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Model-Reference Adaptive Systems

The MRAC or MRAS is an important adaptive control methodology 1

1see Chapter 5 of the Åström and Wittenmark textbook, or H. Butler, ”Model-Reference
Adaptive Control-From Theory to Practice”, Prentice-Hall, 1992
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Model-Reference Adaptive Systems

The MIT rule

Lyapunov stability theory

Design of MRAS based on Lyapunov stability theory

Hyperstability and passivity theory

The error model

Augmented error

A model-following MRAS
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MIT Rule The Basics

The MIT Rule

Original approach to MRAC developed around 1960 at MIT for
aerospace applications

With e = y− ym, adjust the parameters θ to minimize

J(θ) =
1
2

e2

It is reasonable to adjust the parameters in the direction of the negative
gradient of J:

dθ

dt
=−γ

∂J
∂θ

=−γe
∂e
∂θ

∂e/∂θ is called the sensitivity derivative of the system and is evaluated
under the assumption that θ varies slowly
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MIT Rule The Basics

The MIT Rule

The derivative of J is then described by

dJ
dt

= e
∂e
∂ t

=−γe2
(

∂e
∂θ

)2

Alternatively, one may consider J(e) = |e| in which case

dθ

dt
=−γ

∂J
∂θ

=−γ
∂e
∂θ

sign(e)

The sign-sign algorithm used in telecommunications where simple
implementation and fast computations are required, is

dθ

dt
=−γ

∂J
∂θ

=−γsign
(

∂e
∂θ

)
sign(e)
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MIT Rule Examples

MIT Rule: Example 1

Process: y = kG(s) where G(s) is known but k is unknown

The desired response is ym = k0G(s)uc

Controller is u = θuc

Then e = y− ym = kG(p)θuc− k0G(p)uc

Sensitivity derivative

∂e
∂θ

= kG(p)uc =
k
k0

ym

MIT rule
dθ

dt
= γ

′ k
k0

yme =−γyme
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MIT Rule Examples

MIT Rule: Example 1

Figure: MIT rule for adjustment of feedforward gain (from textbook).
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MIT Rule Examples

MIT Rule: Example 1

Figure: MIT rule for adjustment of feedforward gain: Simulation results (from
textbook).
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MIT Rule Examples

MIT Rule: Example 2

Consider the first-order system

dy
dt

=−ay+bu

The desired closed-loop system is

dym

dt
=−amym +bmuc

Applying model-following design (see lecture notes on pole placement)

degA0 ≥ 0 degS = degR = degT = 0
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MIT Rule Examples

MIT Rule: Example 2

The controller is then
u(t) = t0uc(t)− s0y(t)

For perfect model-following

dy
dt

= −ay(t)+b[t0uc(t)− s0y(t)]

=−(a+bs0)y(t)+bt0uc

=−amym(t)+bmuc

This implies

s0 =
am−a

b

t0 =
bm

b
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MIT Rule Examples

MIT Rule: Example 2

With the controller we can write2

y =
bt0

p+a+bs0
uc

With e = y− ym, the sensitivity derivatives are

∂e
∂ t0

=
b

p+a+bs0
uc

∂e
∂ s0

=
b2t0

(p+a+bs0)2 uc =
b

p+a+bs0
y

2p is the differential operator d(.)/dt
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MIT Rule Examples

MIT Rule: Example 2

However, a and b are unknown3. For the nominal parameters, we know that

a+bs0 = am

p+a+bs0 ≈ p+am

Then

dt0
dt

= −γ
′b

(
1

p+am
uc

)
e =−γ

(
am

p+am
uc

)
e

ds0

dt
= γ

′b
(

1
p+am

y
)

e = γ

(
am

p+am
y
)

e

with γ = γ ′b/am, i.e. b is absorbed in γ and the filter is normalized with static
gain of one.

3after all, we want to design an adaptive controller!
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MIT Rule Examples

MIT Rule: Example 2

Figure: MIT rule for first-order (from textbook)
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MIT Rule Examples

MIT Rule: Example 2

Figure: Simulation of MIT rule for first-order with a = 1, b = 0.5, am = bm = 2 and
γ = 1(from textbook)
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MIT Rule Examples

MIT Rule: Example 2

Figure: Simulation of MIT rule for first-order with a = 1, b = 0.5, am = bm = 2.
Controller parameters for γ = 0.2, 1 and 5(from textbook)
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MIT Rule Examples

MIT Rule: Example 2

Figure: Simulation of MIT rule for first-order with a = 1, b = 0.5, am = bm = 2.
Relation between controller parameters θ1 and θ2. The dashed line is θ2 = θ1−a/b.
(from textbook)

Guy Dumont (UBC EECE) EECE 574: MRAC - 1 January 2010 16 / 41



MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

Consider again the adaptation of a feedforward gain

G =
1

s2 +a1s+a2

e = (θ −θ0)Guc

∂e
∂θ

= Guc =
ym

θ0

dθ

dt
= −γ

′e
∂e
∂θ

=−γ
′e

ym

θ0
=−γeym
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MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

Thus the system can be described as

d2ym

dt2 +a1
dym

dt
+a2ym = θ0uc

d2y
dt2 +a1

dy
dt

+a2y = θuc

dθ

dt
= −γ(y− ym)ym

This is difficult to solve analytically
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MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

d3y
dt3 +a1

d2y
dt2 +a2

dy
dt

+ γucymy = θ
duc

dt
+ γucy2

m

Assume uo
c and yo

m constant, equilibrium is

y(t) = yo
m =

θ0uo
c

a2

which is stable if
a1a2 > γuo

cyo
m =

γ

a2
(uo

c)
2

Thus, if γ or uc is sufficiently large, the system will be unstable
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MIT Rule Stability of the Adaptive Loop

Stability of the Adaptive Loop

Figure: Influence on convergence and stability of signal amplitude for MIT rule
(from textbook)
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MIT Rule Modified MIT Rule

Modified MIT Rule

Normalization can be used to protect against dependence on the signal
amplitudes

With ϕ = ∂e/∂θ , the MIT rule can be written as

dθ

dt
=−γϕe

The normalized MIT rule is then

dθ

dt
=
−γϕe

α2 +ϕTϕ

For the previous example,

dθ

dt
=
−γeym/θ0

α2 + y2
m/θ 2

0
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MIT Rule Modified MIT Rule

Modified MIT Rule

Figure: Influence on convergence and stability of signal amplitude for modified MIT
rule (from textbook)
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

Aleksandr M Lyapunov
(1857-1918, Russia)

Classmate of Markov, taught by
Chebyshev

Doctoral thesis The general
problem of the stability of motion
became a fundamental
contribution to the study of
dynamic systems stability

He shot himself three days after
his wife died of tuberculosis
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

Consider the nonlinear time-varying system

ẋ = f (x, t) with f (0, t) = 0

If at time t = t0 ‖x(0)‖= δ , i.e. if the initial state is not the equlibrium
state x∗ = 0, what will happen?

There are four possibilities
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

The system is stable. For a sufficiently small δ , x stays within ε of x∗. If
δ can be chosen independently of t0, then the system is said to be
uniformly stable.

The system is unstable. It is possible to find ε which does not allow any
δ .

The system is asymptotically stable. For δ < R and an arbitrary ε , there
exists t∗ such that for all t > t∗, ‖x−x∗‖< ε . It implies that ‖x−x∗‖→ 0
as t→ ∞.

If asymptotic stability is guaranteed for any δ , the system is globally
asymptotically stable.
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

A scalar time-varying function is locally positive definite if V(o, t) = 0
and there exists a time-invariant positive definite function V0(x) such that
∀t ≥ t0, V(x, t)≥ V0(x). In other words, it dominates a time-invariant
positive definite function.

V(x, t) is radially unbounded if 0 < α‖x‖ ≤ V(x, t), α > 0.

A scalar time-varying function is said to be decrescent if V(o, t) = 0 and
there exists a time-invariant positive definite function V1(x) such that
∀t ≥ t0, V(x, t)≤ V1(x).
In other words, it is dominated by a time-invariant positive definite
function.
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

Theorem (Lyapunov Theorem)

Stability: if in a ball BR around the equilibrium point 0, there exists a scalar function
V(x, t) with continuous partial derivatives such that

1 V is positive definite
2 V̇ is negative semi-definite

then the equilibrium point is stable.

Uniform stability and uniform asymptotic stability: If furthermore,

3 V is decrescent

then the origin is uniformly stable. If condition 2 is strengthened by requiring that V̇ be
negative definite, then the equilibrium is uniformly asymptotically stable.

Global uniform asymptotic stability: If BR is replaced by the whole state space, and
condition 1, the strengthened condition 2, condition 3 and the condition

4 V(x,t) is radially unbounded

are all satisfied, then the equilibrium point at 0 is globally uniformly asymptotically
stable.
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Lyapunov Design of MRAC Lyapunov Theory

Lyapunov Stability Theory

The Lyapunov function has similarities with the energy content of the system and must
be decreasing with time.

This result can be used in the following way to design a stable a stable adaptive
controller

1 First, the error equation, i.e. a differential equation describing either the output
error y− ym or the state error x− xm is derived.

2 Second, a Lyapunov function, function of both the signal error e = x− xm and the
parameter error φ = θ −θm is chosen. A typical choice is

V = eT Pe+φ
T

Γ
−1

φ

where both P and Γ−1 are positive definite matrices.
3 The time derivative of V is calculated. Typically, it will have the form

V̇ =−eT Qe+ some terms including φ

Putting the extra terms to zero will ensure negative definiteness for V̇ if Q is
positive definite, and will provide the adaptive law.
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Stability of Adaptive Loop
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Lyapunov Design of MRAC

Determine controller structure

Derive the error equation

Find a Lyapunov equation

Determine adaptation law that satisfies Lyapunov theorem
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Process model
dy
dt

=−ay+ ku

Desired response
dym

dt
=−aym + k0uc

Controller
u = θuc

Introduce error e = y− ym

The error equation is

de
dt

=−ae+(kθ − k0)uc
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

System model

dy
dt

= −ay+ ku

dθ

dt
= ??

Desired equilibrium

e = 0

θ = θ0 =
k0

k
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Consider the Lyapunov function

V(e,θ) =
γ

2
e2 +

k
2
(θ −θ0)2

dV
dt

= −γae2 +(kθ − k0)(
dθ

dt
+ γuce)

Choosing the adjustment rule

dθ

dt
=−γuce

gives
dV
dt

=−γae2
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Lyapunov rule: dθ

dt =−γuce MIT rule: dθ

dt =−γyme
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Adaptation of Feedforward Gain

Lyapunov rule: MIT rule:
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System

Process model
dy
dt

=−ay+bu

Desired response
dym

dt
=−amym +bmuc

Controller
u = θ1uc−θ2y

Introduce error e = y− ym

The error equation is

de
dt

=−ame− (bθ2 +a−am)y+(bθ1−bm)uc
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System

Candidate Lyapunov function

V(t,θ1,θ2) =
1
2

(
e2 +

1
bγ

(bθ2 +a−am)2 +
1
bγ

(bθ1−bm)2
)

Derivative

dV
dt

=
de
dt

+
1
γ
(bθ2 +a−am)

dθ2

dt
+

1
γ
(bθ1−bm)

dθ1

dt

= −ame2 +
1
γ
(bθ2 +a−am)(

dθ2

dt
− γye)+

1
γ
(bθ1−bm)(

dθ1

dt
+ γuce)

This suggests the adaptation law

dθ1

dt
= −γuce

dθ2

dt
= γye
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System

Lyapunov Rule MIT Rule
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Lyapunov Design of MRAC Lyapunov Design of MRAC

First-order System
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Lyapunov-based MRAC Design

The main advantage of Lyapunov design is that it guarantees a
closed-loop system.

For a linear, asymptotically stable governed by a matrix A, a positive
symmetric matrix Q yields a positive symmetric matrix P by the equation

ATP+PA =−Q

This equation is known as Lyapunov’s equation.
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Lyapunov Design of MRAC Lyapunov Design of MRAC

Lyapunov-based MRAC Design

The main drawback of Lyapunov design is that there is no systematic
way of finding a suitable Lyapunov function V leading to a specific
adaptive law.

For example, if one wants to add a proportional term to the adaptive law,
it is not trivial to find the corresponding Lyapunov function.

The hyperstability approach is more flexible than the Lyapunov
approach.
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