAC developed around 1960 at MIT for
aerospace applications

@ With e =y —y,,, adjust the parameters 6 to minimize

1
J (9) = 562
o It is reasonable to adjust the parameters in the direction of the negative
gradient of J:
ﬁ 8] de
a~ Tae~ a9

@ de/d0 is called the sensitivity derivative of the system and is evaluated
under the assumption that 0 varies slowly
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MIT Rule The Basics

The MIT Rule

@ The derivative of J is then described by

ﬂ 8e de
ar o1 26
e Alternatively, one may consider J(e) = |e| in which case

40 _ 0 _ 9 Gon(e)
ar -~ Toe ~ VgetEne

@ The sign-sign algorithm used in telecommunications where simple
implementation and fast computations are required, is

e dJ de ) . ()
i yae —ysign 5 ) sien(e
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MIT Rule Examples

MIT Rule: Example 1

@ Process: y = kG(s) where G(s) is known but k is unknown
@ The desired response is y,, = koG (s)u,
@ Controller is u = Ou,
e Thene=y—y, =kG(p)Ou, — koG(p)u,
@ Sensitivity derivative
e kG = o

MIT rule
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MIT Rule Examples

MIT Rule: Example 1
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Figure: MIT rule for adjustment of feedforward gain (from textbook).
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MIT Rule Examples

MIT Rule: Example 1

Simulation

Time
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Figure: MIT rule for adjustment of feedforward gain: Simulation results (from

textbook).
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MIT Rule Examples

MIT Rule: Example 2

Consider the first-order system

dy
CAN b
at ay+ bu
The desired closed-loop system is
d
% - _amym + bmuc

Applying model-following design (see lecture notes on pole placement)

degAp >0 degS=degR=deg7T =0
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MIT Rule Examples

MIT Rule: Example 2

The controller is then
u(r) = tou(t) — soy(t)

For perfect model-following

% = —ay(t) +b[tou(t) — soy(t)]
— (a-+ bso)y(t) + o,
= —amym(t) +bmite

This implies
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MIT Rule Examples

MIT Rule: Example 2

With the controller we can write?

bty

y:p+a+bS0uC

With e = y — y,,;, the sensitivity derivatives are

de b

371‘0 N p—l—a—i—bsouc

de bty b

dso (p+a+bs0)2uc:p+a+bsoy

2p is the differential operator d(.)/dt
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MIT Rule Examples

MIT Rule: Example 2

However, a and b are unknown>. For the nominal parameters, we know that
a+bsy=a,

p+a+bso=p+ay

dty 1 am
- — — b . = — .
dt Y <p+amu°)e y<p+amu°>e

dsg 1 am
—_— = b =
i = (e ()

with y=Y'b/a,, i.e. b is absorbed in Yy and the filter is normalized with static
gain of one.

Then

3after all, we want to design an adaptive controller!
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MIT Rule Examples

MIT Rule: Example 2
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MIT Rule Examples

MIT Rule: Example 2

Input and output

JJLTLFLFLFL
i

Figure: Simulation of MIT rule for first-order witha =1, b= 0.5, a,,, = b;, = 2 and
Y = 1(from textbook)
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MIT Rule Examples

MIT Rule: Example 2

Parameters
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Figure: Simulation of MIT rule for first-order witha =1, b=0.5, a,, = b,,, = 2.
Controller parameters for y = 0.2, 1 and 5(from textbook)
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MIT Rule Examples

MIT Rule: Example 2

o1

Figure: Simulation of MIT rule for first-order witha =1, b =0.5, a,, = b,,, = 2.
Relation between controller parameters 6; and 6,. The dashed line is 6, = 6; —a/b.
(from textbook)
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MIT Rule Stal y of the Adaptive Loop

Stability of the Adaptive Loop

Consider again the adaptation of a feedforward gain

Guy Dumont (UBC EECE)

de
00
do
dt

1
P24 ais+a
e=(0—6y)Gu,
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Gup = 2
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de Ym
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MIT Rule Stal y of the Adaptive Loop

Stability of the Adaptive Loop

Thus the system can be described as

>y, dyn,
v +ay 7+a2ym = 6Oouc
d*y dy
n —l—aldt—l—azy = 0Ou,
D = -
a YO = Ym)Ym

This is difficult to solve analytically
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MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

dy Py dy _du,
B +a1—= dr2 +az + Yucymy = 97 + yuc)’m
Assume #? and y?, constant, equlhbrlum is
90140
) =1 = c
YO =y ="

which is stable if ¥
ajax > yuly,, = ;2(“?)2

Thus, if ¥ or u, is sufficiently large, the system will be unstable
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MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

Figure: Influence on convergence and stability of signal amplitude for MIT rule
(from textbook)
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MIT Rule Modified MIT Rule

Modified MIT Rule

e Normalization can be used to protect against dependence on the signal
amplitudes

e With ¢ = de/d0, the MIT rule can be written as

deo
L _yoe
dr Yo
@ The normalized MIT rule is then
de _ —vyge
dt  at+oTe
@ For the previous example,
de  —yey,/6o

dr a+y2/63
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MIT Rule Modified MIT Rule

Modified MIT Rule

Figure: Influence on convergence and stability of signal amplitude for modified MIT
rule (from textbook)
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Lyapunov Design of MRAC Lyapunov TI

Lyapunov Stability Theory

o Aleksandr M Lyapunov
(1857-1918, Russia)

@ Classmate of Markov, taught by
Chebyshev

@ Doctoral thesis The general
problem of the stability of motion
became a fundamental
contribution to the study of
dynamic systems stability

@ He shot himself three days after
his wife died of tuberculosis
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

@ Consider the nonlinear time-varying system

x=f(x,r) withf(0,r)=0

If at time 7 = 1 ||x(0)|| = 8, i.e. if the initial state is not the equlibrium
state x* = 0, what will happen?

There are four possibilities
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Lyapunov Stability Theory

@ The system is stable. For a sufficiently small d, x stays within € of x*. If
0 can be chosen independently of 7, then the system is said to be
uniformly stable.

@ The system is unstable. It is possible to find &€ which does not allow any

0.

@ The system is asymptotically stable. For 6 < R and an arbitrary &, there
exists 7* such that for all # > r*, ||x —x*|| < €. It implies that ||x —x*|| — 0

as t — oo,

o If asymptotic stability is guaranteed for any 0, the system is globally
asymptotically stable.
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

@ A scalar time-varying function is locally positive definite if V(0,7) =0
and there exists a time-invariant positive definite function Vj(x) such that
Vt > t9, V(x,1) > Vp(x). In other words, it dominates a time-invariant
positive definite function.

@ V(x,t) is radially unbounded if 0 < ¢t||x|| < V(x,t), a > 0.

@ A scalar time-varying function is said to be decrescent if V(0,7) = 0 and
there exists a time-invariant positive definite function V;(x) such that
Yt > to, V(x,1) < Vi(x).

@ In other words, it is dominated by a time-invariant positive definite
function.
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

Theorem (Lyapunov Theorem)

@ Stability: if in a ball Bg around the equilibrium point O, there exists a scalar function

V(x,t) with continuous partial derivatives such that

@ V is positive definite
© V is negative semi-definite

then the equilibrium point is stable.
@ Uniform stability and uniform asymptotic stability: If furthermore,
© Visdecrescent

then the origin is uniformly stable. If condition 2 is strengthened by requiring that V be
negative definite, then the equilibrium is uniformly asymptotically stable.

@ Global uniform asymptotic stability: If B is replaced by the whole state space, and
condition 1, the strengthened condition 2, condition 3 and the condition

© V(xt) is radially unbounded

are all satisfied, then the equilibrium point at 0 is globally uniformly asymptotically
stable.

Guy Dumont (UBC EECE) EECE 574: MRAC - 1 January 2010 271/41



Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

@ The Lyapunov function has similarities with the energy content of the system and must
be decreasing with time.

@ This result can be used in the following way to design a stable a stable adaptive
controller

@ First, the error equation, i.e. a differential equation describing either the output
erTor y — yj, or the state error x — x,, is derived.

© Second, a Lyapunov function, function of both the signal error ¢ = x — x;,, and the
parameter error ¢ = 0 — 6, is chosen. A typical choice is

V=elPet¢'T ¢

where both P and I'"! are positive definite matrices.
© The time derivative of V is calculated. Typically, it will have the form

V = —el Qe+ some terms including ¢

Putting the extra terms to zero will ensure negative definiteness for V if Q is
positive definite, and will provide the adaptive law.
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Consider the MRAS designed with I\«'IIB rule

(a)
Model '7;;%][—\\—__—;&4-_;-————-—-----——-
b, Gls) L l,n .t o s TJE-
[ (b)

e
A A NN
R v v
_: “—Q-D“i{E) é 3 " 13 =

dC) s

u. = sinwt @ = 1(a), 2(b) and 3(c)
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Lyapunov Desig f M > yapunov Design of MRAC

Lyapunov Design of MRAC

@ Determine controller structure
@ Derive the error equation
o Find a Lyapunov equation

o Determine adaptation law that satisfies Lyapunov theorem
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

@ Process model

dy
— = —ay-+ku
A
@ Desired response
dy
7;’[ = —aym +kouc
o Controller
u=0u,
@ Introduce error e =y —y,,
@ The error equation is
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

@ System model

d
d—); = —ay-+ku
a9 = N
dt
@ Desired equilibrium
e = 0
k
6 = 6= ?0

January 2010
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Lyapunov Design of MRAC Lya s Design of MRAC

Adaptation of Feedforward Gain

@ Consider the Lyapunov function

_ Yo kg o2
V(e,0) = 26 —1—2(9 6o)
dv ) do
o = —Yae +(k97k0)(5+'}/uce)

@ Choosing the adjustment rule

gives
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Lyapunov rule: % = —Yuce MIT rule:% = —Yyme

I Modal L

Mode] l
h-—k fal
7] P ’ ~, P
: gy ]
Pru:\.-sd L% -I\r_l./'
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Lyapunov rule:

f/g

I8 -:.L-'&::,&»-=-—‘-—- —

I-l':v'
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order S

@ Process model

dy
AN b
U ay+bu
@ Desired response
Dm = —AamYm + bmltc
dt mJym mc
o Controller
u= 91 Ue — 92)/
@ Introduce error e =y —y,,
@ The error equation is
de
o = ame = (b6, +a—am)y+ (b6 — by,)u,
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Lyapunov D of MRAC Lyapunov Design of MRAC

First-order System

@ Candidate Lyapunov function

1 1 1
V(t,6),6,) = 5 (e2 + b—y(bez +a—ap)+ b—y(bel - bm)z)

@ Derivative
A% de 1 de, 1 do,

e L (bl ta—am) T2+~ (b8 —by) L
dr dt+7/( 2 +a—an) +y( 1 =bm) dr

@ This suggests the adaptation law

a6,
dt
a6

—Yuce
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System

Lyapunov Rule MIT Rule
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System

Process inputs and @utputs

@ "
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Lyapunov of MRAC Lyapunov Design of MRAC

Lyapunov-based MRAC Design

@ The main advantage of Lyapunov design is that it guarantees a
closed-loop system.

e For a linear, asymptotically stable governed by a matrix A, a positive
symmetric matrix Q yields a positive symmetric matrix P by the equation

ATP+PA=—-Q

This equation is known as Lyapunov’s equation.
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Lyapunov Desi f MRAC Lyapunov Design of MRAC

Lyapunov-based MRAC Design

@ The main drawback of Lyapunov design is that there is no systematic
way of finding a suitable Lyapunov function V leading to a specific
adaptive law.

o For example, if one wants to add a proportional term to the adaptive law,
it is not trivial to find the corresponding Lyapunov function.

@ The hyperstability approach is more flexible than the Lyapunov
approach.
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