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Abstract

The links between identification and control are examined. The main trends in this research area are summarized, with particular focus
on the design of low complexity controllers from a statistical perspective. It is argued that a guiding principle should be to model as well
as possible before any model or controller simplifications are made as this ensures the best statistical accuracy. This does not necessarily
mean that a full-order model always is necessary as well designed experiments allow for restricted complexity models to be near-optimal.
Experiment design can therefore be seen as the key to successful applications. For this reason, particular attention is given to the interaction
between experimental constraints and performance specifications.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ever increasing productivity demands and environmental
standards necessitate more and more advanced control meth-
ods to be employed in industry. However, such methods usu-
ally require a model of the process and modeling and system
identification are expensive. Quoting (Ogunnaike, 1996):

“ It is also widely recognized, however, that obtaining the
process model is the single most time consuming task in the
application of model-based control.”

In Hussain (1999)it is reported that three quarters of the
total costs associated with advanced control projects can
be attributed to modeling. It is estimated that models exist
for far less than one percent of all processes in regulatory
control. According toDesborough and Miller (2001), one of
the few instances when the cost of dynamic modeling can
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be justified is for the commissioning of model predictive
controllers.

It has also been recognized that models for control pose
special considerations. Again quoting (Ogunnaike, 1996):

“There is abundant evidence in industrial practice that
when modeling for control is not based on criteria related
to the actual end use, the results can sometimes be quite
disappointing.”

Hence, efficient modeling and system identification tech-
niques suited for industrial use and tailored for control de-
sign applications have become important enablers for indus-
trial advances. The Panel for Future Directions in Control,
(Murray, Åström, Boyd, Brockett, & Stein, 2003), has iden-
tified automatic synthesis of control algorithms, with inte-
grated validation and verificationas one of the major future
challenges in control. Quoting (Murray et al., 2003):

“Researchers need to develop much more powerful design
tools that automate the entire control design process from
model development to hardware-in-the-loop simulation.”

Spurred by the recognized problems, identification for
control has been one of the most active areas in system iden-
tification over the last decade. Since the joint identification
and control problem shares the same elements as any engi-
neering application where system identification is involved,

http://www.elsevier.com/locate/automatica
mailto:hakan.hjalmarsson@s3.kth.se


394 H. Hjalmarsson / Automatica 41 (2005) 393–438

much work under the “umbrella” of identification for control
has general applicability and it seems fair to say that no
other area of identification has contributed as much to the
basic understanding of system identification during the last
decade.

So what are the issues? Well, to get a first hint consider
the following (oversimplified) problem a control engineer
might be faced with:

We have this prior knowledge of the process. You are al-
lowed to perform a closed-loop identification experiment
with the existing controller in the loop. The experiment
should be as short as possible and should disrupt the pro-
cess minimally. We think we would like the rise-time and
settling-time to be this and that, but we are not really sure.
Of course, the resulting closed-loop should be stable. If you
want to use anything other than a PID-controller, you need
to make a very strong case for why this is necessary.

Clearly, a useful theory should be capable of handling this
type of questions. Below we will try to delineate the main
issues involved.

1.1. The unforgiving nature of feedback

In many applications, performance degrades gracefully
as the accuracy of the model becomes worse. However, in
feedback control instability may lead to disastrous conse-
quences. By the end of the 1980s this issue prompted sig-
nificant efforts to develop identification frameworks which
can accommodate for various types of prior information and
produce model sets to which the true system is guaranteed
to belong so that it can be checked that a designed (robust)
controller at least stabilizes the system. While there is still
a debate on which assumptions are relevant, this line of re-
search has definitely put a finger on the approximate nature
of system identification.

1.2. The forgiving nature of feedback

There are numerous existing successful applications of
PID-control to non-linear processes which are based on sim-
ple, e.g. first-order, models identified from step response
tests. Hence, it is clear that simple, very crude, models often
suffice to give good or, perhaps more accurately, acceptable
closed-loop performance. Behind this is the rationale for
feedback control: High loop gain in a frequency band makes
the closed loop system insensitive to the quality of the model
and the properties of the open loop system in this frequency
band, provided stability can be maintained; cf. having an in-
tegrator in the controller which gives unity steady-state gain
regardless of the open loop steady-state gain.

This observation translates into the fact that one would
want the model set produced by system identification to be
shaped such that high performance can be obtained and also
such that, if desired, additional robustness may be included
with little penalty on performance. This issue relates directly

to thedesign of the identification experiment. Clearly, if the
experiment ensures that all features of the system relevant
for control design are present in the data, this objective can
be achieved. Another characteristic feature of the control
application is thatit may not a priori be known in which
frequency range an accurate model is requiredsince this
depends on performance limitations of the system, some of
which typically are unknown a priori.

1.3. Compatibility requirements

The uncertainty description obtained from system iden-
tification is dictated by the model structure and the prior
information used; see Section 2. It may not be directly ap-
plicable to a particular control design method. For example,
prediction error methods deliver an ellipsoid in the param-
eter space whereas robustH∞ design with unstructured
uncertainty assumes frequency by frequency bounds on the
uncertainty. Thus, it may be necessary to outer-bound the
uncertainty description and this should be done so as to not
introduce unnecessary conservatism. Another aspect of this
issue is that the order of a robust controller usually depends
not only on the order of the nominal model but also on the
orders of the weighting filters describing bounds on model
uncertainty and performance specifications. Hence, the un-
certainty description may alsoinfluence the order of the con-
troller.

1.4. Summary

The discussion above can be condensed as follows. The
user has a number of design variables such as experimental
conditions, model structure and the performance specifica-
tions available. To be able to select these in a systematic way
such that stability and performance are guaranteed involves:

• ensuring that the ‘true’ system is accounted for in the set
of delivered models.

• understanding which properties of the system have to be
modeled accurately and which can be treated only super-
ficially and how this relates to the performance specifica-
tions.

• designing experiments that reveal this information.
• representing this information mathematically in a way that

is not overly complex.
• adjusting the performance demands such that the design

becomes robust given the limitations in modeling accu-
racy.

The first issue is rather delicate as it involves entities that
are not verifiable, and has quite naturally led to different
approaches.
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1.5. Outline

We will begin this paper with a part (Sections 2–6) on gen-
eral modeling principles, with particular attention to issues
that are of importance for control applications. Modeling
frameworks are discussed in Section 2, where we highlight
the similarity of algorithms ensuing from deterministic and
stochastic approaches. We also elaborate on the importance
of noise prior information. Many considerations in control
are best handled in the frequency domain and in Section 3
we take a closer look at model uncertainty in the frequency
domain. As discussed above, control applications often al-
low only very approximate models to be used. We therefore,
in Section 4, discuss how to identify restricted complexity
models without compromising statistical accuracy. Stability
and performance guarantees require the true system to be ac-
counted for in the model set delivered by the system identi-
fication. This relates to model validation which is discussed
in Section 5. In Section 6 our observations are summarized.

The remaining part of the paper is directly concerned with
control related issues. Robust control and its links to system
identification are issues discussed in Section 7. The problem
of directly identifying a restricted complexity model useful
for control design is covered in Section 8. This is followed
by a section on how to model non-linear systems using linear
time-invariant (LTI) models. Model free tuning methods are
discussed in Section 10 while Section 11 covers experiment
design issues. Model validation for control is the theme in
Section 12. The paper concludes with some comments.

We will restrict attention to time-domain identification,
with particular focus on the prediction error method. For
frequency domain methods, the reader is referred toPintelon
and Schoukens (2001), McKelvey (2000)for general treatise
of the subject, and toChen and Gu (2000)and references
therein for more control oriented deterministic approaches.

2. Information content in the data

The question of what information the noisy measurement
data contains regarding the system dynamics is really at
the core of system identification. One can view one part of
system identification as the problem of cleaning up the data
with respect to noise as well as possible. In this section we
will discuss the limitations of what can be achieved in this
respect.

2.1. Mathematical models

We will denote the input and output of a dynamical system
by u(t) andy(t), respectively. For a signalx(t), t=1,2, . . .,
we will use the shorthand notationxN for {x(t)}Nt=1. We
will often omit the time-argument from signals for ease of
exposition. Theobservedoutput/input signal sequence that
is available for the system identification will be denoted
ZN = {y(t), u(t)}Nt=1.

Generally, a model for such a dynamical system will de-
note a sequence of mappingsft , t = 1,2, . . . such that
y(t)=ft (ut , et ) is the model response to the input sequence
u(t), t = 1,2, . . . and the unmeasurable signal sequence
(“noise”) e(t), t = 1,2, . . ..

A model isconsistent with the observationsZN if there
exists a noise sequenceeN such thaty(t) = ft (u

t , et ), t =
1, . . . , N holds forZN .

2.2. The concept of unfalsification

That a scientific theory may be falsified by contradict-
ing evidence but never validated by corroborating evidence
was elaborated on by the philosopher Karl Popper (Popper,
1963). In system identification, it is clear that none of the
models that are consistent withZN can be discarded unless
some prior information is available. We call the set of all
such consistent modelsthe set of unprejudiced unfalsified
models, which we denote byG(ZN). This set represents the
remaining uncertainty of the system dynamics given the ob-
served dataZN . The information contents in the observed
data corresponds exactly to the set of models that arefalsi-
fied by the observed data. The more “informative” data is,
the larger is the set of candidate models that can be falsi-
fied. The setG(ZN) is of course an enormous set since it
includes all infinite dimensional non-linear models which
are consistent with the observations. Hence, it may appear
that measurement data provides very little information.

2.3. Introducing priors

The only possible way to reduce the size of the set of
unprejudiced unfalsified models is to introduce prior infor-
mation, both on the system dynamics and the noise. For ex-
ample, we might immediately be prepared to introduce the
prior that the system is causal. We shall denote byG(ZN)
the set of models consistent with data and the prior infor-
mation, and we shall refer to this set asthe set of unfalsified
models.

A common approach is to introduce a parametrized model
structure, e.g.

y =G(�)u+H(�)e + �(u), (1)

whereG andH are transfer functions parametrized by� ∈
� ⊂ Rn, where� is an unstructured dynamic term and
wheree is a noise signal. Sincee may be taken such that
any model in the above structure is unfalsified, assumptions
on the noise are also required. This issue is crucial for the
system identification problem.

2.4. Set-membership identification

The set of unfalsified models becomes manageable for the
model structure (1) by imposing that� ∈ S� andeN ∈ Se
for some suitably chosen setsS� andSe. Common choices
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for Se are

Se = {eN : |e(t)|�c, t = 1, . . . , N}, (2)

Se =
{
eN :

N∑
t=1

e2(t)�c
}
. (3)

We refer toBai, Nagpal, and Tempo (1996)for an analysis
of how these and other types of noise bounds affect the size
of the set of unfalsified models.

The unstructured uncertainty� is often taken as LTI and
examples ofS� are

S� = {� : ‖�‖∞ ��},
S� =

{
� =

∞∑
k=1

�(k)q−k : |�(k)|�C�k
}
. (4)

Above ‖ · ‖∞ denotes theH∞-norm,q−1 is the backward
shift operator and 0< �<1. Identification methods that em-
ploy this type of constraints have become known as set-
membership methods and this has been a very active area of
research during the past two decades. The set of unfalsified
models often becomes very complicated and one important
research topic has been to find simplified characterizations
using outer- and inner-bounding techniques (Milanese & Vi-
cino, 1991). We refer toMilanese (1998)andMilanese, Nor-
ton, Piet-Lahanier, and Walter (1996)and references therein
for further details on set-membership identification.

2.5. Uncertainty model unfalsification

The combination (3) and (4) together with the model struc-
ture

y =G(�)u+H(�)(e + �u)

has been studied by Kosut and co-workers in a series of pa-
pers under the labeluncertainty model unfalsification. Based
on results inPoolla, Khargonekar, Tikku, Krause, and Nag-
pal (1994), it is shown inKosut (1995)and Kosut (2001)
that the set of unfalsified models is empty if and only if
there are no� ∈ � andeN ∈ Se that satisfies a certain ma-
trix inequality. For ARX-models, this is a convex feasibility
problem in the unknowns� andeN .

As pointed out inKosut (2001), one may computecmin(�),
the smallestc (recall thatc defines the size of the noise set
Se, cf. (2) and (3)) for which there is some unfalsified model
for a given bound� on the unstructured uncertainty�. The
graph� → cmin(�) is referred to as theuncertainty trade-
off curve and gives a hint on how dynamic versus noise
uncertainty may be traded-off for a set of unfalsified models.

2.6. A likelihood approach to unfalsification

One way to treat the noise is to introduce a probability
measure, i.e. a measure of how likely different noise se-
quences are. Equipped with this measure, we can in princi-
ple orderall models we can imagine according to how likely

the corresponding noise sequences are. The model corre-
sponding to the most likely noise sequence is the maximum
likelihood (ML) estimate.

2.6.1. Gaussian prior
To be specific, let us assume that the noise is Gaussian

white noise with variance� and denote bye(t,M) the noise
signal that makes modelM consistent with the observa-
tions. Then the negative log-likelihood for this noise signal is
given by

VN(M)= N

2
log(2�)+ N

2
log(�)+ 1

2�

N∑
t=1

e2(t,M). (5)

It is natural to take the set of models that corresponds to
noise sequences with a likelihood higher than a given level
as the set of unfalsified models.

2.6.1.1. Case 1: Known noise variance.When the noise
variance� is known, (5) then leads to the set

G(ZN)=
{
M : 1

2�

N∑
t=1

e2(t,M)�c
}

(6)

for somec. Hence we see that the stochastically motivated
likelihood approach leads toset-membership identification
with the set (3) characterizing the noise under Gaussian as-
sumptions.

The principal difference between the likelihood approach
and a deterministic set-membership approach lies in howc is
chosen. In the likelihood approach one could argue that the
constantc should be selected such that there is only a small
probability that the true system is (erroneously) falsified.
To this end, consider thate(t,M) really is Gaussian white
noise with variance�, i.e. M is a model that satisfies our
assumptions and should rather not be falsified. Then we have
that

1

�

N∑
t=1

e2(t,M) ∼ �2(N).

By taking c = 1
2�2

	(N), where �2
	(N) is defined by

P(X��2
	(N))= 	 for a �2(N) distributed random variable

X, in (6) the probability of falsifying this model will be
1 − 	 (e.g. 0.1%).

In practice it is, of course, computationally infeasible to
order all models and some parametrization has to be intro-
duced. In order to focus on the noise issues, we will in the
remaining part of Section 2.6 restrict attention to the follow-
ing simple model

y(t)= 
T(t)� + e(t) (7)

wheree denotes the noise, where
 is a vector of determin-
istic quantities and where� ∈ Rn is a vector of unknown
model parameters. We will comment briefly on the case
where unstructured uncertainty is present in Section 2.6.1.4.
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For (7) we have that

e(t, �)= y(t)− 
T(t)� (8)

is the noise for the model corresponding to parameter vector
�. By completing the square, cf.Ljung and Hjalmarsson
(1995),

N∑
t=1

e2(t, �)=
N∑
t=1

e2(t, �̂N)+ (� − �̂N)TRN(� − �̂N), (9)

whereRN and the maximum likelihood estimate�̂N (which
in this case corresponds to the least-squares estimate) are
given by

RN =
N∑
t=1


(t)
T(t), �̂N = R−1
N

N∑
t=1


(t)y(t). (10)

Hence, the set of unfalsified models is given by

G(ZN)=
{

� : 1

�

N∑
t=1

e2(t, �̂N)

+(� − �̂N)T
RN

�
(� − �̂N)��2

	(N)

}
. (11)

The threshold�2
	(N) in (11) is data-independent. It is, in

general, possible to obtain a tighter set by letting the thresh-
old bedata-dependent. Consider again (9), given the obser-
vations, the first term of the right-hand side is completely
known whereas the second term is known to be�2(n) dis-
tributed when� is the true parameter vector. Hence, the set

G(ZN)

=
{

� : 1

�

N∑
t=1

e2(t, �)� 1

�

N∑
t=1

e2(t, �̂N)+ �2
	(n)

}

=
{
� : (� − �̂N)T

RN

�
(� − �̂N)��2

	(n)

}
(12)

is the set of models having the largest likelihoods and be-
ing such that the posterior (to the observation of the data)
probability that the true system is outside this set is 1− 	.

2.6.1.2. Case 2: Unknown noise variance.When� is un-
known it can be included as an unknown parameter in the
model, and, hence, the set of unfalsified models consists of
pairs (�, �). Now, however, the choice of the threshold for
the likelihood function defined by (5) becomes somewhat
problematic. It is not possible to a priori set the threshold
so that the true parameters(�, �) belong to the set of un-
falsified models with a pre-specified probability, as could
be done when the noise variance was known. However,
given that� is the parameter of interest, one can set the
threshold such that the probability that the true� together
with some� is in the set of unfalsified models with a pre-
specified probability. The argument is as follows. Let� be
arbitrary. The parameter� that minimizesVN(M) given �

is given by

�(�)= 1

N

N∑
t=1

e2(t, �)

for which

VN(M)= N

2
log(2�)+ N

2
+ N

2
log

{
1

N

N∑
t=1

e2(t, �)

}
.

This implies that the parameters� that will belong to the set
of unfalsified models, i.e. the set of unfalsified parameters
�, is given by

G(ZN)=
{

� :
N∑
t=1

e2(t, �)�c
}
. (13)

To ensure that the true� (if there is such a parameter) is in
this set with probability	, the constantc should be taken as

c =
(

n

N − n
F	(n,N − n)+ 1

) N∑
t=1

e2(t, �̂N),

where the constantF	(n,N−n) is defined byP(X�F	(n,N−
n))= 	 whereX is F(n,N − n) distributed. This gives that
(13) can be written as

G(ZN)=
{

� : 1

n
(� − �̂N)T

RN

1/(N − n)
∑N
t=1 e

2(t, �̂N)

× (� − �̂N)�F	(n,N − n)

}
. (14)

This follows by way of (9). Now,

1

n
(� − �̂N)T

RN
1

N−n
∑N
t=1 e

2(t, �̂N)
(� − �̂N)

is F(n,N−n) distributed when� is the true parameter vec-
tor. Thus, the set in (14) contains the true� with probability
	 as desired if there is such a “true” parameter.

2.6.1.3. Relation to the prediction error method.The set
(14) corresponds exactly to a confidence region for the true
parameter when the least-squares estimate for the model (7)
is used (Ljung, 1999b). The probability that the true pa-
rameter is outside this set is 1− 	. Hence, we can inter-
pret least-squares identification of linear regression models
under Gaussian assumptions as a likelihood-based unfalsifi-
cation method. Since the least-squares estimate is identical
to the maximum-likelihood (ML) estimate under these as-
sumptions, the confidence region is also the smallest possi-
ble. That there is a close connection to the ML-method is of
course natural as the likelihood approach to model unfalsi-
fication is based on the likelihood function.

For model structures beyond the linear regression type,
the equivalence between likelihood-based unfalsification and
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the confidence region for the prediction error method (PEM)
and the ML-method can be shown to hold asymptotically.
For brevity, we discuss this for the case when� is unknown
only.

Consider the LTI model structure

y(t)=G(q, �)u(t)+H(q, �)e(t), (15)

where H is monic, stable and minimum phase, which is
parametrized in terms of� ∈ � ⊂ Rn. The signale repre-
sents noise. The noise given that the parameter vector is�
is given by

e(t, �)=H−1(q, �)(y(t)−G(q, �)u(t)). (16)

This quantity is also known as the prediction error (Ljung,
1999b) since it is the error in the one-step ahead predictor of
the output when themodelcorresponding to the parameter
vector� is used.

The prediction error estimate with quadratic criterion is
defined as

�̂N = arg min
�∈�

JN(�), JN(�)= 1

N

N∑
t=1

e2(t, �).

Neglecting transients, this is also the maximum-likelihood
estimate when the distribution is Gaussian and hence it mini-
mizes the negative log-likelihood (5) within the model struc-
ture.

Under weak assumptions (Ljung, 1999b), it holds that

lim
N→∞ �̂N = �∗� arg min

�∈�⊂Rn
lim
N→∞ E{JN(�)} w.p.1. (17)

It holds also that the prediction error estimate�̂N converges
in law to a normally distributed random variable

√
N(�̂N − �∗) D−→N(0, P ) asN → ∞ (18)

for some covariance matrixP.
Suppose now that the true system is in the model set

(notice that this is an assumption that we have so far not
used in Section 2), i.e.

y(t)=G(q, �◦)u(t)+H(q, �◦)e◦(t), (19)

wheree◦ is (a realization of) white noise, for some�◦ ∈
�. Then�∗ = �◦ (under suitable identifiability conditions
(Ljung, 1999b)) and the expression for the covariance matrix
P is given by

P = �R−1, whereR = E{�(t, �∗)�T(t, �∗)}, (20)

with �(t, �)= −de(t, �)/d�.
With

RN =N · R =N · E{�(t, �∗)�T(t, �∗)}, (21)

it follows from (18) that asN → ∞,

(�◦ − �̂N)T
RN

1/N
∑N
t=1 e

2(t, �̂N)
(�◦ − �̂N)

D−→ �2(n) (22)

and, hence,

G(ZN)

=
{

� : (� − �̂N)T
RN

1/N
∑N
t=1 e

2(t, �̂N)
(� − �̂N)

��2
	(n)

}
(23)

is a confidence region which asymptotically includes the true
parameter�◦ with probability	.

Let us now characterize the set of unfalsified models in
the likelihood-based approach given that (19) holds. This is
in general a difficult task, due to that� appears non-linearly
in the prediction error. However, for small enough boundc,
all models in this set will have to have parameters� close to
the prediction error estimatê�N . In this situation, a second
order Taylor expansion gives

N∑
t=1

e2(t, �) ≈
N∑
t=1

e2(t, �̂N)+ (� − �̂N)TRN(� − �̂N)

(24)

whereRN is given by (21). Compare this with (9). From (22)
we have that, suitably normalized, the second term of the
right-hand side of (24) is approximately�2(n) distributed for
largeN. Using these observations, we can now proceed as in
Section 2.6.1.2 to obtain that the set of models corresponding
to the most likely noise sequences and which is large enough
that the probability that the true system belongs to the set is
	, can be described approximately by set (23).

For a recent study on conditions for the asymptotic pre-
diction errror theory to be valid, seeBittanti, Campi, and
Garatti (2002). For recent results on finite sample proper-
ties we refer toWeyer and Campi (2002), Campi and Weyer
(2002). Similar conclusions can also be made when the noise
is not Gaussian but we will not pursue this topic further.

2.6.1.4. Case 3: Unstructured uncertainty present.For
model structures of type (1) one can also pursue a likelihood
approach. The set of unfalsified models will correspond to a
set of parametric uncertainty, cf. (23), together with the un-
structured uncertainty. However, the parametric uncertainty
set will be larger compared to (23) since it corresponds
to all parameters for which there existsa � ∈ S� such
that the likelihood of the corresponding noise sequence is
acceptable.

2.6.2. Uniform prior
The assumption that the noise distribution has support

[−c, c] leads to a set of unfalsified models of the type (2)
(Ninness & Goodwin, 1995). In this set, all models are
equally likely.

The model set is in this case a polyhedron which can be
approximated by an ellipsoid, i.e. with a set of the type (23).
The problem of determining the outerbounding ellipsoid of



H. Hjalmarsson / Automatica 41 (2005) 393–438 399

minimal volume is a convex optimization problem (Pronzato
& Walter, 1994).

2.7. Stochastic embedding

Just ase may be modeled in a stochastic framework, the
unstructured uncertainty� in the model structure (1) may
be modeled in a stochastic framework. This leads to what
is known as the stochastic embedding approach (Goodwin,
Gevers, & Ninness, 1992; Goodwin, Braslavsky, & Seron,
2002).

2.8. On the value of noise priors

Let us return to the likelihood approach in Section 2.6.
We started out in Section 2.6.1.1 by assuming that the noise
variance� was known. This resulted in the set (11). Notice,
that for a given model structure there may be no model at
all that belongs to this set—a very powerful result! Poor
models will thus be rejected. Unfortunately, overly complex
models will not be falsified and thus overmodelling can be
a problem. One possibility of dealing with this problem is
to use Occam’s razor:

Pick a model with as low complexity as possible in the
set of unfalsified models.

There is often no reason to favor any other model. In
Section 8.11, however, we will see that there may be reasons
for other choices.

In Section 2.6.1.1 we also observed that we could shrink
the size of the set by looking at the data before the thresh-
old was selected. This resulted in the set (12). Notice that
for any given model structure, the set of unfalsified mod-
els will now be non-empty. By making the threshold data
dependent we have gained in accuracy but the price paid is
that the objectivity of the criterion used in (11) has been
lost. When the noise variance is unknown, there is no objec-
tive criterion. As for (12), the set of unfalsified models (14)
will be prejudiced on the model structure. Different model
structures now have to be compared against each other in
order to find the “right” structure. This leads us to model
validation which we will discuss in Section 5.

To conclude, we have argued that knowledge of the noise
characteristics is extremely valuable. As pointed out, e.g. in
Pintelon and Schoukens (2001)andLjung (1999a), the noise
sequence itself can be estimated if periodic inputs are used,
cf. the case when the input is zero, then the output equals
the noise.

2.9. Summary

In this section, we have presented identification as a way
of producing sets of unfalsified models and illustrated that
both deterministic and stochastic modeling paradigms fit into
this framework. Interestingly, it seems as if many of these
different approaches result in similar unfalsified model sets,
seeReinelt, Garulli, and Ljung (2002).

For stochastic models, we discussed the use of the likeli-
hood function as a criterion for ordering models. This lead
to the definition of the set of unfalsified models as the set of
models for which the likelihood function is above a certain
threshold. The threshold was determined so that the proba-
bility that the true system is outside this set, i.e. is falsified,
is smaller than some given (small) number. It was shown that
this set is equivalent to a standard confidence region for the
prediction error method. The likelihood-based approach to
obtain a set of unfalsified models is thus just another way of
viewing the prediction error method. However, an important
insight is that all models in a set of unfalsified models have
one thing in common: they all have the likelihood function
larger than a certain threshold. As we will see in Section 4.4,
this observation will be instrumental when discussing statis-
tically accurate models of restricted complexity, i.e. models
having lower order than the true system.

We noted in Section 2.8 that it is difficult to quantify the
information contents in data when the model structure is
uncertain. However, one recurring theme in this paper will
be that it is possible toensure that the information required
for our particular application can be made available by
proper experiment design.

There is an on-going healthy cross-fertilization of ideas
between deterministic and stochastic approaches, see e.g.
Ljung and Hjalmarsson (1995), Tjärnström and Garulli
(2002), Partington and Mäkilä (1999), Hakvoort, Schrama,
and Van den Hof (1994), de Vries and Van den Hof (1995),
Milanese and Taragna (1999), Tempo, Bai, and Dabbene
(1997), Bai, Ye, and Tempo (1999). For excellent overviews
of different modeling frameworks we refer toMäkilä, Part-
ington, and Gustafsson (1995)and Ninness and Goodwin
(1995).

3. Frequency domain characterization of the set of
unfalsified models

In the previous section the discussion was concerned with
the characterization of the set of unfalsified models in the
parameter space. However, as we will see in Section 7, when
the model set is to be used for control design it is of interest
to characterize the model set in the frequency domain. We
will in this section focus on the prediction error method.

We will assume that the true system is given by

y(t)=G◦(q)u(t)+H◦(q)e◦(t), (25)

wheree◦ is white noise with variance�0 and whereH◦ is
stable, monic and minimum phase. We will denote the power
spectral densities ofu andH◦e◦ by �u and�v, respectively.
The model structure is given by (15) with� ∈ Rn.

3.1. The bias error

For the PEM using the LTI model structure (15), the limit
estimate (17) can be characterized indirectly in the frequency
domain using Parseval’s formula. When the true system,
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given by (25), is stable and operating in open loop, and when
G andH areindependently parametrized, i.e.� = [T, �T]T
andG=G(); H =H(�), the limit estimate is defined by

∗ = arg min
∫ �

−�
|G◦(ej�)−G(ej�, )|2 �u(�)

|H(ej�, �∗)|2 d� (26)

where�∗ is the limit estimate of�. The limit estimateG(∗)
thus minimizes a weightedH2-norm of the error between
the model and the true dynamics. It is thus in general not
possible to guarantee frequency wise error bounds on the
bias error. This may be critical in some applications such as
control design. We shall pursue this issue in Section 4.4.

When (25) holds and the system is operating in closed-
loop with a stabilizing controllerC and an external excitation
r(t) (the reference signal) such that the input signal is given
by

u(t)= C(q)(r(t)− y(t))

it holds that�∗ = arg min
�∈�∫ �

−�

{
|G◦(ej�)−G(ej�, �)|2|CS(G◦, C)|2�r

+ |S(G◦, C)|2
|S(G(�), C)|2 �v

}
1

|H(ej�, �)|2 d�, (27)

whereS(G,C) = 1/(1 + GC). An alternative expression
which characterizes the bias introduced by an erroneous
noise model can be found inForssell and Ljung (1999).

3.2. Variance of frequency function estimates

A simple characterization of the uncertainty in the fre-
quency domain is in terms of the variance of the frequency
function estimateĜN(ej�)�G(ej�, �̂N):

Var(ĜN(e
j�))�E[|G(ej�, �̂N)− E[G(ej�, �̂N)]|2].

Introducing

�n,N (�)= Var(ĜN(e
j�))

N · �u(�)
�v(�)

,

where we for ease of notation have chosen to indicate only
the dependence of� on n andN explicitly, one can write

Var(ĜN(e
j�))= �n,N (�)

�v(�)
N · �u(�) , (28)

whenever Var(ĜN(ej�)) is well-defined. The reason for
this factorization of Var(ĜN(ej�)) is that under certain as-
sumptions exact expressions or accurate approximations to
�n,N (�) exists.

The key to such results is a first order Taylor approxima-
tion of the variance1

N · Var(ĜN(e
j�)) ≈

(
dG(ej�, �)

d�

)∗
P

dG(ej�, �)
d�

. (29)

where the derivatives andP are evaluated at� = �∗. This
expression is exact asN → ∞ when the model structure is
linearly parameterized

G(q, �)= �T(q)�, (30)

in which case dG/d� = �.
For general parametrizations some caution is neces-

sary when using (29) as it is an approximation, see, e.g.,
Vuerinckx, Pintelon, Schoukens, and Rolain (2001)where
this is illustrated for confidence bounds on estimated zeros.

In the mid-eighties, the following result was derived (pre-
sented here for the case of open loop operation) (Ljung &
Yuan, 1985; Ljung, 1985)

lim
m→∞ lim

N→∞
N

m
Var(ĜN(e

j�))= �v(�)
�u(�)

, (31)

wherem is the model order. Result (31) implies that

�n,N (�) ≈ m (32)

for large enough model orderm and number of samplesN.
A complicating factor in the derivation of (31) is that for

certain model structures such as Box–Jenkins and output-
error, pole-zero cancellations occur when the model order
exceeds the underlying true system order. In order to en-
sure a well defined limit estimate, the cost function has to
be regularized in the analysis. InNinness and Hjalmarsson
(2004a)the effect of this regularization on the variance is
studied and it is shown that as the model order tends to in-
finity, it is the regularization only that determines the vari-
ance. In fact, the result (31) holds for these types of model
structures only when the regularization term is of the form
�‖� − 0‖2 for small�>0. Choosing another regularization
point than the origin will result in another variance.

An approximation of�n,N (�) with, in many cases, im-
proved accuracy was proposed inNinness, Hjalmarsson, and
Gustafsson (1999). In Xie and Ljung (2001)an expression
for �n(�)�limN→∞ �n,N (�) was derived for the case of
a model with fixed denominator and fixed moving aver-
age noise model excited by an auto-regressive (AR) input.
This represented a major step forward as no asymptotics
in the number of parameters (or model order) is involved,
thus avoiding the need for regularization. InNinness and
Hjalmarsson (2004c)this result was generalized and for the
Box–Jenkins case of independently parametrized dynamics
and noise models the result reads as follows.

1 x∗ denotes the complex conjugate transpose.
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Proposition 3.1. Suppose that the true system is operating
in open loop and given by

y(t)= B◦(q)
A◦(q)

u(t)+ v(t),

where v(t) = H◦(q)e0(t) for some white noise sequence
e0(t). Assume that the system is in the model set. Let
G(q, �)= q−kB(q)/A(q) withmb parameters inB(q) and
ma parameters inA(q).

Under the condition that

A†�A2◦H◦/�1/2
u , (33)

where�1/2
u is the stable minimum-phase spectral factor of

the input spectrum, is a polynomial inz−1 of degree at most
ma +mb, it holds that

lim
N→∞ N · Var(ĜN(e

j�))= �n(�)
�v(�)
�u(�)

,

where

�n(�)�
ma+mb∑
k=1

1 − |�k|2
|ej� − �k|2 , (34)

where�k, k=1, . . . , ma+mb, are the zeros ofzma+mbA†(z).

Comparing (34) with (32) we see that the factorm (the
model order) is replaced by a frequency dependent factor
�n(�) which is a function of the poles ofA†.

Remark 1. Notice that
∫ �
−� �n(�)d�=ma+mb and hence

that there is a “water-bed effect” in that a small�n in some
frequency region has to be compensated for by high�n in
some other region.

Remark 2. Notice that the result holds, e.g., if the noise
model is of MA-type and the input spectrum is of AR-type
andmb is sufficiently large.

Remark 3. The result seems to hold approximately with
good accuracy also for cases where the system is not in a
Box–Jenkins model set but when this model structure is flex-
ible enough that the bias error for both the system dynamics
and the noise spectrum is small.A◦ andH◦ should then be
replaced by the corresponding models in the limitN → ∞.
Notice that this implies a different condition on the orders
ma andmb than if the correct model structure was used.

Remark 4. The result seems to hold approximately with
good accuracy also when the input can be well approximated
by an AR-process. The spectral factor corresponding to the
approximating process should then be used instead of�1/2

u

in (33). Notice that this implies a different condition on the
model ordersma andmb than if an input of AR-type was
used.

Remark 5. In closed-loop identification, the variance of
the frequency function estimate is independent of whether

direct, indirect or joint input–output identification is used
when (32) is valid (Gevers, Ljung, & Van den Hof, 2001).
As noted inVan den Hof (1998), the variances for these dif-
ferent methods are likely to be different for finite model or-
ders. Using Proposition 3.1, it is shown inNinness and Hjal-
marsson (2004b)that the accuracy of different methods may
indeed be very different. This has also been supported by
considerations in the parameter domain (Forssell & Ljung,
1999).

Remark 6. For finite impulse response (FIR) models, an
exact expression for�n,N (�) can be derived when the num-
ber of spectral lines in the input equals the model order
(Hjalmarsson & Ninness, 2004).

3.3. The gain error

Assume now that the true system (25) is in the model set,
i.e. (19) holds. Assume further that the confidence region for
the prediction error method is given byG(ZN) defined in
(23). As we will see, for control design purposes it is often
sufficient to be able to characterize the gain error

|ĜN(ej�)−G◦(ej�)|.
In going from parametric uncertainty to frequency domain
uncertainty the following lemma, which is a special case of
Lemma 3.1 inWahlberg and Ljung (1992)and Theorem 1
in Bombois, Anderson, and Gevers (2000a), is useful.

Lemma 3.1. For x, z ∈ Rn, 0<Q ∈ Rn×n, it holds

x∗Q−1x�c ⇒ |zTx|2�cz∗Qz. (35)

When the transfer function is linearly parametrized (30),
Lemma 3.1 applied to the inequality in (23) gives the fol-
lowing upper bound on the gain error

|ĜN(ej�)−G◦(ej�)|2��2
	(n)

1

N
�∗(ej�)P�(ej�), ∀�

which holds with probability	. In view of (29), the inequal-
ity above is equivalent to

|ĜN(ej�)−G◦(ej�)|�
√

�2
	(n) Var(ĜN(ej�)),

Using (28), we have the bound

|ĜN(ej�)−G◦(ej�)|�
√

�2
	(n)�n,N (�)

�v(�)
N · �u(�) (36)

of the gain error which holds with at least	 × 100% proba-
bility. Because of its relative simplicity and the explicit ap-
pearance of interesting quantities such as input and noise
spectra in the expression, we will use (36) as the generic de-
scription of confidence regions for the gain error in the fre-
quency domain. SeeBombois et al. (2000a)for an insight-
ful discussion on how confidence bounds in the parameter
domain and the frequency domain relate.
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Reduced order controller

Data + Priors

Full order model Full order controller

Reduced order model

Fig. 1. Different possibilities of mapping data and prior information into
a controller of reduced complexity.

We remark that for linearly parameterized models, the
bound (36) is conservative, but at most a factor

√
2. A

tight overbound can easily be derived. For non-linearly
parametrized models, the largest bound on the gain error
can be computed exactly using LMIs (Bombois, Gevers, &
Scorletti, 2000b), see alsoJansson and Hjalmarsson (2004a)
for computation of the maximum bound over the frequency
axis.

4. A statistical view on restricted complexity modeling

Models of restricted complexity are often adequate in
many applications. In process control for example, first or-
der models with an additional dead-time are often sufficient
even though the true process is much more complicated.
Such models can be obtained in (at least) two principally dif-
ferent ways: (1) Direct estimation of a restricted complexity
model or (2) Estimation of a full-order model followed by
model reduction. It is here of interest to know if one method
is to be preferred over the other. By full-order model we
here mean a model which is able to capture the true system
behavior. In practice full order-models do not exist and we
will spend quite some effort in this, and the next, section
discussing this.

In many applications, it is not the model itself that is of
interest but some quantity derived from the model. For var-
ious reasons, it is often desirable to limit the mathematical
complexity of this quantity. In control design, e.g., it is the
designed controller that is of interest.Fig. 1 illustrates vari-
ous ways of obtaining a restricted complexity controller via
identification. The same question as for the case of estimat-
ing restricted complexity models arises: Is one of the paths
better than the others?

In this section we will discuss these issues from a statis-
tical perspective.

4.1. Statistical advantages of biased models

From a statistical perspective, approximate modeling is
usually motivated by examples such as the following.

Example 4.1. Consider the following high-order FIR sys-
tem

y(t)=
n∑
k=1

g◦
ku(t − k)+ e◦(t), (37)

wheree◦(t) is white Gaussian noise with variance�e, where
the ordern is very large and where the inputu is white
Gaussian noise with variance�u.

Suppose that one is interested in estimating the static gain
G◦(ej0)=∑n

k=1 g
◦
k of the system. In the ML-approach one

would then use a model structure of the same type as (37)
and estimate� = [g1, . . . , gn]T using least squares. The co-
variance matrix of̂�N is approximately�e/(N�u)I , whereI
denotes the identity matrix, and hence the variance of the es-
timated static gain̂G(ej0)=∑n

k=1 ĝk is approximately given
by

n�e
N�u

.

Since the estimate is unbiased, the mean-square error (MSE)
E[|Ĝ(ej0)−G◦(ej0)|2] will be the same as the variance error.
We see that due to the high system ordern, the uncertainty
can be significant even if the input power is large.

This observation, naturally, prompts the idea that a
(slightly) biased estimate of the transfer function may give
an estimate of the static gain which is better. For example,
using the model structure

y(t)= u(t − 1)+ e(t), (38)

for which the static gain estimatêG(ej0) is identical to the
estimate of, will have a mean-square error which approx-
imately is given by

�e
N�u

+
∑n
k=2 |g◦

k |2
N

+
∣∣∣∣∣
n∑
k=2

g◦
k

∣∣∣∣∣
2

. (39)

The first term is the variance of the parameter estimate
caused by the noisee. The second term is the variance of the
parameter estimate caused by the unmodeled dynamics. The
last term is the bias error due to the unmodeled dynamics.
The MSE of the static gain for this biased model is signifi-
cantly lower than for the ML estimate if onlyg◦

1 contributes
significantly to the steady state gain!

The above example indicates that the ML-approach may
be unsuitable when only approximate models are required
for highly complex systems. However, the issue is a bit more
subtle than at first glance.

4.2. A separation principle

Let �̂ML be the ML-estimate of� ∈ � ∈ Rn and let
f : � → � ⊂ Rm with m�n. It then holds thatf (�̂ML )

is the ML-estimate off (�). This is the so called invariance
principle for ML-estimation (Zehna, 1966) (Theorem 5.1.1
in Zacks, 1971). Hence, it follows under very general con-
ditions on f that if �̂ML is asymptotically efficient, i.e. it
is consistent and its asymptotic covariance matrix reaches
the Cramér–Rao lower limit (Ljung, 1999b), thenf (�̂ML )
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is also asymptotically efficient. In our context this provides
us with a useful principle:

The estimator of some system dependent quantity that

(i) first estimates a full-order model using an asymptoti-
cally efficient ML estimator, and then

(ii) uses the full-order system estimate obtained in (i), as if
it is the true system, to estimate the desired quantity

is an asymptotically efficient estimator of this quantity under
general conditions.

The invariance principle can thus be seen as a separation
principle where the estimation problem is separated from
the application dependent part of the problem. We illustrate
this using Example 4.1.

Example 4.2 (Example 4.1 continued). Given the ML-
estimate �̂N = [ĝ1, . . . , ĝn]T of the full-order model in
Example 4.1, one may takey(t)= ĝ1u(t − 1) as model, cf.
(38). This will result in a biased estimate of the static gain
with the MSE approximately given by

�e
N�u

+
∣∣∣∣∣
n∑
k=2

g◦
k

∣∣∣∣∣
2

. (40)

This expression is the same as the MSE (39) of the static
gain for the biased estimate in Example 4.1, except that the
middle term in (39) is missing. This term is the variance
contribution from the unmodeled dynamics. Hence, by first
using a full-order model, inflation of the variance due to
unmodeled dynamics can be avoided.

4.3. Applications of the separation principle

There are many applications of the separation principle
presented in Section 4.2, and below some of these will be
discussed.

4.3.1. Model reduction
Suppose that it is known that the true systemG◦ belongs

to some model structure parametrized by� ∈ � but that
the desired quantity is a consistent estimate of the frequency
function minimizing∫ �

−�
|G◦(ej�)−G(ej�, )|2�u(�)d�, (41)

whereG(q, ) is a low order model parametrized by. From
the open loop bias expression (26) it is clear that one way
of doing this is to use an output error structure

y(t)=G(q, )u(t)+ e(t),

and directly estimate. For FIR-models, it is shown in
Tjärnström and Ljung (2002)that this procedure leads to a
higher variance as compared to first identifying a full-order

FIR-modelG(ej�, �̂N), say, and then performing model re-
duction by minimizing∫ �

−�
|G(ej�, �̂N)−G(ej�, )|2�u(�)d� (42)

with respect to. In Tjärnström (2002)this result is ex-
tended to the case when both the true system and the model
structure are of output error type. The results are proved by
explicitly computing, and comparing, the asymptotic covari-
ance matrices for the two estimates.

The same results can be obtained by appealing to the
separation principle in Section 4.2. It is in fact possible to
extend the result slightly: Suppose that the true system is
not of output error type (e.g. of Box–Jenkins type). Then it
is optimal to first estimate a full-order model and then to
perform the model reduction as in (42). Directly estimating
an output error model, which also in this case asymptotically
minimizes (41), can never give better statistical accuracy.

4.3.2. Simulation
In Zhu (2000)identification for simulation is considered.

It is shown that modeling the spectrum of the noise is better
than ignoring it, even though simulation does not require a
noise model. As inTjärnström (2002)this is proved by com-
paring the covariance matrices of the estimated parameters.

This result also follows directly from the separation prin-
ciple.

4.3.3. Identification for control
The separation principle is also useful in identification for

control problems and indicates that, from an accuracy point
of view, no matter what the ultimate objective is, be it mod-
eling to tune a simple PID-controller or modeling suitable
for high performance control, one should alwaysfirst try to
model as well as possible. After that, any simplifications can
be performed without jeopardizing the statistical accuracy.
Hence, returning toFig. 1, taking the lower path should be
avoided if accuracy is a concern. We also conclude that go-
ing from a full-order model directly to a low order controller
or via a high order controller, will not significantly affect
the statistical accuracy. However, there may be other rea-
sons for taking one path or another. Some of the paths may,
e.g., be computationally infeasible, cf.Codrons, Bendotti,
Falinower, and Gevers (1999). We shall return to the appli-
cation of the separation principle in control applications in
Section 8.

4.3.4. Model validation
The separation principle also applies in model validation.

We shall, however, defer this discussion to Section 5.4.

4.4. Near-optimal restricted complexity models

The issue of biased modeling versus full-order modeling
has yet another twist. Let us return to Example 4.1 once
more but consider now another input signal.
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g
1

g
2

η̂N

Set of least-squares estimates

True parameters

Fig. 2. Example of uncertainty region for the least-squares estimate in
Example 4.3 whenn= 2. For further explanations see text.

Example 4.3 (Example 4.1 continued). Suppose that the
allowed input powerE[u2(t)] is bounded by the constant
�u. Then, clearly a constant input with amplitude

√
�u is

optimal for estimating the static gain and even though the
ML criterion for the impulse response coefficients will be
singular, it is easy to show that the estimate of the static
gain will be well-defined and have variance approximately
equal to�e/(N�u), which is lower than, e.g., the minimal
variance (40) for a white input. But now, the same accuracy
is obtained with the simple model (38) since the unmodeled
dynamics do not influence the accuracy of the estimate of
; in fact, it is accounted for by this estimate which is now
an unbiased estimate of the static gain!

The example above suggests that a judicious choice of in-
put may allow restricted complexity models to be optimal,
or near-optimal, see alsoHildebrand and Gevers (2003b)
for further insights. So what property of the identification
problem in Example 4.3 is it that allows the biased estimate
to be optimal? To answer that question, consider, for sim-
plicity, the case when the number of impulse response co-
efficientsn = 2. Since the input is not persistently exciting
of sufficiently high order, the least-squares criterion will be
minimized by a set of parameter vectors. This set of least-
squares estimates is the solid line inFig. 2. Also shown in
this figure is a confidence region for the true parameter (the
shaded region in the figure) which in this case is an ellipsoid
that has degenerated into an infinite strip due to the poorly
exciting input. The least squares estimate of the first order
model is given by the point̂N in the figure. It lies in the set
of least-squares estimates and is thus optimal. It may seem
as a trivial observation but the conclusion is thus that if the
identification experiment is performed such that the reduced
order estimate belongs to the set of full-order least-squares
estimates, then it will be optimal.
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θ̂N

η̂N

Fig. 3. Example of ellipsoidal uncertainty region for the least-squares
estimate in Example 4.3 whenn=2. For further explanations see the text.

Suppose now instead that the input is such that there exists
a unique least-squares estimate�̂N . The confidence region
is then an ellipsoid and let us assume that it is given by the
solid curve inFig. 3. This region happens to contain a line
segment of theg1-axis (the thick horizontal line segment
in the figure). This means that any first order model with a
parameter value on this segment will be as good a candidate
as any second order model inside the confidence region. It
also means that such a first order model will possess all
the properties that models in this confidence region have. In
particular, the distance to the true system in various metrics
can be upper bounded. For the gain error, e.g., the triangle
inequality gives

|G(ej�, )−G◦(ej�)|
� |G(ej�, )−G(ej�, �̂N)| + |G(ej�, �̂N)−G◦(ej�)|

�2

√
�2
	(n)�n,N (�)

�v(�)
N · �u(�) (43)

for any on this line segment. The second inequality follows
from (36) in Section 3.3 (see Section 3 for the notation).
This means that frequency-by-frequency error bounds can
be obtained for restricted complexity models of this type.
Compare this with the generalH2-norm characterizations
(26) and (27) which do not allow such an error quantification.

Now, the question remains as to whether it is possible to
directly identify a first order model such that it lies on the
aforementioned line segment. To this end, recall the impor-
tant conclusion from Section 2.6 that the ellipsoidal con-
fidence bound actually is a level set for the least-squares
criterion, cf. (9). Hence, suitable low order models are ob-
tained by making the least-squares criterion small. In par-
ticular the least-squares estimate for the first order model
is suitable. This estimate is marked aŝN in Fig. 3. It
lies on the boundary of a scaled version of the confidence
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ellipsoid, centered around the full-order least-squares esti-
mate (marked bŷ�N in the figure). It is the ellipsoid of this
type which tangents theg1-axis. In other words, this ellip-
soid is the smallest level set of the least-squares criterion
which includes a point of theg1-axis. We thus conclude that
simple least-squares estimation of a first order model will
in this case give us a model which is inside the confidence
region for the full-order model and, hence, which is such
that, e.g., the error bound (43) applies.

The generalization to other estimation problems is
straightforward: Consider an identified full-order model
with the (approximate) confidence region for the true pa-
rameter vector described by (23). If there is a point in the
confidence region where some elements of� are zero, then
these parameters can be omitted in the estimation still giv-
ing an estimate which is inside the confidence region of the
full-order model. We will call such models,near-optimal
reduced complexity models. The norm of the error between
this estimate and the true system parameter vector is at most
a factor 2 of the norm of the error between the full-order
estimate and the true system parameter vector, cf. (43).

Given that the full-order estimatê�N is available it is easy
to test whether a reduced order estimatêN is near optimal
or not. Combining (23) with (24) gives that

N∑
t=1

e2(t, ̂N)−
N∑
t=1

e2(t, �̂N)��2
	(n)

1

N

N∑
t=1

e2(t, �̂N)

(44)

has to be satisfied for̂N to be a near-optimal reduced com-
plexity estimate.

It should be clear that the bias error is of the same size
as the variance error for this type of estimate. This is in line
with the conclusion inGuo and Ljung (1994)that the total
error is minimized by a model where the bias error does not
exceed the variance error.

We conclude this section with an example which illus-
trates that also the noise model is important for near-optimal
restricted complexity models.

Example 4.4. The true system has order 3 and is given by

y(t)= 0.14q−1u(t)

(1 − 0.8ej�/6q−1)(1 − 0.8e−j�/6q−1)(1 − 0.45q−1)

+ (1 − 0.95q−1)e0(t),

where the noise variance is 3. The input signal has high-pass
character with variance 1.3.

Consider first the second order Box–Jenkins model struc-
ture

y(t)= bq−1

1 + a1q−1 + a2q−2 u(t)+ (1 + cq−1)e(t).

For N = 100 samples we have that the left-hand side of
(44) evaluates to 19.2 whereas the right-hand side bound
is 135. Hence, the estimated model should be near-optimal.

100

10–1

10–2

10–3

10–2 10–1 100

ω

Fig. 4. Mean-square error of estimated frequency functions in Example
4.4. Solid line: Full-order Box–Jenkins model. Dashed line: Second order
Box–Jenkins model. Dotted line: Second order output–error model.

To assess this, 100 models were estimated using different
noise realizations and the sample mean-square error for the
estimated frequency functions was computed. This error is
shown inFig. 4 for the reduced order Box–Jenkins model
(dashed line) and for a full-order Box–Jenkins model (solid
line). Clearly, the errors for the two different model struc-
tures are of the same size.

Fig. 4 also shows the sample mean-square error for an
ensemble of output-error (OE) models

y(t)= bq−1

1 + a1q−1 + a2q−2 u(t)+ e(t),

using the same noise realizations as in the Box–Jenkins case.
The sample mean-square error for the OE-models is signif-
icantly larger than for the full-order model, except at high-
frequencies. The OE-model is thus far from near-optimal de-
spite the fact that there are second-order models that can ap-
proximate the true system as well as the full-order model.2

For the OE-model, however, the left-hand side of (44) evalu-
ates to approximately 3.3×104 which is significantly higher
than the right-hand side bound of 135. Therefore the OE-
model cannot be near-optimal and it follows that it is not
possible to give any frequency-wise bounds on the error for
this model structure. The only characterization of the error
is given by the bias expression (26) which indicates that the
error should be smaller at high frequencies (as the input is
of high-pass type).

4.5. The separation principle revisited

In this section we have so far argued that one should model
as well as possible in order to reduce the impairing effect
of measurement noise. Referring to the separation principle
in Section 4.2, the full-order model can then be simplified
if required without loss of statistical accuracy.

Now, as we will argue in Section 5.2, full-order models
are esoteric quantities so that one always have to contend

2 This we know from the Box–Jenkins case which uses the same
dynamic model as the OE-model.
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with restricted complexity models, not at least in control ap-
plications. To cope with this, we have introduced the concept
of near-optimal restricted complexity models. Such a model
is in a statistical sense almost as accurate as any identified
full-order model would be, had it been possible to use a
such a model. The complexity of such a model thus depends
on the quality of the observed dataZN : A first order model
may be near-optimal if only poor information is available
whereas it may require a 50th order model when many thou-
sands of high signal-to-noise data samples are available.

The usefulness of near-optimal restricted complexity
models lies not only in that they model the true system al-
most as accurately as a (thought) full-order model, but also
in that they can be used in the separation principle instead
of the unattainable full-order model! To see this, let�=f (�)
denote the mapping from the (thought) full-order model
to the model class of interest, let�̂N be the (full-order)
ML-estimate and̂N a near-optimal restricted complexity
model. We observed in Section 4.2 that�̂N = f (�̂N) is the
ML-estimate off (�◦). Furthermore, any point within the
confidence region associated with�̂N will have the same
statistical accuracy aŝ�N within a factor 2. Now the confi-
dence regions for̂�N and�̂N are related simply by the map-
ping f (due to the construction of̂�N ) and sincêN belongs
to the confidence region associated with�̂N , f (̂N)will be-
long to the confidence region associated withf (�̂N). Thus,
f (̂N) will be a near optimal estimate off (�◦).

5. Model validation

We saw in Section 2.8 that when a model structure has
been selected, the set of unfalsified modelsG(ZN) can by
definition not be falsified by the dataZN when the noise
variance is unknown. One could say that the model builder is
trapped inside the model structure. Hence, there is a need to
“ look over the fence” to ensure that there are no other model
structures that can represent the data in a more plausible
way, or alternatively testG(ZN) on newdata. This is what
model validation is about!

5.1. Model error modeling

Consider the following example.

Example 5.1. Let the residuals of a nominal model be de-
noted by ε(t) and let 
(t) = [u(t − 1), . . . , u(t − n)]T.
Then a standard test-statistic, for testing whether the cross-
correlation betweenε(t) and
(t) is zero, is given by

�N = 1

1/N
∑N
t=1 ε

2(t)

∥∥∥∥∥
N∑
t=1

ε(t)
(t)

∥∥∥∥∥
R−1
N

,

whereRN is defined in (10) and where‖x‖Q�
√
xTQx.

Normalized by 1/n, this statistic is asymptotically

F(n,N−n)- distributed whenε is white noise, so a suitable
cross-correlation test is

�N �nF 	(n,N − n). (45)

We can express�N somewhat differently. Let̂�N be the
least-squares estimate, cf. (10), for the following FIR model
of the residuals:

ε(t)= 
T(t)� + e(t).

It is easy to see that

�N = �̂
T
N

RN

1/N
∑N
t=1 ε

2(t)
�̂N,

and hence the test (45) corresponds to testing

�̂
T
N

RN

1/N
∑N
t=1 ε

2(t)
�̂N �nF 	(n,N − n).

Comparing with (14) (where for this examplee(t, �̂N) =
ε(t) − 
T(t)�̂N ), we see that this test is closely related to
testing whether the zero model� = 0 belongs to the set of
unfalsified models for the above FIR-model of the residu-
als under the assumption that the residuals can be modeled
by this FIR-model. The difference lies in the denominator
which is an estimate of the variance of the residuals of the
model error model. Above the estimate is conditioned on
that the true parameter in the model error model is zero
which gives the variance of the original residuals whereas
(14) uses the least-squares estimate of the model error esti-
mate. The difference corresponds to the difference between
hypothesis testing and computing confidence regions.

The above example was used inLjung (1999a)to point out
that standard model validation tests such as cross-correlation
tests between residuals and inputs can be interpreted as
first modeling the residuals, with the resulting model named
model error model, and then testing whether the zero model
is included in the set of unfalsified model error models. In-
stead of just computing yes/no answers to tests such as (45)
it was suggested that an intuitively appealing way of present-
ing these tests is by plotting the Bode-diagram of the model
error model with uncertainty regions indicated. From this
insight follows also that more complex models than finite
impulse response (FIR) models can be used and it is recom-
mended that the model structure for the model error model
should be considerably richer than the nominal model. The
reader is also referred toLjung and Guo (1997)for results
on how the model error is bounded by test statistics such
as�N .

The main message inLjung (1999a)is that if the nominal
model is unfalsified, i.e. the uncertainty region for the model
error model includes the zero model, then, even though
the nominal model structure (with its own uncertainty de-
scription) is unfalsified, one should use the nominal model
structure together with theuncertainty region of the model
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error model. Since the model structure for the model error
model is more flexible than the model structure for the nom-
inal model, this will give a larger, and hence “safer”, set of
unfalsified models.

Notice that this conclusion iscompletely in linewith the
discussion in Section 4.4 if we consider the nominal model
as being of restricted complexity whereas the model error
model is flexible enough to capture all dynamics in the resid-
uals. Then it is the uncertainty set associated with the model
error model that is relevant.

We are here at the crux of the modeling problem—the
model builder wants to be sure that his model set includes
the ‘true’ system. However, we stress that

even though the confidence region associated with the
model error model structure may be more conservative com-
pared to the confidence region for the nominal model, there
is still no guarantee that this set contains the true system
since we in general cannot guarantee that the model error
model captures the remaining dynamics completely.

Nevertheless, the concept of model error modeling has
helped make explicit thenecessaryleap of faith in system
identification.

This brings us to the next topic on the agenda.

5.2. The true system: a mirage

Consider the followinggedanken experiment. A contin-
uous time true system is LTI but infinite dimensional with
single poles spaced many decades apart. It is excited by a
band-limited input signal which covers frequencies up to a
certain frequency�max which includesn of the true system
poles. As more and more data are collected from this set-
up, the identification procedure appears to converge to an
nth order model which seems to be a correct description of
the true system as this model will pass all validation tests.
This model is in fact a near-optimal restricted complexity
model as the poor excitation at high frequencies make the
uncertainty of a full-order modelveryhigh in this frequency
region, cf. Section 4.4. However, as even more data samples
are collected (still using the same input spectrum), eventu-
ally the small discrepancies in the system behavior below
frequency�max, as compared to annth order model, will
become detectable from data and the model order may need
to be adjusted (upwards) in order for the model to be unfal-
sified.

From this mental exercise, we can conclude that even what
we may consider as a full-order model, is indeed only a near-
optimal restricted complexity model. As the signal-to-noise
ratio increases, more and more details of the system can be
modeled and, further, a different type of input may give a
drastically different model, which may again appear to be an
excellent model of the true system (for this particular input).
These observations support the arguments brought forward
in Skelton (1989)that any model is input dependent and that,
hence, the quest for a model of the true system is futile.

The inclusion of an unstructured dynamic term such as
(4) in set-membership identification can be seen as a way
of incorporating this modeling limitation. In (Hjalmarsson,
1991) a linear time-varying dynamic term is used to account
for unmodeled dynamics and to prevent the modeling accu-
racy to increase unrealistically.

The conclusion that the true system cannot be modeled
to an arbitrary degree may seem disappointing. One has to
accept that we areat best working with models that are near-
optimal, cf. Section 4.4. However, the main message in this
contribution will be that by carefully selecting the input,
the system can be forced to reveal the properties that are
relevant for the particular application and this is all that is
needed for a successful application. As already pointed out
in Section 2.9, this will be a recurrent theme in the paper.
We will approach this topic in the next sub-section. We also
refer the reader to Section 6, Section 11 and the concluding
remarks in Section 13 for further elaborations on this topic.

5.3. Validating with confidence

Suppose that it is critical for the application that any un-
modeled dynamics in a certain model structureMME does
not exceed a certain bound. In a robust control context, it
could for example be that the peak gain in a certain fre-
quency band should not exceed a certain value. In such a
situation it would boost the confidence of the model builder
if it could be ascertained that the model, which we denote
by {ĜN , ĤN }, (and its corresponding uncertainty set) would
be falsified if this is the case.

Well, let us examine the outcome if a model error model is
estimated using the structureMME to which the unmodeled
dynamics belongs. For simplicity, let us assume that the true
system is LTI, cf. (25), and that the asymptotic results for
the prediction error method in Section 2.6.1.3 are valid. In
this case the residuals (16) are given by

ε = (G◦ − ĜN)uF + H◦
ĤN

e◦,

whereuF = Ĥ−1
N u, and the modelĜN will be falsified if

the uncertainty region for the model error model does not
include the zero model.

Using (36) and some simple algebra, this is guaranteed to
happen if

|G◦(ej�)− ĜN(e
j�)|>2

√
�2
	(n)�n,N (�) ·

�v(�)
N�u(�)

(46)

for some frequency�. Above �n,N is associated with the
model structureMME . Hence, if we want to ensure that
model errors larger than some function�(�) are detected,
then the experiment should be carried out such that the right-
hand side of (46) is less than�(�). We emphasize, again, that
this conclusion is predicated on the assumption thatMME

is flexible enough to capture the unmodeled dynamics.
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Fig. 5. Dashed line: input spectrum. Thin solid line: true system.
Thick solid line: uncertainty region around estimated nominal first order
OE-model.

Example 5.2.A third order system with a resonance is cor-
rupted by white noise and excited with a low pass input,
also with a resonance (seeFig. 5). The system is identified
using a first order output error model. The model, together
with its uncertainty region (based on that the true system is
in the model set) is shown inFig. 5. Clearly the model has
missed the resonance peak and the uncertainty region is mis-
leading. The model error is shown inFig. 6 together with
the bound from (46) based on a 10th order FIR model error
model. We see that we can expect to detect the resonance
in our model error model but not any model error at other
frequencies. In the same figure, the uncertainty bound for a
10th order FIR model error model is shown. As predicted,
the resonance peak is detected since the uncertainty region
for the model error model does not include zero around the
resonance, whereas the model error at other frequency bands
is not detected.

Notice that condition (46) depends on the input not only
through the input spectrum but also through the factor
�n,N (�), cf. Proposition 3.1. This has a, perhaps unex-
pected, implication.

Example 5.3 (Example 5.2 continued). Suppose that the
order of the model error model is increased from 10 to
100. One would then expect the lower bound (46) for de-
tecting unmodeled dynamics to increase significantly. For
the case when (32) holds, it should increase by a factor of√

100/10 ≈ 3.2. The bound is shown inFig. 7 for the two
cases. We see that there is actually an increase of approx-
imately this factor, except at low frequencies and around
� = �/2, which happens to be where the peak of the input
spectrum is located, where there isonly a minor increase.

Notice also that even though there is a peak in the input
spectrum at� = �/2, it is a factor of 20 smaller than the
input spectrum at low frequencies, cf.Fig. 5. Hence, the

small increase around� = �/2 cannot be explained by the
magnitude of the input spectrum around this frequency.

The phenomenon is due to the factor�n,N (�) in (46). The
conditions in Proposition 3.1 are approximately satisfied for
the present example (cf. Remark 3 after Proposition 3.1) so
for large N, �n,N ≈ �n with �n given by (34). A plot of
�n(�) is shown inFig. 8 for the two model orders. The
poles in�n(�) consist in this case of the poles 0.9, 0.9,
0.97e±j�/2 of the stable spectral factor of the input spectrum
and the poles of the FIR-model. The double pole at 0.9 gives
a large contribution to�n(�) at low frequencies, whereas
the complex poles give a large contribution around�=�/2.
Since all the poles of an FIR-model are at the origin,�n(�)
gets a frequency independent contribution ofm from anmth
order FIR-model. Thus,�n(�) increases linearly with the
model orderm and this is clearly seen inFig. 8 since the
solid line (corresponding tom = 100) is offset by 100−
10= 90 above the dashed line (corresponding tom = 10).
However, therelative increase at different frequencies is
vastly different. At frequencies where the poles of the input
spectrum contribute very little, the increase is a factor 10
but at frequencies where the influence from the poles of the
input spectrum is significant, the relative increase is much
less. Hence, the relative increase in the uncertainty bound is
much less at low frequencies and, especially, around�=�/2.

The key observation in Example 5.3 is rather unexpected
and indeed good news as it implies that the input spectrum
may be designed so as to allow very flexible model error
models with only minor penalty in the falsification power
at certain frequency bands. This is also consistent with the
fact that when periodic inputs are used, over-modeling does
not result in increased variance of the estimated frequency
function for frequencies corresponding to the spectral lines
of the input (although problems occur at other frequencies
due to inexact pole/zero cancellations). However, notice also
a large�n(�) gives larger uncertainty bounds so, near peaks
of the input spectrum, the bounds can be significantly worse
than the noise to signal ratio. In these frequency regions the
high-order approximation (32) typically underestimates the
true variance.

5.4. Validating restricted complexity quantities

Let G be a given model and suppose that we would like
to find out if this model represents a certain property of the
true system in a sufficiently accurate way. This can often be
formulated as that some function of the error between the
model and the true system should be small. To be explicit,
suppose that the relative error should be smaller than some
function�(�), i.e.∣∣∣∣G(ej�)−G◦(ej�)

G(ej�)

∣∣∣∣ ��(�).

Suppose now that we would like to validate this pro-
perty using a data setZN . We can now directly refer to the
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Fig. 6. Dashed line: model error. Solid line: lower bound for model errors that are guaranteed to be detected by a 10th order FIR model error model.
Shaded area: uncertainty region for estimated 10th order model error model.
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Fig. 7. Smallest model error magnitude guaranteed to be detected in model validation. Dashed line:m= 10. Solid line:m= 100.
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Fig. 8. �n(�). Dashed line:m= 10. Solid line:m= 100.

separation principle introduced in Section 4.2. An asymp-
totically efficient estimate of the relative error is

�̂N(ej�)= G(ej�)−G(ej�, �̂N)
G(ej�)

,

where�̂N is any asymptotically efficient full-order estimate
of the true system parameters. A confidence region for the
relative error can be obtained by mapping the uncertainty set
(23) through the linear transformation̂�N . If the resulting
confidence region for the relative error includes values larger

than�(�) for some frequency�, the model is invalidated.
The same technique can be applied when the function is

non-linear inG◦. However, in this case the resulting confi-
dence region may be very complex. Then, a first order Tay-
lor approximation may be used to obtain an approximation
of the confidence region that depends linearly on the co-
variance matrix of̂�N . In the very interesting contribution
(Ninness & Henriksen, 2003), it is discussed how to obtain
exact confidence regions by way of Markov chain Monte
Carlo simulations.

An alternative to the above procedure is to compute a
model error model for the residualsε(t)= y(t)−G(q)u(t),
and use the confidence region associated with this model
error model to estimate the size of the relative error. Notice,
however, that this may not give optimal accuracy as opposed
to the use of the separation principle.

6. Half-time intermission

Before we proceed with the second part of the paper which
is directly concerned with how identification and control
interrelates, let us pause and summarize the observations
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so far: We have in Section 5.2 argued that the quest for a
full-order model is futile, and thatthe best one can hope to
obtain is a near-optimal restricted complexity model.The
objective of identifying such a model is worthwhile to pur-
sue from a statistical accuracy point of view, leading to the
pragmatic conclusion:

(i) Always first model as well as possible.

As argued in Sections 4.2 and 4.5, such models are suitable,
from a statistical perspective, for replacing the true system
in subsequent computations of other quantities such as low
order models or the parameters in a controller.

Now, the obvious question is how does one know if one
has obtained a near-optimal restricted complexity model?
Unfortunately, there is no precise answer to this question
as this is a model validation problem, cf. the discussion in
Section 5.1; verifying the condition (44) on the mean-square
error requires the full-order model. It is also important to
realize thatuncertainty descriptions based on near-optimal
restricted complexity models are not necessarily reliable.
Compare with Example 4.3, computing uncertainty bounds
based on that the system only has one impulse response
coefficient will clearly not reflect the true model error. It is
the confidence region associated with the full-order model
that is relevant. In practice one may

(ii) use a very flexible model structure as benchmark for
computing confidence bounds and mean-square error.

We now come to the role played by the input, a subject we
have touched on in Section 5.3 and which we will now elab-
orate further on. Ideally, one should select the input such
that the full-orderconfidence region is as large as possible,
while still satisfying the uncertainty specifications required
by the application.This would mean a minimum of experi-
mentation on the system and that the simplest possible (from
the point of view of the application) model would be near-
optimal and useful for the application.

In practice, using a very flexible model in lieu of the true
system, as suggested in (ii), would imply a concern whether
the associated confidence bounds grow so large that they
become useless. To examine this issue further, let us return
to Example 4.3 and notice that the accuracy of the static
gain estimate isindependentof the model order! Hence,
in this example, the model builder does not have to worry
at all about that the model estimate will be too uncertain
should it turn out that the true system order was higher than
expected.3 The reason for this lies in the choice of input
signal which is concentrated to one frequency only. This
indicates that (near) sinusoidal inputs may help limit the
variance uncertainty for high-order models. This was also

3 The attentive reader will notice that the argument assumes that the
observation interval is long enough that the complete step-response has
been observed.

the theme in Section 5.3 and we will now use Proposition
3.1 to make this even more explicit.

Suppose that the input spectrum is

�u(�)= 	2 1 − �2

|ej� − �|2 + �̃u(�),

where�<1 is close to 1 so that the first term approximately
corresponds to a constant term in the input with amplitude	.
Suppose that the conditions of Proposition 3.1 hold. Order
the�k in (34) such that�1 = �, then it holds

N Var(ĜN(e
j�))

≈
(

1 − �2

|ej� − �|2 +
ma+mb∑
k=2

1 − |�k|2
|ej� − �k|2

)

× �v(�)

	2(1 − �2)/(|ej� − �|2)+ �̃u(�)
.

For � ≈ 0, the above expression reduces to�v/	2 for �
sufficiently close to 1, i.e. the noise to signal ratio at the
zero frequency which is independent of the model order. It
is also easy to see that at frequencies not in a neighborhood
of zero, the impact from the constant part of the input will
be small.

The above derivation can be generalized to sinusoidal in-
puts. We are thus in position to suggest the advice

(iii) select the input such that the model uncertainty at fre-
quency regions of interest is insensitive to the model
complexity.

As we have indicated above (near) sinusoidal inputs are use-
ful from this perspective, whereas wide band inputs such as
white noise do not possess this property.

When the model structure is pre-specified one can notice
that broad-band excitation can be difficult to handle as it
then might not exist a near-optimal restricted complexity
model within the pre-specified structure which may render
the error quantification difficult.

Equipped with (i)–(iii), which can be viewed as generally
applicable pragmatic guidelines, we are now finally in posi-
tion to discuss the control application from a system identi-
fication perspective. We will continue to use (or abuse) the
concept of a full-order model as it is useful as benchmark
for other methods and as there exists practical implementa-
tions in terms of near-optimal restricted complexity models.

7. Links between control and identification

In this section we will discuss how control and identifica-
tion interact. In Section 7.1 we give a brief review of robust
control. In Section 7.2, the main issues in relation to iden-
tification are summarized. These issues are then treated in
subsequent sections.
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7.1. Robust control

Fig. 9 illustrates a multivariable feedback configuration
where the controllerC and the true systemG◦ are LTI. The
closed-loop system equations are(
y

u

)
=
[
G◦
I

]
SI (G◦, C) [C I ]

(
r

w

)
�M(G◦, C)

(
r

w

)
, (47)

whereSI (G◦, C)�(I + CG◦)−1 is the achieved input sen-
sitivity function. Above,r andw are known external exci-
tations. The (1,1)-block ofM(G◦, C) is the complementary
sensitivity function

T (G◦, C)= (I +G◦C)−1G◦C.

The closed-loop system inFig. 9is internally stable if and
only if all four closed-loop transfer functions inM(G◦, C)
are inH∞.

Extracting all uncertain elements of the true systemG◦
results in the configuration inFig. 10 where� represents
the uncertain elements. Scaling functions have been intro-
duced in the blockP so that� is normalized in some way.
The performance is measured by some induced norm from
the external inputp (which may consist ofr and w in
Fig. 9 and/or other signals of interest) to the signalz. Also
here scalings are introduced so that the desired performance
is that the gain fromp to z is less than, e.g., 1. The general-
ized plantP thus consists of a nominal modelG as well as
robust stability and performance weightings. The objective
is to design the controllerC such that the closed-loop is sta-
ble and the performance criterion is satisfied for all uncer-
tainty blocks� of some pre-specified structure. We refer to

Skogestad and Postlethwaite (1996)andZhou, Doyle, and
Glover (1996)for comprehensive treatments of the robust
control problem.

7.1.1. Model sets in robust control
The, perhaps, most common uncertainty description in

robust control is multiplicative uncertainty

G◦ =G(I +WI�), (48)

where� is unstructured, i.e. a full complex matrix, satisfying
‖�‖∞ �1, andWI is a frequency weighting.

Model uncertainty can also be modeled as perturbations
of the coprime factorsX and Y in a normalized coprime
factorization (Zhou et al., 1996) G = X−1Y of a nominal
modelG:{
(X + �X)−1(Y + �Y ) :

∥∥∥∥�Y
�X

∥∥∥∥∞
< �
}
. (49)

Another useful measure is the�-gap metric introduced in
Vinnicombe (1993):

��(G1,G2)

=
{

max
�

�(G1(ej�),G2(ej�)) if W(G1,G2)= 0

1 otherwise,
(50)

where� is the chordal-distance

�(G1(e
j�),G2(e

j�))

= |G1(ej�)−G2(ej�)|√
1 + |G1(ej�)|2 √1 + |G2(ej�)|2 (51)

and where

W(G1,G2)= wno(1 +G∗
1G2)+ (G2)− ̃(G1).

Abovewno(G) denotes the winding number about the origin
of G(z) asz traces the unit circle, avoiding unit circle poles
and zeros by indentation into the exterior of the unit disc.
Furthermore(G) (̃(G)) denotes the number of poles in
the complement of the closed (open) unit disc.

7.1.2. Analyzing robustness
The robust stability problem entails checking whether the

feedback configuration inFig. 10 is stable for all allowed
perturbations� for a given controllerC. Similarly, the ro-
bust performance problem entails checking that some perfor-
mance criterion is satisfied for all allowable perturbations.
The computational complexity of checking these conditions
depends very much on the class of perturbations.

For the unstructured case, i.e. when‖�‖∞ �1 is the only
condition on�, robust stability can be easily checked by
computing theH∞-norm of a certain transfer function. Con-
sider, e.g., the case of multiplicative input uncertainty (48).
It is easy to show that

SI (G◦, C)= [I + �(G◦,G, TI (G,C))]−1SI (G,C) (52)

where

�(G◦,G, TI )= TIG
−1(G◦ −G) (53)
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is the input relative errorG−1(G◦ − G) weighted by the
complementary sensitivity function seen at the input of the
systemTI = I − SI . Hence, if the nominal designSI (G,C)
is stable, a small gain argument gives that robust stability is
guaranteed if

‖�(G◦,G, TI (G,C))‖∞<1 (54)

whenGCandG◦C have the same number of unstable poles.
Robust performance is harder to verify and the structured

singular value� (Zhou et al., 1996) has to be computed for
non-conservative results. For unstructured uncertainty, this
is still a convex optimization problem.

Simple sufficient conditions for robust performance exist
as well. We illustrate this for multiplicative input uncertainty
(48). Suppose that it is desired that

‖WpSI (G◦, C)‖∞<1, ∀G◦ =G(I +WI�) (55)

with ‖�‖∞ �1 and whereWp is a scalar weighting function.
From (52) it follows that

�(WpSI (G◦, C))
��(WpSI (G,C))�((I + �(G◦,G, TI (G,C)))−1)

� �(WpSI (G,C))

�(I + �(G◦,G, TI (G,C)))

� �(WpSI (G,C))

1 − �(�(G◦,G, TI (G,C)))
.

Hence, robust performance in the sense (55) is guaranteed if

�(WpSI (G,C))+ �(�(G◦,G, TI (G,C)))<1, ∀� (56)

which, using (48), results in the condition

�(WpSI (G,C))+ �(TI (G,C)WI )<1, ∀�. (57)

Remark 1. Condition (57) is satisfied if robust stability (54)
and nominal performance�(WpSI (G,C))<1 both hold
with sufficient margin (Morari & Zafiriou, 1989; Skogestad
& Postlethwaite, 1996). Not surprisingly, one may arrive at
the same condition by considering the performance degrada-
tion from the nominal design. The triangle inequality gives

�(WpSI (G◦, C))
��(WpSI (G,C))+ �(Wp(SI (G◦, C)− SI (G,C)))

which leads to (57).

Remark 2. For SISO (single-input/single-output) systems,
(57) is equivalent to (55) since for SISO systems the left-
hand side of (56) is the structured singular value for robust
performance.

Robust stability for the set (49) can be checked using the
generalized stability margin

bG,C =
{‖M(G,C)‖−1∞ if M is stable,

0 otherwise.
(58)

Stability is guaranteed only ifbG,C�� (Glover & McFar-
lane, 1989).

The maximum stability margin for a model with normal-
ized coprime factorizationG = X−1Y is given by (Glover
& McFarlane, 1989)

bG� max
C

bG,C =
√

1 −
∥∥∥∥YX

∥∥∥∥
H

,

where‖ · ‖H denotes the Hankel norm (see, e.g.Zhou et
al., 1996). ThusbG gives an upper bound on the maximum
allowable normalized coprime uncertainty.

It can be shown that forbG,C >0,

bG,C = min
�

�
(
G(ej�),− 1

C(ej�)

)
.

The following result was first presented inVinnicombe
(1993).

Proposition 7.1. Let the model set be a ball in the�-gap
metric (50):

{G◦ : ��(G,G◦)��}
where G is an arbitrary nominal model. Then it holds that
a controller C stabilizes all systems in this set if and only if
bG,C >�.

The following result also holds (Vinnicombe, 1993).

Proposition 7.2. For a given nominal model G and system
G◦ it holds thatG◦ is stabilized by all controllers in the set
{C : bG,C >�} if and only if��(G,G◦)<�.

The�-gap metric is the only metric for which Propositions
7.1 and 7.2 both hold.

Robust stability for real parametric uncertainty is treated
in Rantzer and Megretski (1994). A convex parametrization
of all controllers that stabilize the system for all possible
parameter combinations is provided when the uncertain real
parameters appear linearly in the closed-loop characteristic
polynomial.

7.1.3. Synthesizing robust controllers
For general structures of the uncertainty, robust control

design amounts to minimizing the structured singular value
of a certain transfer matrix with respect to the controller.
There are no generally applicable algorithms for such�-
synthesisproblems; for complex perturbations, so calledDK-
iterations (Skogestad & Postlethwaite, 1996) may be used
to, at least, decrease�.

In Section 7.1.2 it was pointed out that the robust perfor-
mance condition (55) could be expressed as (57). The lat-
ter condition is closely related to the mixed sensitivityH∞
condition∥∥∥∥WpS(G,C)WIT (G,C)

∥∥∥∥∞
<1
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whereS(G,C) = I − T (G,C) is the sensitivity function.
Thus,H∞ control design can be used to approximately opti-
mize robust performance in this case (Skogestad & Postleth-
waite, 1996).
H∞ loop-shaping (Glover & McFarlane, 1989) com-

bines classical loop-shaping ideas with modern robust
control. First pre- and post-compensatorsW1 andW2 are
added to the system to shape the loop gainW2GW1 of the
nominal system in a desired manner. Then a controllerC is
designed such that the stability margin (58) of the shaped
systemW2GW1 is sufficiently large. As discussed in Sec-
tion 7.1.2, this guarantees robust stability with respect to
perturbations in the coprime factors of the shaped system.
It also means that stability is guaranteed for all systemsG◦
which are such that��(W2GW1,W2G◦W1)< bW2GW1,C , cf.
Section 7.1.2.

A simple and very instructive design method is internal
model control (IMC) (Morari & Zafiriou, 1989). The con-
troller C is parametrized in terms of the nominal modelG
asC = Q(I − GQ) whereQ is a stable transfer function.
A two-step procedure is employed where in the first step
Q is determined so as to meet some nominal performance
specification, e.g.‖W2S(G,C)W1‖∞<1. In the second
step, Q is augmented with a “de-tuning” filterF giving
a new “Q” equal to QF. The filter F is selected so as to
ensure robust stability. For multiplicative input uncertainty
(48), the robust stability condition (54) can be expressed
as ‖QF(G◦ − G)‖∞<1 sinceTI (G,C) = QFG in this
case.

Model reference control is closely related to IMC. Here
the target is to design the controllerC such that a particu-
lar sensitivity function is obtained, at least nominally. For
example, the nominal design may be such that

T (G,C(G))= Td

for some desired complementary sensitivity functionTd .
Solving forC gives

C(G)=G−1(I − Td)
−1Td. (59)

Naturally, non-minimum phase zeros inG are not allowed
to be canceled in this design. Notice, that with this design it
is possible to parametrize the modelG directly in terms of
the optimal controllerC:

G(C)= (I − Td)
−1TdC

−1. (60)

There is thus a one-to-one relationship between models and
optimal controllers. The parametrization (60) is known in
adaptive control as direct parametrization.

A synthesis procedure for real parametric uncertainty is
presented inGhulchak and Rantzer (2002). It builds on
Rantzer and Megretski (1994)and produces, via convex op-
timization, a robustly stabilizing controller which is arbitrar-
ily close to the optimal controller.

7.2. Identification and control

In the preceeding section we have tried to give a flavour
of modern robust control theory. We will now turn to the
problem of using models obtained from system identifica-
tion in robust control design. An immediate insight is the
following:

The set of unfalsified models delivered by system identifi-
cation generally corresponds to very structured uncertainty
descriptions from the point of view of robust control.

For example ellipsoidal sets in the parameter domain such
as (23), do not readily fit into any of the model set descrip-
tions in Section 7.1.1. As indicated in Section 7.1.3, this in
general means that the robust control design problem be-
comes very difficult. In fact, it is often highly non-trivial to
even analyse the robustness properties for a given controller.
In Section 7.3 we report on some recent progress in robust-
ness analysis tailored for ellipsoidal model sets of the type
(23). Awaiting further development in the areas of robust-
ness analysis and control synthesis for general model sets,
an alternative approach has been to outerbound the set of
unfalsified models in a way that is congruent with existing
robust control theory. Naturally, it is desired to introduce as
little conservatism as possible in this procedure, as well as
keeping the complexity of the bound to the minimum. In
Section 7.4 we discuss some results in this direction.

In Section 7.5 we review some control design methods
that have been employed in conjuction with identified model
sets.

Characteristic to existing robust control methods is
that the uncertainty specifications are assumed to be pre-
specified. When the identification part of the problem is
taken into account, an additional freedom in the problem
formulation is unleashed in that the experiment design
can be used to influence the uncertainty set. Hence, for
given experimental constraints there are experimental con-
ditions for which the resulting uncertainty set is such that
the robust performance specifications cannot be improved
upon, i.e. the uncertainty set is optimally shaped (for robust
performance). The complexity of modern robust control
algorithms as well as system identification has (so far)
prohibited explicit solutions to such problems. A further
complicating factor is that industrial practice motivate the
use of restricted complexity models as well as restricted
complexity controllers. The non-transparency of modern
robust control algorithms, induced by their complexity, has
forced deliberations on these topics to rely on simplified
arguments and in Section 7.6 we will discuss some insights
that can be obtained.

7.3. Robustness analysis for identified models

A simple expression for the “real” stability margin is de-
rived in (Rantzer, 1992). Based on this result, robust stabil-
ity for identified ARX-models is considered inKosut and
Anserson (1994), see alsoRaynaud (1993).
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In a very interesting series of papers (Bombois et al.,
2000b; Bombois, Gevers, Scorletti, & Anderson, 2001
2001), summarized inGevers, Bombois, Codrons, Scorletti,
and Anderson (2003), Gevers, Bombois and co-workers
have developed analysis tools for the set of unfalsified
models obtained in prediction error identification, i.e. (23).
Also building uponRantzer (1992), given a controllerC, a
computable, necessary and sufficient condition for stability
for all models in (23) is provided. It is also shown that the
largest chordal distance (51) between any model in (23)
and a nominal modelG can be computed by convex opti-
mization. Hence, by frequency gridding, the largest�-gap
can be computed approximately. Referring to Proposition
7.2, this in turn means that it is possible to characterize the
largest ball (in the�-gap metric) of controllers which are
guaranteed to stabilize all systems in (23). It is also shown
that for the performance measure�1(W2M(G◦, C)W1)

(recall thatM is the closed loop transfer function defined
in (47)), where the frequency weightingsW1 andW2 are
block-diagonal, it is possible to compute the worst case
performance over the set (23) via convex optimization.

7.4. Outerbounding the set of unfalsified models

Robust stability is the issue inDouma, Van den Hof, and
Bosgra (2003). Consider a ballS of systems in the gap
metric (Zames & El-Sakkary, 1980) and a corresponding set
C of controllers characterized as being the largest ball in
the gap metric (centered around some nominal controller)
which is such that all controllers in this ball stabilize all
systems inS. It is then shown that there exists a pair of
sets, one which consists of systems and one which consists
of controllers, which are characterized by the double Youla
parametrization and which are such that the set of systems
includesS and the set of controllers include those inC.
Hence, with respect to robust stability, the double Youla
parametrization is less conservative than the gap metric for
representing model sets. By similar arguments it is shown
that the double Youla parametrization is less conservative
than using the�-gap and the�-gap (seeBongers, 1991for
a definition) to characterize model sets.

In Van den Hof (1998)it is pointed out that choosing
a model structure such that the model error is affine in
the performance criterion implies considerable simplifica-
tions. When the performance is measured by some frequency
weighted element ofM(G,C), it is pointed out that the dual
Youla parametrization is one such parametrization. Further
insights on the implications of outerbounding are reported
in Douma and Van den Hof (2003).

Pointwise bounds in the frequency domain are derived in
Wahlberg and Ljung (1992)using a set-membership setting.
The effects of unknown impulse response coefficients, ini-
tal condition and an unknown-but-bounded disturbance are
taken into account. Another contribution to the frequency
domain bounding of ellipsoidal parameter sets isDevilbiss
and Yurkovich (1998). Confidence bounds in the frequency

domain, taking undermodelling explicitly into account, for
the instrumental variable method are developed inHakvoort
and Van den Hof (1997).

A recent contribution where frequency domain bounds
for a set-memberhip method are derived inMilanese and
Taragna (2002). Here prior assumptions on the decay rate of
the impulse response coefficients are used to determine the
grid size of frequency points so that intersample variation
can be neglected.

For standardH∞ methods to be applicable, the uncer-
tainty bound should be the magnitude of a rational transfer
function. A method that produces such bounds is presented
in Scheid, Bayard, and Yam (1991).

7.5. Control algorithms using identified model sets

In this section we will give some examples of control
algorithms that have been developed specifically to cope
with model sets produced by identification algorithms.

7.5.1. Ellipsoidal model sets
The problem of minimizing the maximum linear quadratic

regulator (LQR) cost in a model set described by ellipsoidal
parametric uncertainty, such as (23), is studied inLau, Boyd,
Kosut, and Franklin (1991). It is shown that the solution is
the LQR corresponding to a “worst-case” plant in the model
set. A heuristic algorithm for computing the worst-case plant
is proposed.

In Raynaud, Pronzato, and Walter (1995)the design spec-
ification is that the closed loop poles should be inside a disc
with a pre-specified radius�<1. The objective is to find
the controller that maximizes the volume of a model set of
the type (23) (i.e. the constant�2

	(n) in (23)) such that the
closed-loop poles satisfy the design objective for all mod-
els in this set. It is remarked that, followingRantzer and
Megretski (1994), the problem can be recast as an infinite
dimensional convex problem. Instead a lower bound for the
maximum volume, amenable to standardH∞ robust con-
trol, is used. An alternative path might be to use the method
in Ghulchak and Rantzer (2002)which addresses the prob-
lem formulated inRantzer and Megretski (1994).

There is at present no control design method that accounts
for both robust stability and robust performance when the
model set is defined by (23). For SISO systems it is suggested
in Bombois, Scorletti, Anderson, Gevers, and Van den Hof
(2002)to first determine the set of controllers for which the
nominal performance is somewhat better than the desired
robust performance. This is a standardH∞ problem and
the set can be easily characterized. It is then tested whether
all controllers in this set stabilize all systems in the model
set. A similar test for the performance criterion is presented.
The robust stability test boils down to the computation of
the structured singular value of a certain matrix. If these two
tests are passed, any controller in the set of controllers can
be used.
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7.5.2. Model sets from set-membership identification
IMC is employed in Malan, Milanese, Regruto, and

Taragna (2001). The Q part of the controller, cf. Section
7.1.3, is obtained by solving

Q̂= arg min
Q∈H∞

‖(1 −QG)W‖∞

subject to the robust stability condition‖QWA‖∞<1 (WA
is an upper bound on the additive model error. This is a
standardH∞ problem providedWA is the magnitude of a
stable rational transfer function.

7.6. Linking identification and robust control

In Remark 1 in Section 7.1.2 we saw that robustness issues
may be analyzed by considering the difference between the
closed-loop transfer function of the nominal design and the
true one. This has been a fruitful starting point for examin-
ing the links between identification and control. In particu-
lar, this type of analysis has been employed to examine what
constitutes a good nominal model (Schrama, 1992; Lee, An-
derson, Mareels, & Kosut, 1995; Lee, Anderson, Kosut, &
Mareels, 1993; Zang, Bitmead, & Gevers, 1995;Åström,
1993). But it can also be used to analyze how the model un-
certainty and the experimental conditions influence the per-
formance. Building onHjalmarsson and Jansson (2003), we
shall pursue such an analysis in this section.

Let us introduce the weighted difference between the
closed-loop system consisting of the true systemG◦ con-
trolled by the controllerC◦, and the designed closed-loop
system using the nominal modelG with some controllerC

J (G◦, C◦,G,C)�(
w11I 0

0 w21I

)
(M(G◦, C◦)−M(G,C))

×
(
w12I 0

0 w22I

)
=W1(M(G◦, C◦)−M(G,C))W2, (61)

wherewij , i, j = 1,2 are scalar frequency weights. As this
expression may seem cumbersome, the reader is recom-
mended to restrict attention to the case

J (G◦, C◦,G,C)=G◦SI (G◦, C◦)C◦ −GSI (G,C)C

= T (G◦, C◦)− T (G,C), (62)

which corresponds to the choicew11=w12=1,w21=w22=0.
Much of the analysis in the identification for control litera-
ture has focused on this(1,1)-block. However, performance
robustness is equally important for the other transfer func-
tions.

It is natural to consider the difference between the nomi-
nal designM(G,C(G)), which usually has some desirable
properties, and the corresponding closed-loop transfer func-
tion when the designed controllerC(G) is applied to the true
system, i.e.M(G◦, C(G)). For this reason we introduce

V (G,C)�J (G◦, C,G,C) (63)

suppressing for notational convenience the dependence of
V on G◦. Various norms ofV (G,C(G)) can be used to
quantify the performance degradation when the designed
controller is applied to the true system, as compared to the
nominal design.

It is also of interest to consider performance degrada-
tion relative to the overall optimal designM(G◦, C(G◦))
(which would result if perfect knowledge ofG◦ was avail-
able in the control design). This can be measured by
norms ofJ (G◦, C(G◦),G◦, C(G))=W1(M(G◦, C(G◦))−
M(G◦, C(G)))W2. The average squared 2-norm of this
quantity has, e.g., been used in input design which we will
discuss in Section 11.

Notice that whenM(G,C(G))=M is independent ofG,
thenJ (G◦, C(G◦),G◦, C(G)) = −J (G◦, C(G),G,C(G))
so that the performance degradation measuresV (G,C(G))

andJ (G◦, C(G◦),G◦, C(G)) coincide.
Returning toV, notice that it holds that (recall (53))

V (G,C)

=
[
w11C

−1

−w21I

]
(I + �)−1�SI (G,C) [w12C w22I ] ,

(64)

where� = �(G◦,G, TI (G,C)). From this expression we
can re-derive the robust stability result (54) and we conclude
once more that the size of the weighted input relative error
� is intimately tied to robust stability.

Regarding robust performance, we can overbound the gain
of V in the following way:

�(V (G,C))
��(�(G◦,G, T (G,C)))

× �((I + �(G◦,G, T (G,C)))−1)

×
√
w2

11

�2(C)
+ w2

21

×
√
w2

12�
2(SI (G,C)C)+ w2

22�
2(SI (G,C)). (65)

For SISO systems the bound is tight. It is also possible to
derive a similar expression that is based on the weighted
output relative error�O = (G◦ −G)G−1T (G,C), see, e.g.
Morari and Zafiriou (1989).

Studying (65), we see that the first two factors depend
only on the weighted relative model error� while the last
two factors depend solely on the nominal design. We shall
now discuss each factor separately:

• The first factor is the gain of the weighted relative error.
Hence, the relative accuracy of the model, as compared to
the designed complementary sensitivity function, can be
used to control robust performance

• As we have pointed out above, the second factor
is related to stability. We can bound this term
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according to

�((I + �(G◦,G, T (G,C)))−1)

� 1

1 − �(�(G◦,G,C))
.

The closer to 1 the gain of�, the poorer robustness margin
and the poorer performance. Notice that by combining the
above inequality with the inequality (65), a generalization
of the robust performance condition (57) is obtained.

• The third factor
√
w2

11/�
2(C)+ w2

21 becomes large at
frequencies where the controller has a low gain direction.
This can occur, e.g., if the system is ill-conditioned with
large differences in gain in different directions or in the
rare event that the designed closed-loop bandwidth is
lower than the bandwidth of the nominal model.

• The first term inside the square root in the fourth factor,
i.e. w2

12�
2(SI (G,C)C), is related to the gain from the

referencer to the inputu in Fig. 9. It is thus a measure of
the control effort. Hence, this term is large at frequencies
where the bandwidth of the nominal design significantly
exceeds the bandwidth of the nominal model.
The second termw2

22�
2(SI (G,C)) is the gain of the nom-

inal input sensitivity. This term may become large around
the designed bandwidth if, e.g., the designed bandwidth
exceeds the limitations imposed by non-minimum phase
zeros present in the system.

Notice that� is involved both in the robust stability and
the robust performance conditions. The magnitude of this
factor depends on both thequality of the model Gand the
control specifications(represented byTI (G,C)). It is around
� where the interplay between system identification and con-
trol is staged and below we will illustrate some of the trade-
offs that it induces by considering the problem of making
|�|>1. For simplicity, we will consider the SISO-case only.

Let ĜN be an identified model and letC(ĜN) be a controller
designed based on this nominal model (and possibly also its
confidence region). Since, input and output sensitivities are
the same for SISO systems we shall drop the subscriptI in
quantities such asTI , etc.

Trade-off 1: Performance specifications versus experimen-
tation effort

Suppose that the set of unfalsified models is given by (36).
Then

‖�‖∞ � sup
�

∣∣∣∣∣T (ĜN , C(ĜN))ĜN

∣∣∣∣∣
×
√

�2
	(n)�n,N

�v
N · �u , (66)

with probability	. HereT/ĜN is the designed transfer func-
tion from the referencer to the inputu in Fig. 9, which we
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Fig. 11. Thick solid line: estimated modelĜN . Thin dashed line: desired
complementary sensitivity functionT for design 1. Lower dotted line:
desired complementary sensitivity functionT for design 2. Thick dashed
line: designed control effortT/ĜN for design 1. Upper dotted line:
designed control effortT/ĜN for design 2.

could call the designed control effort. Let SENPR denote the
signal energy density to noise power density ratioN�u/�v.
Then (66) implies roughly that SENPR has to be at least an
order of magnitude larger than the squared designed control
effort in order to guarantee robust performance.

In order to get some insight in what this implies, notice
that in the passband of the designed complementary sensi-
tivity function, |T/ĜN | ≈ |1/ĜN |. TypicallyG◦, whichĜN
tries to approximate, is of low-pass character with gain larger
than one at low frequencies, and hence the designed control
effort will be (significantly) less than one for frequencies up
to when the system’s own gain drops below 1, i.e. the open
loop cross-over frequency. Hence, in this frequency range
the model uncertainty may be allowed large while still hav-
ing a small‖�‖∞. This is the forgiving nature of feedback
giving the model builder some slack. Above this frequency
region the magnitude of|T/ĜN | will increase until the band-
width of T is reached where it will start to decrease ifT
rolls-off faster thanĜN . Thus it is in this frequency region
where an accurate model will be required. More precisely,
for a system that rolls off like 1/�n, a SENPR of the order
at leastO(�2n) is required in this frequency band. This in-
dicates that increasing the closed-loop bandwidth becomes
increasingly expensive with respect to experimentation be-
yond the open loop system’s own bandwidth. This is illus-
trated inFig. 11where the designed control effort is shown
for two different choices of designed bandwidth (designs 1
and 2). As the bandwidth is increased above the bandwidth
of the estimated model, the designed control effort increases
significantly implying in turn a drastic increase in the mini-
mum SENPR which is proportional to the square of the de-
signed control effort as mentioned above. We shall discuss
experiment design further in Section 11.

Another important conclusion is that (66) involves quanti-
ties which a priori are unknown. Hence, it may be beneficial
to update the experiment design as more information about
the system is obtained. This leads toadaptive experiment
designwhich we shall discuss in Section 11.3.

In summary, (66) captures the trade-off between the
input spectrum and the performance specifications. The
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importance of adapting the performance specifications to
the system uncertainty is the leading principle in the ‘wind-
surfer approach’, see e.g.Lee et al. (1995). Here the per-
formance is gradually increased along with improved confi-
dence in the model. See alsoSchrama (1992), furthermore
seeCadic, Weiland, and Polderman (2003)for a recent dis-
cussion on the importance of this issue.

Trade-off 2: Performance specifications versus model
complexity

Suppose that in order to limit the complexity of the con-
troller, a low order modelGlo is to be used. From the separa-
tion principle in Section 4.2 we have that the optimal model
is obtained by first estimating a full-order modelĜML using
ML estimation and then solving

Ĝlo = arg min
Glo

sup
�

∣∣∣∣∣ĜML −Glo

Glo
T (Glo, C(Glo))

∣∣∣∣∣ .
The total errorĜlo − G◦ can be assessed by also comput-
ing the variance for̂Glo. However, already the minimum of
the expression above gives useful information. For a given
bound on|�|, a lower bound on the complexity ofGlo is
obtained. Conversely, given the complexity ofGlo, an upper
bound on achievable bandwidth forT is obtained.

8. Direct identification of restricted complexity models
for control: LTI systems

Since the order of the controller typically depends on
the order of the model, it is often desirable to restrict the
complexity of the model. Thus there is a need to identify
restricted complexity models that are suitable for control.
This is the theme of this section. In one line of research
the objective has been to develop identification methods
which directly identify low order models suitable for con-
trol design. A minimum requirement in this context has
been methods that work for large data sets. This means that
the focus has been on the bias error|G◦(ej�)−G(ej�, �∗)|
and variance aspects have to a large extent been neglected,
cf. Sections 8.3–8.7.

In order to facilitate the comparison of different methods
only SISO systems will be considered. We define as formal
objective to minimize the performance degradation as com-
pared to the nominal control design. This means minimizing
(recall (63))‖V (G,C(G))‖, where‖ · ‖ is any norm, with
respect toG, in other words the identification is linked to
the control design via a performance degradation criterion.

For ease of comparison, the simple case (62) is considered
throughout Section 8. Notice thatV (G,C) then simplifies to

V (G,C)= T (G◦, C)− T (G,C)= S(G,C)− S(G◦, C)
= (1 + �(G◦,G, T (G,C)))−1�(G◦,G, T (G,C))

× S(G,C), (67)

where� is given by (53) withTI = T (which holds for
SISO systems). We shall occasionally use� to denote some
nominal performance measure, e.g. designed bandwidth.

We will begin this exposé in Section 8.1 by elaborating on
how to identify restricted complexity models in an asymp-
totically efficient way. We will then in subsequent sections
review different approaches that have appeared in the liter-
ature. In Section 8.9 stability aspects for such performance
based methods will be considered. From this discussion we
conclude that it is of interest to consider methods which
make the weighted relative error (53) small and in Section
8.10 we discuss how to identify near-optimal restricted com-
plexity models with this property. Finally, in Section 8.11
we discuss preferential identification, an alternative way of
connecting the identification criterion with robust control.

8.1. Asymptotically efficient identification

From Section 4.2 it follows that it is optimal, with re-
spect to the asymptotic statistical accuracy, to first identify a
full-order model using an asymptotically efficient estimator,
and then reduce the complexity according to the following
procedure:

LetG(�) represent a full-order model, i.e.∃�◦ s.t.G(�◦)=
G◦, and let�̂ML denote the corresponding ML-estimate. Let
G() represent a restricted complexity model and define

Ĵ (�, , �)�J (G(�), C(G(), �),G(), C(G(), �)),

where J (G1, C1,G2, C2) has been defined in (61)
(or the simpler (62)). Then, takê as the minimizer
of ‖Ĵ (�̂ML , , �)‖ with respect to. The variance of
‖Ĵ (�◦, ̂, �)‖ may be estimated numerically using Gauss’
approximation formula (Ljung, 1999b) and implicit differ-
entiation of Ĵ (�, , �). Hence, for given data, the perfor-
mance specification� may be adjusted so that achieved
and designed performance are guaranteed to be sufficiently
close as well as to ensure robust stability.

8.2. High-order modeling and model reduction

It may be useful both from practical and computational
points of view to first estimate a high-order model and
then perform model reduction. The method ASYM, seeZhu
(1998, 2001), is a fully integrated method for identification
for control based on this approach and, hence, very close
in spirit to the use of the separation principle discussed in
Section 8.1. The input design is based on high-order op-
timal input design; see Section 11.1. A two step approach
is used with a high-order ARX-model estimated in the first
step, the motivation being its computational simplicity and
that the high-order theory is applicable, cf. Section 3.2 and
(32). Model reduction is performed using the asymptotic
ML method (Wahlberg, 1989) which means minimizing a
frequency weightedL2 criterion where the weighting cor-
responds to the inverse of an estimate of the variance of
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the estimated high-order frequency function. The model re-
duction step is thus asymptotically efficient as the sample
sizeand the model order tends to infinity. Model order se-
lection is also based on the high order variance expression.
To determine the unfalsified set of controllers, (36) is used
with �n,N (�)=m (=the model order) which follows from
(32). The method was developed in the early 1990’s and
it has been successfully applied to numerous multivariable
processes in process industry.

High-order ARX-modeling is also advocated inRivera
and Jun (2000).

8.3. Direct restricted complexity identification

It may not be convenient to identify a full-order model
and around 1990 several ideas of how to directly iden-
tify a nominal modelG which approximately minimizes
‖V (G,C(G))‖2 appeared. As we will outline below, the ba-
sic idea is to choose thedesign variablesin the identification
method such that the asymptotic bias expression, e.g. (26),
approximates theL2-norm of the error (67).

The quantityV (G,C) in (67) can also be expressed as

V (G,C)= T (G◦, C)− T (G,C)

= �(G◦,G, T (G,C))S(G◦, C)
= S(G,C)(G◦ −G)CS(G◦, C). (68)

Hence,

‖V (G,C)‖2
2 =

∫ �

−�
|G◦ −G|2|CS(G◦, C)|2|S(G,C)|2 d�.

Comparing this expression with the closed-loop bias expres-
sion (27), we see that‖V (G,C)‖2

2 corresponds to the first
term in the closed-loop bias expression (27) if the noise
model is taken as

H = �1/2
r S−1(G,C). (69)

Hence, the model that minimizes‖V (G,C)‖2
2 with respect

to G will be obtained asymptotically when the system is
noise free if the identification is performed in closed-loop
with the controllerC using the noise model (69). We will
discuss this approach further in Section 8.5.

Before we proceed, observe that the above derivation can
also be done in the time domain. Letu and y, denote the
input and output, respectively, of the closed-loop system in
Fig. 9 with w ≡ 0 and the controllerC in the loop. The
manipulations in (68) correspond in the time domain to

y − T (G,C)r = (S(G,C)+ T (G,C))y − T (G,C)r

= S(G,C)(y −GC(r − y))

= S(G,C)(y −Gu). (70)

The expression (70) is the prediction error (16) when data
are collected in closed-loop withC as the controller andH=
S−1(G,C) as noise model. The only difference compared
to (69) is due to that the spectrum of (70) is weighted with
the reference spectrum which is not the case in (68).

A simpler cost function is obtained by linearizing (62)
with respect toG◦

J (G◦, C◦,G,C)
≈ ((G◦ −G)C◦ + (C◦ − C)G)S(G,C◦)S(G,C)
�J (G◦, C◦,G,C).

This gives the approximation

V (G,C)�J (G◦, C,G,C)= (G◦ −G)CS2(G,C) (71)

toV (G,C) (63) and instead of minimizing‖V (G,C(G))‖2,
‖V (G,C(G))‖2 could be minimized (or‖V (G(C), C)‖2 if
the direct parametrization (60) is used).

Comparing theL2-norm of (71) with the open loop bias
expression (26), we see that open loop identification with
the noise model

H = �1/2
u (S2(G,C(G))C(G))−1 (72)

corresponds to minimizingV (G,C(G)) under noise free
conditions. We will discuss this approach in Section 8.6.

Remark 1. Comparing (71) with (67), we see that the sta-
bility guaranteeing term(1+ �)−1 is not present in the ap-
proximationV (G,C). Furthermore, comparing with the dis-
cussion on conditions on|�| in Section 7.6, we see that there
is less emphasis on making|�| small at low frequencies.
Hence, there is a possibility that|�|>1 at low frequencies
when (71) is used, with a potential risk for destabilization.

In Sections 8.4–8.7 we will elaborate on how the expres-
sions above have been used in the literature.

8.4. Model and controller reduction

Expression (71) was, perhaps, first used for model re-
duction purposes. Given a full-order modelG◦ and a de-
sired complementary sensitivity function, the problem of
finding a control relevant reduced order model such that
‖S(G◦, C(G))‖ is as small as possible was examined in
Rivera and Morari (1987). Through the use of a triangle in-
equality for the sensitivity function, the objective was simpli-
fied into minimizing the norm ofJ (G◦, C(G),G,C(G))=
V (G,C(G)) with respect toG, which in turn was approxi-
mated by the norm ofV (G,C(G)).

In Rivera and Morari (1987), the function‖V (G,C(G))‖
is minimized with respect toG numerically under the as-
sumption that

|S(G,C(G))T (G,C(G))|
is independent ofG, cf. IMC and model reference control
(see Section 7.1.3). From this we see that a smallrela-
tive model error is achieved around the designed bandwidth
where neither ofS(G,C(G)) or T (G,C(G)) are small.
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The problem of controller reduction was also studied in
Rivera and Morari (1987), see alsoAnderson and Liu (1989).
Given the high order controllerC◦, the objective is to deter-
mineC such that some norm of

U(G◦, C)�J (G◦, C◦,G◦, C)
= T (G◦, C◦)− T (G◦, C) (73)

is small. Linearizing with respect toC gives

U(G◦, C) ≈ C◦ − C

C◦
T (G◦, C◦)S(G◦, C◦)�U(G◦, C).

(74)

A similar procedure as for the model reduction problem is
now used.

In fact these model reduction and controller reduction
problems are dual to each other: With a direct parametriza-
tion of G in terms of the controllerC according to

G= 1

C

T (G◦, C◦)
1 − T (G◦, C◦)

(75)

then

U(G◦, C)= −V (G(C), C). (76)

Hence, the controller reduction problem minC‖U(G◦, C)‖
can be seen as the model reduction problem minG‖V (G,C)‖
whereG is parametrized in terms ofC according to (75).

A variation of the above controller reduction idea is pre-
sented inLandau, Karimi, and Constantinescu (2001). Here,
no Taylor approximation is introduced. For the optimiza-
tion, a recursive algorithm is employed which uses simulated
closed-loop signals. Boundedness of the closed-loop signals
of the closed loop system with the reduced order controller
is guaranteed under a certain positivity condition.

8.5. Iterative methods

In Section 8.3 we have seen thatV (G,C) can be min-
imized with respect toG using closed-loop identification
with the controllerC in the loop when the noise model (69)
is used and data are noise free. Since the objective is to
minimizeV (G,C(G)) this suggests the following iterative
procedure. At iterationk:

(i) Identify a modelGk using the noise model (69) and
closed-loop data collected with controllerCk=C(Gk−1)

in the loop.
(ii) ReplaceCk with Ck+1 =C(Gk) in the closed loop. Let

k = k + 1 and go to Step (i)

The methods inZang et al. (1995)andSchrama (1992)are
examples of this approach. See alsoÅström (1993). Surveys
of this type of methods can be found inGevers (1993), Van
den Hof and Schrama (1995)andAlbertos and Sala (2002).

Despite the intuitive character, the above scheme will not
converge to the minimum ofV (G,C(G)) (Hjalmarsson,

Gunnarsson, & Gevers, 1995). The iterations above corre-
spond to, for some given functiong(x, y), trying to mini-
mize the functionf (�)= g(�, �) by the iterations

(i) �k = arg min�g(�, �k−1).
(ii) Let k = k + 1 and go to Step (i)

Any convergence point�∗ satisfies that the partial deriva-
tive of g with respect to the first argumentx is zero, i.e.
�g(�∗, �∗)/�x = 0, whereas a necessary condition for opti-
mality is 0=f ′(�)=�g(�, �)/�x+�g(�, �)/�y. Thus con-
vergence to the optimal solution cannot in general be guar-
anteed. This problem had earlier on been noted in adaptive
control, seeLjung and Söderström (1983), Anderson et al.
(1986)andPhillips, Kosut, and Franklin (1998). It has also
turned out to be difficult to establish convergence of the
above procedure. Despite these shortcomings, this type of
method has been found useful and successful applications
exist, see e.g.Partanen and Bitmead (1995), Schrama and
Bosgra (1993), Albertos and Sala (2002). In Section 8.11 we
will see that the uncertainty model unfalsification approach
allows convergent iterative methods to be developed.

The above derivation assumed noise free data. In the
case of noisy data, the bias of the direct prediction error
method cannot be tuned at the user’s will by the use of a
prefilter/noise-model. This has spurred the development of
a number of closed-loop identification methods for which
this is possible. We refer toVan den Hof (1998), Forssell
and Ljung (1999)andLandau, Karimi, and Constantinescu
(1997)for details.

8.6. Prefiltering methods

In Section 8.3 we introduced the approximationV (G,C)
(71) toV (G,C) (63) and showed that under noise free con-
ditions ‖V (G,C(G))‖2 can be minimized asymptotically
with prediction error identification if the noise model is cho-
sen as (72). For noisy data, the bias expression (26) is no
longer valid as the noise model (72) is not independently
parametrized ofG (Forssell & Ljung, 1999). However, this
prefiltering method is simple to use as it requires no special
experimental conditions and can be expected to work if the
signal-to-noise ratio is high and some care regarding the de-
signed bandwidth is exercised, see Remark 1 in Section 8.3.

The above idea is the basis inRivera, Pollard, and Garcia
(1992)where, for numerical reasons, an iterative procedure
is proposed where the estimated model from iterationk− 1
is used in the noise model at iterationk.

In virtual reference feedback tuning (VRFT) (Campi,
Lecchini, & Savaresi, 2002) data is used to optimize
the controller such that‖T (G◦, C) − Td‖2, where Td
is some fixed reference model, is minimized. This
means that‖U(G◦, C)‖2, see (73), is minimized with
T (G◦, C◦)= Td . The approximationU(G◦, C), see (74), is
used and it is observed thatU(G◦, C) can be rewritten as
(1 − Td)Td(C(T

−1
d G0 − G0) − 1). The L2-norm of this

expression can thus, in the limitN → ∞, be minimized
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by minimizing the sum of squares of

� = �−1/2
uu (1 − Td)Td(C(rTd − y)− u) (77)

with respect toC for an arbitrary noise free data setZN .
The signalrTd = T −1

d y is called the virtual reference signal.
At first glance this procedure might seem unrelated to

the prefiltering approach discussed in this section. How-
ever, the relation (76) betweenU(G◦, C), used in VRFT,
and V (G,C(G)), used in the prefiltering approach, sug-
gests that there is a close connection. In fact, with the direct
parametrization (60) we see that VRFT corresponds to min-
imizing ‖V (G(C), C)‖2, i.e. VRFT can be interpreted as a
prefiltering approach using the direct parametrization (60).

A variant of the prefiltering approach is proposed in
Holmberg, Valentinotti, and Bonvin (2000). Data are col-
lected in closed-loop with some controllerC and from this
data set a model of the complementary sensitivity function
is estimated from which an estimatêS(G◦, C) of the sen-
sitivity function S(G◦, C) can be obtained. Based on (68),
S(G,C)CŜ(G◦, C) is then used as prefilter in the identi-
fication. Notice that there is no guarantee either that this
procedure will find the model that minimizesV (G,C(G)).
Based on the simplifying assumption that the model error is
only due to noise, an attempt to take the model uncertainty
into account in the control design is done inHolmberg et
al. (2000).

8.7. Data dependent prefilters

A non-parametric estimate ofG◦ is given by �̂yr/�̂ur
where �̂xr is a non-parametric estimate of the cross-
spectrum betweenr (seeFig. 9) andx. Now, replacing the
trueG◦ by this estimate in (62) gives the cost function∥∥∥∥∥J

(
�̂yr

�̂ur
, C(G),G,C(G)

)∥∥∥∥∥
=
∥∥∥∥∥S(G,C(G))C(G) 1

1 + �̂yr/�̂urC(G)

×
(

�̂yr

�̂ur
−G

)∥∥∥∥∥ . (78)

It can be shown that this cost function asymptotically (in
N) converges to‖J (G◦, C(G),G,C(G))‖=‖V (G,C(G))‖
and that consequently the minimizingG also asymptoti-
cally minimizes the desired objective, provided that the the
spectral estimates are consistent (Hjalmarsson & Lindqvist,
2001). The method can be seen as a simplified version of
the optimal method outlined in Section 8.1 with the non-
parametric estimate replacing the asymptotically efficient
ML-estimate.

The cost function (78) can be expressed in the time domain
as

‖(TT
NM(w)TNM(r))

−1TT
NM(εL(�))TNM(r)‖, (79)

where

εL(�)= S(y −G(�)u), w = 1

C
u+ y,

and whereTNM(z) is defined as as the(N +M − 1)×M

lower Toeplitz matrix with[z(0), . . . , z(N−1),0, . . .0]T in
the first column. Using the Frobenius norm in (79), results in
that theL2-norm is obtained asymptotically in (78) whereas
the 2-norm will result in that the norm in (78) is theL∞-
norm (Massoumnia & Kosut, 1994).

We remark that with the cost function (79) as starting
point it is not obvious that this method actually is a two step
procedure involving a non-parametric estimate of the true
system in the first step.

8.8. Minimizing average performance degradation

Up till now we have in this section assumed that the same
controllerC(ĜN) is used on the true system as on the nom-
inal design. It is possible to obtain an achieved performance
closer to the nominal performanceT (ĜN , C(ĜN)) by re-
placingC(ĜN) with the controllerC which minimizes the
average performance deterioration

E{J (G◦, C, ĜN , C(ĜN))},
where the expectation is overG◦ in the set of unfalsi-
fied models. This has been explored inGoodwin, Wang,
and Miller (1999), see alsoGoodwin, Graebe, and Salgado
(2001).

8.9. Stability, performance and robustness

It may be tempting to conclude that since the nominal de-
signM(G,C) is stable and since‖V (G,C)‖ (67) is mini-
mized, the achieved closed-loop systemT (G◦, C) is stable.
The truth of this, however, depends on the norm that is used.
In relation to (67) we note thatH2- orH∞-norms are suit-
able. However, the methods discussed previously in this sec-
tion are based on frequency domain expressions that do not
take stability into account, i.e. the norms are ofL2 or L∞
type. Hence, even if we, as in the case of data-dependent
prefiltering, are able to generate the ideal cost function (67),
we get no information whatsoever whether the minimizing
controller stabilizes the true system or not, with one excep-
tion and that is when we can matchT (G0, C) with T (G,C)
perfectly. One exception to this is the method inLandau et
al. (2001)which uses signals generated by closed-loop sim-
ulation.

We will use a simple example to illustrate this using
the method presented inCampi et al. (2002). It should be
stressed though, that the problem is not specific to this
method4 but intrinsic to all methods which solely aim at
minimizing ‖V (G,C(G))‖.

4 This method is chosen because of the simple calculations.
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Example 8.1. Let the true system be a pure time-delay
y(t) = u(t − 1). Suppose that a simple proportional con-
troller C = � is used on the time-delay system. Notice that
the closed-loop is unstable for|�|>1.

Let the desired complementary sensitivity function be
Td(ej�)= 1− � + �e−j� where the parameter� will be dis-
cussed later. Clearly,Td cannot be achieved no matter what
controller is used unless� = 1.

Consider now the error signal (77). It can be shown that
when the input is white noise with zero mean and unit vari-
ance, thenE[ε2(t,�)] is minimized by

�opt =
4� − 1

6�
.

Hence, for 0< �<0.1, |�opt|>1 and the corresponding
closed loop system will be unstable. Hence stability is not
ensured when the desired closed-loop cannot be matched by
the actual closed-loop.

We conclude from Example 8 that the performance speci-
fications have to bematchedto the approximating ability of
the model and that to ensure stability some robust stability
condition has to be included. This in turn means that it is not
sufficient for a method to be able to tune the bias error opti-
mally, a method also has to be able to provide bounds for the
model error and these have to be accounted for in the control
design.

As we saw in Section 7.6 (Trade-off 1), it becomes typi-
cally increasingly expensive to obtain sufficient process in-
formation to ensure robust performance (and stability) as the
bandwidth is increased. Hence, it is natural to gradually in-
crease the specified bandwidth. This was recognized inLee
et al. (1993)where the term “the windsurfer approach”, al-
luding to how a windsurfer gradually improves his/hers per-
formance, was coined.

An early reference to iterative identification androbust
control isBayard, Yam, and Mettler (1992). Another contri-
bution isde Callafon and Van den Hof (1997). The issue of
ensuring that the collected information guarantees improved
performance is not addressed (Eq. (4) inde Callafon & Van
den Hof (1997)), instead considerable effort is spent on how
to select uncertainty descriptions and the control design so as
to allow computationally feasible solutions. Interesting ap-
plications of this method are reported inde Callafon and Van
den Hof (2001)andBZjstrup, Niemann, KjZlstad Poulsen,
and JZrgensen (2003).

Another way to cope with the robustness issue is to in-
troduce caution in controller updates. Assuming the present
controller to be stabilizing (but providing unsatisfactory
performance), the increment in the controller update is lim-
ited so as to ensure stability also with the new controller
(Anderson, Bombois, Gevers, & Kulcsar, 1998; Gevers,
2000; Bitmead, 2000).

In Section 8.11 we will discuss a quite different approach
based on robust control.

8.10. Control relevant near-optimal models

In Section 7.1.2 we saw that using a good nominal control
design combined with a model that makes the magnitude of
the weighted relative model error� (defined in (53)) suffi-
ciently small leads to robust performance, cf. (56). Similar
conclusions were drawn in Section 7.6. We shall now pursue
this idea.

For a full-order model,|�| is, frequency by frequency,
bounded by (see (66))∣∣∣∣∣T (ĜN , C(ĜN))ĜN

∣∣∣∣∣
√

�2
	(n)�n,N

�v
N · �u . (80)

For a near-optimal model5 the bound has to be multiplied
by a factor 2.

Now consider the scenario that the data setZN is given
and it is required that|�(�)| is bounded by some function.
Then, firstly in order to have a handle on the model error
frequency by frequency, the model complexity has to be
chosen such that the model is near-optimal. Furthermore,
the remaining variable at the user’s disposal isT which has
to be chosen sufficiently small that the condition on|�| is
satisfied.

When the input design is at the user’s disposal, there is
considerably more freedom for the user. For given perfor-
mance specifications and with no restrictions on the model
complexity, (iii) in Section 6 gives that the input should be
designed such that (80) is less than one but not smaller than
necessary. This will give data that are sufficiently informa-
tive for the given performance specifications while at the
same time minimizing the modeling requirements.

8.11. Preferential identification

So far in this section, the objective has been to ensure
that the identification is performed such that the difference
in performance between the nominal design (using the iden-
tified model) and the actual design is small, as measured by
the functionV. When the control design minimizes an ex-
plicit criterion, it is natural to instead study the problem of
how to identify a modelĜN such that this criterion is mini-
mized for the true system when the controller based onĜN
is used. This problem can be addressed using the separation
principle in a way similar to what was done in Section 8.1.
However, we will not pursue this idea further but instead
discuss an interesting approach pioneered inKrause, Stein,
and Khargonekar (1992)for adaptive control.

A bit simplified, the idea inKrause et al. (1992)can be
summarized as follows:

(i) Use a robust control law: assume that there is a robust
control law C() such that when the system signals

5 Recall, see Section 4.4, that a near-optimal model is any model
within the confidence region of a full-order model.
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{y(t), u(t)}Nt=t◦ in a closed-loop experiment with this
controller are consistent with certain modeling assump-
tions parametrized by some vector (t◦ is a time offset
to allow for a transient phase where the assumptions are
not satisfied), then a certain closed-loop performance
Υ () is guaranteed for this experiment.
One example of modeling assumptions is that∣∣∣∣∣y(t)−

m∑
k=1

gk u(t − k)

∣∣∣∣∣ ��

√√√√ n∑
k=1

|u(t − k)|2 + c,

(81)

with n�m, and  = [g1, . . . , gm, �, c]T. Notice that
the bound� on the unmodeled dynamics and the noise
boundc are not assumed known. Notice also that,and
this is important, the assumption regarding the control
law does not mean that the system signals have to sat-
isfy the modeling assumptions for any input; they just
have to be consistent with the assumptions for the ex-
periment at hand.

(ii) Use uncertainty model unfalsification:use an identifi-
cation method which is able to estimate on-line and
in closed-loop such that the estimate,t say, converges
in finite time t = t◦<∞ with the estimatet◦ being
consistent with{y(t), u(t)}tt=t◦ .

When (i) and (ii) are satisfied, it follows immediately
that for the adaptive controllerC(t ), performance for
{y(t), u(t)}tt=t◦ is guaranteed byΥ (t◦).

Remark 1. Notice that the obtainedt◦ need not correspond
to a “true”, i.e. it does not have to be valid for all possible
inputs to the system; from (i) it suffices that it holds for the
particular experiment. The samet◦ does thus not guarantee
performanceΥ (t◦) in a new closed-loop experiment. It may
not even guarantee stability.

Remark 1 points to that this is a quite different approach
from what we would normally perceive as robust control.
This seems to be the price paid for not using a priori knowl-
edge of a set to which the true system belongs.

There is considerable freedom in choosing the estimation
algorithm in (ii) and this freedom can be used to achieve
the same performance guarantee as if the true system was
known. In preferential identification (a term coined in
Krause et al., 1992), one chooses the model whichpromises
the best performancefor the controller:

t = arg min
∈Mt

Υ (), (82)

whereMt denotes a set which includes all that cannot be
falsified by data up to timet.

Now if (ii) holds for the estimator (82), it holds that per-
formance is guaranteed byΥ (t◦). Suppose now that◦ is
a valid description of the true system, meaning that (81)
holds regardless of which input is applied. Then◦ ∈ Mt ,

t=1,2, . . ., and in view of (82) it holds thatΥ (t◦)�Υ (◦).
The actual performance guarantee after the estimates have
converged is thusat leastas good as if a valid had been
known from the beginning and used for the control design.
Clearly, a very powerful result.

The key issue in the approach is to ensure convergence
of the algorithm. For a generalization of (81), a dead-zone
is used in the parameter update inSokolov (1996). This
ensures convergence in finite time without any persistence
of excitation conditions. Notice that the bounds� and c
are not known in advance! The dead-zone implies a slight
degradation of the performance guarantee. One shortcoming
of this algorithm is that the adaptation horizont◦ is not
known in advance, so that one may have to wait a long
time until convergence and during this transient phase no
performance guarantees are available.

There are various ramifications of the above idea, e.g.
Veres and Sokolov (1998)andSokolov (2001). Furthermore,
Veres has adapted the concept to iterative identification and
control (Veres, 1999; Veres & Wall, 2000; Veres, 2001).
Computational and complexity issues are the topics ofVeres,
Messaoud, and Norton (1999)andXia and Veres (1999).

To conclude, in contrast to the methods in Section 8.5, the
robust control/uncertainty model unfalsification/preferential
identification paradigm has, subject to the limitations dis-
cussed above, proven able to produce iterative identification
and control methods which converge with performance gu-
rantees.

9. Direct identification of restricted complexity models
for control: non-linear systems

There is abundant practical evidence that LTI models often
are sufficient for control design for non-linear systems. In
this section we will discuss some related issues. We will
limit attention to SISO systems.

From a system identification perspective it is of interest
to know how much uncertainty robust (and adaptive) control
can handle. In a series of paper, partly summarized inGuo
(2002), Guo and co-workers have explored this topic.

9.1. Performance aspects

Let us assume that the systemG◦ in Fig. 9 is non-linear
and noise-free and also thatw ≡ 0. Let us also assume that
a linear modelG is used to design an LTI model reference
controller (59). We will now discuss how to find a suitable
modelG such that the non-linear feedback system consisting
of the non-linear system and the linear controller defined
by (59) responds tor with the desired responseyd = Tdr.
In Sections 8.1–8.3 we discussed how restricted complexity
models for LTI systems could be identified in closed-loop.
When a non-linear full-order model is available, the method
outlined in Section 8.1 can be adapted to the non-linear
setting. When this is not the case, the ideas in Section 8.3
of closed-loop identification can be used. Notice that no use
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of that the system is LTI was made in the derivation (70).
Hence, for any system,

y − Tdr = y − yd = (1 − Td)(y −Gu), (83)

whereu andy are the closed-loop signals with the controller
C = C(G) defined in (59) in the loop. This expression for
y − yd was derived in this non-linear setting inHenriksson,
Markusson, and Hjalmarsson (2001)and similar observa-
tions have been made inHorowitz (1992). Thus, if there is
a modelG∗ such that the corresponding modelC(G∗) re-
sults iny = yd , then the right-hand side of (83) will be zero
whenG = G∗ and when data is collected withC(G∗) as
the controller in the loop. This implies that the modelG∗
corresponding to the desired controller will be obtained in
closed-loop identification when the desiredC(G∗) is oper-
ating in the loop and if the prefilter 1− Td is used in the
identification (Henriksson et al., 2001).

Notice that since the system is non-linear it may very well
happen thatG∗ is non-causal in which case the above idea
breaks down.

Disregarding this, the discussion above supports the in-
tuitively appealing idea that the identification experiments
should be carried out under thedesiredoperating conditions.
A limitation of the argument above is that it is based on
studying one single trajectory and, hence, does not give any
information about the behavior for other reference signals,
and in particular of closed-loop stability. We will return to
how to generate the desired operating conditions in Section
11.3.2 where also an example is presented.

9.2. Control relevant near-optimal models

In Section 8.10 the approach was to ensure robust stabil-
ity and robust performance by making|�| small. The mo-
tivation was the arguments brought forward in Section 7.6
which in turn were based on the factorization (64) (or the
simpler expression (67)). Now this factorization generalizes
to the non-linear case (Eker & Nikolaou, 2002). For exam-
ple, (67) still holds where nowG◦ is to be interpreted as a
non-linear operator. Furthermore, bounds such as (65) ap-
ply if the largest singular value is replaced by some induced
norm (In Eker & Nikolaou (2002)it is suggested to use an
induced differential norm as this reduces the conservatism).
For example, the norm of� is bounded by

‖T (G,C)W‖∞
∥∥∥∥W−1 G◦ −G

G

∥∥∥∥
i,2
<1,

where the second norm is the inducedL2-norm

‖G‖i,2 = sup
u�=0

‖G(u)‖2

‖u‖2
, (84)

where‖u‖2=√∑k |u(k)|2. AboveW is an arbitrary linear6

weighting filter.

6 Invertible non-linear operators can also be used.

This means that when a linear model and linear control
design is sought for a non-linear system, the minimization
of the weighted relative error is still a valid criterion.

In Section 4.4 we discussed near-optimal LTI models of
systems that were themselves LTI. The conclusions from
this section also extend to non-linear systems. This means
that for a non-linear parametric model structure, to which
the true system belongs, the simplest unfalsified model can
be used with the total error being less than two times that of
the full-order model structure. Thus, if there is an LTI model
within the confidence region for the full-order model, this
model can be used. If it exists, such an LTI model can be
obtained by direct least-squares identification as described in
Section 4.4. We remark that it may be non-trivial to compute
the maximum error gain between the model corresponding
to the center of the full-order confidence region and a model
inside this region. This is, however, an issue more related to
non-linear systems analysis than system identification.

From the above follows that the approach in Section 8.10
carries over to the non-linear setting.

In Ljung (2000)the choice of weighting filter and how
to estimate the non-linear gain‖W−1(G◦ −G)/G‖ are dis-
cussed. It is pointed out that only lower bounds can be ob-
tained from data and that periodic inputs can be useful since
they allow the noise to be averaged out. Another prelimi-
nary contribution in this important area isSchoukens, Pin-
telon, and Dobrowiecki (2002)and inMosskull, Wahlberg,
and Galic (2003)these ideas are used to verify stability of
an induction machine drive.

This issue has also spurred activities in assessing how
“small” nonlinearities may influence parameter estimates
based on linear models. InEnqvist and Ljung (2002)it is il-
lustrated that LTI-models may be extremely sensitive to non-
linearities. InSchoukens, Dobrowiecki, and Pintelon (1998)
a general framework is developed for analyzing how linear
estimates are affected by non-linearities of the system when
the input excitation is periodic. For a concise survey of this
framework seeSchoukens, Pintelon, Dobrowiecki, and Ro-
lain (2003). Best LTI-approximants for non-linear systems
are discussed inMäkilä & Partington (2003)andEnqvist &
Ljung (2003).

9.3. High-order modeling

A three step procedure is proposed inLing and Rivera
(2001)for identification of control relevant non-linear mod-
els. First a non-linear ARX model is estimated. This model
is then transformed into a Volterra series model since such
a model is more applicable to existing control design meth-
ods. Finally, a non-linear counterpart to the model reduction
procedure discussed in Section 8.4 is performed.

10. Direct controller tuning

In this section we will discuss two controller tuning
methods, unfalsified control and Iterative Feedback Tuning
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(IFT), where data is mapped directly into the controller. An-
other method with this property is virtual reference feedback
tuning, cf. Section 8.6. As for VRFT, unfalsified control and
IFT were derived without any explicit use of models. How-
ever, it is instructive to, as was done for VRFT, also inter-
pret these methods in a modeling framework and this is the
objective of this section.

10.1. Unfalsified control

Suppose that some apparatus is going to be constructed
that, when applied to the system, performs a certain task
and that, given only input/output dataZN from the system
and no prior system information whatsoever, we would like
to verify if the designed system satisfies some performance
specifications. To be specific, let us consider the problem of
testing whether a certain controllerC satisfies some given
performance specifications. Well, if the controller satisfies
the performance on at least one of the models in the set of
unprejudiced unfalsified modelsG(ZN) (see Section 2.2),
then the controllerC cannot be discarded since that particu-
lar model may correspond to the true system in which case
the controller would satisfy the specifications. We would in
this case say that thecontroller is unfalsified. However, since
the models inG(ZN) have completely arbitrary input/output
behavior, except for the specific input–output trajectory de-
fined byZN , which they all share, it is possible to find an un-
falsified model such that the closed-loop system consisting
of this model andC satisfies every specification that is not
violated when the closed-loop system withC as controller
exhibits the input/output behaviorZN . As we will see, this
makes it often very simple to check whether a given con-
troller can be falsified or not by data only. The idea of un-
falsified control was introduced by Safonov and co-workers
(Safonov & Tsao, 1994, 1997), see alsoKosut (1995).

To illustrate the machinery suppose that the input is gen-
erated by a one-degree of freedom controller

u= C(r − y), (85)

where r is an external reference signal. Suppose also that
a reference modelTd is given and that our performance
specifications are

‖y − Tdr‖2��‖r‖2, ∀r : ‖r‖2<∞ (86)

for a given constant�. We now ask the following question:
Given arbitrary input/output dataZN , what can be said about
which controllers satisfy (86)? The key to resolving this
problem is to note that it follows from (85) that for arbitrary
input/output datau, y from the system, the signal

rC = 1

C
u+ y (87)

is the reference signalr which with C in the loop would
produce exactly the input/output datau, y. Hence, given
arbitrary input/output dataZN , we can think of the cor-
responding {rC(t), y(t)}Nt=1 as a (fictitious) closed-loop

data set with the controllerC in the loop. The controller is
falsified precisely when the specification (86) is not satisfied
for thespecificsignal pair{rC(t), y(t)}Nt=1.

By, for each time instance, selecting the controller in the
set of unfalsified controllers according to some selection
rule, an adaptive unfalsified controller is obtained (Cabral
& Safonov, 2003). It has, e.g., been suggested to pick the
most promising controlleraccording to the criterion func-
tion which governs the unfalsification process (Safonov &
Cabral, 2001), cf. the discussion on preferential identifica-
tion in Section 8.11 where themost promising modelwas
selected.

Unfalsified control can be given an even firmer relation
to model based control. Under LTI assumptions, the unfalsi-
fied controller that minimizes (86) restricted tor = rC (87),
corresponds to the prefiltering approach described in Sec-
tion 8.6 with theL∞-norm employed (instead of theL2-
norm used in VRFT) and the direct parametrization (60) of
the model (Hjalmarsson & Lindqvist, 2001).

10.2. Iterative Feedback Tuning

Consider the problem of minimizing the norm of
V (G(C), C) (67) when model reference control is used, i.e.
we are trying to find a reduced order controllerC that makes
the complementary sensitivity function as close as possible
to the fixed reference modelTd . For simplicity, assume that
the system is noise free andw ≡ 0. Parseval’s formula gives

‖V (G(C), C)‖2
2

= lim
N→∞

1

N

N∑
t=1

((T (G◦, C)− Td)r(t))
2 (88)

with r being white noise. One approach is to minimize
(88) numerically using some descent algorithm such as
Gauss–Newton. This was a popular approach in the 1950s
and early 1960s.

For this, the sensitivity, i.e. gradient, of(T (G◦, C)−Td)r
with respect toC is required (or rather the parameters ofC
but we will omit this from the discussion). Straightforward
differentiation gives

d

dC
(T (G◦, C)− Td)r = C−1T (G◦, C)(1 − T (G◦, C))r

=C−1T (G◦, C)(r − y(C)), (89)

wherey(C) denotes the output of the closed-loop system
(47) with controllerC in the loop, assumingw ≡ 0. Thus
we see that the above sensitivity can be obtained from the
closed loop system (9) under noise-free conditions with con-
troller C in the loop by (1) first performing an experiment
with r as reference and collecting the outputy(C) and (2)
usingr−y(C) as reference in a new experiment whose out-
put is filtered throughC−1. In Narendra and Streeter (1964)
an alternative approach where (1) and (2) were done simul-
taneously through an outer feedback with long time-delay
was proposed.
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Iterative feedback tuning (IFT) (Hjalmarsson, Gevers,
Gunnarsson, & Lequin, 1998; Hjalmarsson, 2002) is a gen-
eralization of the idea above. The sensitivities of the closed
loop signals with respect to the controller parameters are
computed from two closed-loop experiments as outlined
above. It can be shown that, even in the presence of noise, the
signal sensitivities are unbiased (modulo transient effects)
and hence it is possible to guarantee that any convergence
point of the algorithm corresponds to astationary pointof
the desired objective function by the use of a stochastic
approximation algorithm. The idea can be applied to any,
differentiable, signal based objective function, i.e. not only
(88). IFT has been applied by the chemical multinational
Solvay SA for tuning of PID loops in distillation columns
and evaporators (Hjalmarsson et al., 1998).

From (89) we may also deduce other ways to approximate
the sensitivity. The separation principle in Section 4.2 gives
that if a good estimatêT of T (G◦, C) is available, then a
good sensitivity estimate is obtained by replacingT (G◦, C)
by T̂ everywhere in the middle expression of (89).

In De Bruyne and Carrette (1997)andKammer, Bitmead,
and Bartlett (2000)it is suggested to avoid the second exper-
iment by replacingT (G◦, C) in the right-hand side expres-
sion of (89) by an estimate obtained using closed-loop data
whenC is operating in the loop. InDe Bruyne and Carrette
(1997)a parametric model is used whereas a non-parametric
model is employed inKammer et al. (2000).

The use of signal sensitivities can be seen as local mod-
eling (around the current controller parameters) of how the
closed-loop signals depend on the controller. This has the
important implication that IFT is able to cope with certain
nonlinearities also, cf.Hjalmarsson (1998)andSjöberg and
De Bruyne (1999). See alsoSjöberg et al. (2003)for an al-
gorithm tailored especially for non-linear systems.

10.3. De-correlation

An interesting approach is presented inKarimi, Miskovic,
and Bonvin (2003)where the controller is tuned such that
y − yd , whereyd is the desired response, is un-correlated
with an instrumental vector which is a function of lagged
values of the referencer. It is shown that this can be done
iteratively as in IFT but that only one experiment is required
per iteration.

11. Experiment design

The reader may have noticed that input design has been
a recurring theme up to now. Let us recapitulate:

• When the true system is in the model set, (36) gives a
bound on the frequency responses for unfalsified models
which depends on the input through the input spectrum as
well as through�n,N (�), cf. (34).

• In Section 5.3 we saw that (36) also determines the
strength of any validation statements that can be made.

• From (iii) in Section 6 we may conclude that an ideal
experiment should reveal exactly the information required
for the control design.

• In Section 7.6 we saw explicitly in (66) how the, for con-
trol, important weighted model error (53) depends on the
experimental conditions.

• In Section 4.4 it was illustrated that by choosing the input
suitably, the statistical properties of restricted complexity
estimators may be similar to those of the ML-estimate.
One may think of this as that the model bias is tuned by
the data. This relates to our observations in Section 9.1
where it was indicated that using data from the desired
operating conditions is very useful when trying to identify
a restricted complexity model for a non-linear system.
Going back to Section 8.5, we see that this is exactly the
reason why closed-loop identification may help to obtain
“control relevant” models for LTI systems as well.

In this section we shall further discuss how experiment de-
sign can be used to improve the closed-loop performance.

In Section 11.1 we first discuss input design for optimal
average performance. We argued in Section 7.2 that the very
high complexity of an optimal input design problem for a
typical control application makes such problems intractable
(at least with existing mathematical machinery). However,
by considering the weighted relative model error, introduced
in Section 7.6, tractable problems can be obtained. We have
already touched on this issue in Section 8.10 and we will
pursue this in Section 11.2 by taking the input design into
account.

Another impeding factor in the use of optimal experiment
design is that the optimal solution depends on theunknown
true system. This problem could be handled by input de-
signs which are robust against uncertainty about the under-
lying system were it not that also here computational com-
plexity puts severe restrictions on what can be achieved. It
also seems as if robust input design has received very lit-
tle attention. Apart from the very modest contribution in
Hjalmarsson and Jansson (2003), the author is not aware of
any contributions to this area and we will discuss this topic
very briefly in Section 11.2.

An alternative, or complement, to robust input design is
adaptive input design where the information gathered in the
experiment is continuously, or batch-wise, used to update
the input design. This is discussed in Section 11.3. Related
to this is the use of pre-tests to gain some preliminary in-
formation for further experiment design. This is the topic in
Section 11.4.

Experiment design for multivariable systems is briefly
discussed in Section 11.5. Finally, Section 11.6 is con-
cerned with certain aspects of input design for near-optimal
models.

A very important part of the experiment design is to ensure
that the input is “plant-friendly”. This means that, apart from
generating informative experiments, the input should be in
line with industrial demands. We will not venture further into
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this topic but the reader is referred toRivera, Lee, Braun, and
Mittelmann (2003)and Parker, Heemstra, Doyle Pearson,
and Ogunnaike (2001)and references therein.

11.1. Optimal average performance input design

One approach to input design is to minimize theaver-
ageof some performance degradation measure with respect
to the input, subject to constraints on the input and output
spectra. The constraints have traditionally been ofL2 type.
One may, e.g., use (recall (63))

E{‖V (ĜN, C(ĜN))‖2
2}, (90)

where the expectation is over̂GN , as design criterion. An
approximate solution can be derived using the first order
approximation (71) ofV (ĜN, C(ĜN)), i.e. by instead min-
imizing

E{‖V (ĜN, C(ĜN))‖2
2}. (91)

This leads to a so calledL-optimal input design problem
where the weighted trace of the covariance matrix (20)
should be minimized. Here the weighting matrix depends
on the problem formulation.

It has been more common to consider

E{‖J (G◦, C(G◦),G◦, C(G))‖2} (92)

as criterion, which again via a Taylor approximation leads
to an L-optimal input design problem. As mentioned in
Section 7.6, the two criteria (90) and (92) coincide when
M(G,C(G)) is independent ofG. One such example is
model reference control. Also minimum variance control of
minimum phase systems fits into this category if, as is rele-
vant for this problem,J in (62) is replaced by the difference
in transfer functions from the white noise disturbancee in
(25) to the output between the true system and the model.

Starting with the now classical reference (Gevers & Ljung,
1986), there have been a series of contributions to the above
problem based on the variance expression (28) using the
high-order approximation (32), and its closed-loop counter-
part, with specific applications to identification for control.
When there is a constraint on the output variance, the opti-
mal experiment is to use a controller which is the solution
to an LQG-problem determined solely by the constraints
(Forssell & Ljung, 2000). Thus applications with different
objective functions but with the same constraints share the
same optimal experiment. Hence, the optimal experiment is
typically in closed-loop in this case. However, it is worth
noticing that when the noise is white, the solution to the
associated LQG-problem is open loop operation when only
the output variance is constrained.

Instead of relying on (32), the variance expression (29)
can be used directly for input design (Cooley & Lee, 2001;
Lindqvist & Hjalmarsson, 2001). In Cooley and Lee (2001)
it is suggested to optimize directly over the input sequence
whereas inLindqvist and Hjalmarsson (2001)it is shown

that whenu is the output of a FIR-filter driven by white noise,
the optimal filter coefficients can be computed by convex
optimization. Since any spectrum can be approximated by a
FIR-process the approach is in principle generally applica-
ble. However, when large lags are required, computational
complexity becomes an issue. One can then use other ba-
sis functions (Jansson & Hjalmarsson, 2004c). Designs for
FIR systems in the case of periodic or finite samples are dis-
cussed inLee (2003)andJansson and Hjalmarsson (2004c).

11.2. H∞ and robust input design

The designs in the preceding section are all geared to-
wards optimizing the average performance as they are based
on (91) (or (92)). By instead using the bound (66) on the
weighted relative model error� as design criterion, anH∞
type of design is obtained with guaranteed robust stability
and robust performance (Hjalmarsson & Jansson, 2003).

A typical problem formulation could be (recall (21))

min
�u

�

subject to

∣∣∣∣T G0 −G(�)
G(�)

∣∣∣∣ ��P ∀�,

(� − �o)T
RN

�
(� − �o)��2

	(n),

1

2�

∫ �
−� �u(�)d���.

(93)

Here the constraints state that the weighted relative error
(recall (53))|�| should be smaller than some pre-specified
value�P for all frequencies� and for all models in the confi-
dence region (23) (which is given by the second constraint).
Thus the minimum input energy required to meet this objec-
tive, and the corresponding input spectrum, are sought. This
type of problem has been coined “least-costly identification
experiments” inBombois, Scorletti, Van den Hof, and Gev-
ers (2004). Following (iii) in Section 6, we have that the
bound�P should be made small, but not too small in order
to limit the modeling requirements.

It turns out that this type of problem can be approxi-
mated by a convex optimization problem that gives solu-
tions close to the optimum (Jansson & Hjalmarsson, 2004c,
2004b; Jansson, 2004). We illustrate with an example.

Example 11.1.The true system is given by

y(t)= 0.36q−1

1 − 0.7q−1 u(t)+ e(t),

wheree(t) is zero-mean white noise with variance 0.1. We
want to estimate a model

G(�)= bq−1

1 + aq−1 , � = [a b]T,

based onN = 500 samples of input/output data. The in-
put design problem is formulated as in (93) with�P = 0.1,
�2
	(n) = 5.99 (which corresponds to a confidence level of

95%) and withT given inFig. 12.
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Fig. 12. Magnitude plot for Example 11.1. Thick solid line: optimal input
spectrum. Dashed line: white input spectrum with same power as the
optimal input. Thin solid line: desired complementary sensitivity function.
Dash–dotted line: open loop system.

0.3 0.35 0.4 0.45

–0.78

–0.76

–0.74

–0.72

–0.7

–0.68

–0.66

–0.64

–0.62

b

a

Fig. 13. Example 11.1. Dots: the estimated model parameters from 1000
Monte Carlo runs based on input design (93). Dashed ellipse: estimated
95% confidence bound for the parameters for design (93). Dotted ellipse:
confidence bound when the input is white noise with the same energy
as the design of (93). Contour lines with interval 0.025 are plotted for
‖�‖∞ and ‖�‖∞ = 0.1 corresponds to the thick solid contour.

The minimum input power is� = 0.28 with the resulting
input spectrum shown inFig. 12. The “ringing” (barely vis-
ible) in the input spectrum at high frequency is due to the
FIR-filter (order 20) used to shape the input.

Fig. 13 shows the parameter estimates of 1000 Monte
Carlo runs. We see that the estimated models are clustered
inside the contour‖�‖∞ = 0.1 as desired. In fact, 96.7%
of the estimated models satisfy the performance constraint.
The reason for a higher percentage compared to the specified
95% is due to that also some estimates outside the confidence
ellipsoid are inside the level curve‖�‖∞ = 0.1, seeFig. 13.

It should be noted that, as usual in experiment design, in
order to compute the optimal design in the example, the true
system has to be known. Methods that are robust with respect
to uncertainty about the system is a wide open research field.

Optimal input design for low order models may some-
times produce counterintuitive designs. This can be at-
tributed to the strong extrapolation properties over the
frequency axis for low order models. The behavior, and,
hence, the accuracy, at one frequency is highly coupled
to the behavior at another frequency. The input spectrum
obtained in Example 11.1 is quite reassuring in this aspect.
Despite a first order model, the input energy is largest in the
frequency region between the open loop systems cross-over
frequency and the designed closed-loop system bandwidth.
This is in complete consistency with the discussion of the
performance specifications versus experimentation effort
(Trade-off 1) in Section 7.6.

In Section 7.1.2 we saw that robust stability is tied to the
�-gap. From Proposition 7.1 we see that the larger the maxi-
mum�-gap is for a model set, the larger the generalized sta-
bility margin bG,C has to be in order to guarantee stability
for systems belonging to the model set. In particular if the
maximum�-gap exceeds 1, stability cannot be guaranteed.
This is the motivation for the work inHildebrand and Gev-
ers (2003a)which presents a method for minimizing (with
respect to the input spectrum) the worst-case�-gap taken
over all models in the confidence region (23) produced by
prediction error identification.

11.3. Adaptive input design

As we have seen, in the early 1990s several schemes that
iterated between identification and closed-loop control were
proposed. In fact, it was suggested,Schrama, 1992, that high
performance control based on restricted complexity models
required such iterations. However, as we have indicated in
Sections 7.6 and 8.1, this is not necessarily so. It has also
been shown (Böling & Mäkilä, 1998), that the example in
Schrama (1992)can be solved without iterations. So the
question is ratherwhat can be gained by iterating between
identification and experimentation?

Clearly, when we are collecting data, we obtain new in-
formation about the system. Hence, iterating between identi-
fication and experimentation is beneficial if we can improve
our experiment design such that morecontrol relevantin-
formation becomes available than if we would have stayed
with our present design. We have seen that there are two
quantities to consider:

• Minimizing variance.The input should be chosen such as
to minimize the impact from the noise induced errors in
the controllerC(ĜN) on the achieved closed-loop perfor-
mance.

• Tuning the bias.When the model set is restricted it is im-
portant that data contains the features relevant to control.
This is embodied in that the desired operating conditions
should be mimicked as closely as possible.

We remark that these two objectives may be conflicting.
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11.3.1. Minimizing variance: adaptive input design for LTI
systems

One of the few instances where it has been possible to
prove that iterative identification and control design actually
improves performance is when a full-order model is used
for minimum variance control design. Under the assump-
tion that (32) is valid, it was shown inHjalmarsson, Gevers,
and DeBruyne (1996)that iterating between identification
and subsequent certainty equivalence input design, and ex-
perimentation will always improve the average performance
compared to any fix input design (other than the optimal),
provided the experiment time is sufficiently long. Certainty
equivalence input design means that the last estimated nom-
inal model is used instead of the true system in an optimal
input design. In such an approach it would be nice if the
optimal experiment design corresponded to the optimal con-
troller since then such iterations would not conflict with the
control objective. Unfortunately, this seems to hold only for
minimum variance control (Gevers & Ljung, 1986).7

A potential problem with this approach is that instability
may occur during the identification experiment if the optimal
experiment is in closed-loop and the certainty equivalence
design is based on a model of poor quality. An alternative
which avoids this problem is to tune the input spectrum
adaptively inopen loop(Lindqvist & Hjalmarsson, 2001).
Adaptive designs are also considered in, e.g.,Cooley and Lee
(2001), Lee (2003), Rivera et al. (2003)andLacy, Bernstein,
and Erwin (2003).

11.3.2. Tuning the bias: adaptive input design for
non-linear systems

For non-linear systems, we have in Section 9.1 seen that
it may be advantageous to have the system operating under
the desired conditions when data are collected. It may seem
as if this would require that the system operates in closed-
loop using an already well-tuned controller which in turn
would mean that there is no need to retune the controller.
However, we would here like to draw the reader’s attention
to the fact that there exist open loop alternatives that are
competitive. One advantage with collecting data in open loop
is that stability is not an issue.

A systematic method to iteratively generate feed-forward
controls that approach a given output trajectory is iterative
learning control (ILC) (Moore, 1993). Given an initial “trial”
input u0(t) over the time-horizont = 1,2, . . . , N , and the
target output trajectory{yd(t)}Nt=1, the input is iteratively
refined using the error between the achieved output and the
target output as correction. A simple version of the algorithm
is to update the input at iterationk according to

uk+1(t)= uk(t)+ Lk(yd(t)− yk(t)), t = 1, . . . , N,

(94)

7As pointed out inForssell and Ljung (2000)this does not hold for a
two-degree of freedom model reference control as claimed inHjalmarsson
et al. (1996).
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Fig. 14. Outputs used to identify linear models in Example 11.2. Solid
line: generated by one step of the ILC algorithm. Dashed line: generated
by white noise input. Dotted line: desired output (shown for comparison).

whereLk is some dynamical operator, typically LTI, which
has to be chosen such that the algorithm converges. It can
be shown, cf.Markusson, Hjalmarsson, and Norrlöf (2002),
thatLk plays the role of a model of the inverse of the sys-
tem. Observe, e.g., that ifLk is the inverse of the true sys-
tem, then the desired input will be produced in one iteration
of the above algorithm under noise free conditions. What
makes this algorithm interesting is that the model may be
changed between iterations. Hence, it may be possible to use
quite simple LTI models and still be able to generate an in-
put which drives the system sufficiently close to the desired
operating conditions that data collected from these condi-
tions subsequently can be used to identify a LTI model use-
ful for control design (Markusson et al., 2002; Tao, Kosut,
& Ekblad, 1994).

Example 11.2.The Van de Vusse system (van de Vusse,
1964) is a non-minimum phase system often used as a
benchmark problem for non-linear process control algo-
rithms (Doyle, Ogunnaike, & Pearson, 1995). Here the ki-
netic parameters have been chosen such that the system is
described by

ẋ1 = −50x1 − 10x2
1 + (10− x2)u,

ẋ2 = 50x1 − 100x2 − x2u,

y = x2,

around the equilibrium point. The objective (chosen solely
to illustrate the preceding discussion and not any specific
chemical process control problem) is that the complementary
sensitivity function has the same magnitude as

Td(s)= 1

0.01s + 1
.

The system is sampled with sampling time 0.72 s. One it-
eration in the ILC-algorithm (94) was taken with the initial
input being white noise. The inverse of a second order OE
model, identified around the initial trajectory, was used as
L0 in the algorithm. The resulting output (shown as the solid
line in Fig. 14) was used to identify a second order OE-
model on which an internal model controller was designed.
The closed-loop output is shown as the solid line inFig. 15.
It follows the desired output (the dotted curve in the figure)
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Fig. 15. Example 11.2. Closed loop output. Solid line: controller designed
using model identified from ILC-data. Dashed line: controller designed
using model identified from white noise data. Dotted line: desired output.

quite well. For comparison, a model identified using a white
noise input (the output is the dashed line inFig. 14) with
the same energy was used in the control design instead. The
corresponding closed-loop response is shown as the dashed
line in Fig. 15. The response is significantly more oscillatory.

A more spectacular example can be found inJansson and
Hjalmarsson (2002)where an inverted pendulum is con-
trolled.

We also point out that should the process be operating in
closed-loop (as is often the case) with some poorly tuned
controller, ILC may still be used to generate a reference tra-
jectory {r(t)}Nt=1 such that the operating conditions become
closer to the desired ones.

Another example of adaptive input design for non-linear
systems isZhao and Kanellakopoulos (2002). Here the sys-
tem has known structure with linear regressions�T�k(t)
of observable, possibly, non-linear regressors that influence
the states. The system structure is such that by observing
the output it is possible to compute the linear combinations
�T�k(t). The input is used to drive the system states such
that the regressors become linearly independent and hence
the unknown parameter vector� becomes identifiable.

11.3.3. Tuning the bias: using non-linear feedback
The relay experiment used in the relay auto-tuner method,

originally proposed in̊Aström and Hägglund (1984), can be
seen as a way of generating an experiment which provides
information such that the bias in a model is “tuned” for con-
trol. In Karimi, Garcia, and Longchamp (2002)the idea of
relay experiments is combined with tuning using gradients,
cf. Section 10.2.

11.4. Pre-tests – Identifying performance limitations

The experiment design is eased significantly if the inher-
ent limitations of the system are known. Often amplitude and
slew-rate constraints on actuators, which limit the achiev-
able bandwidth, are known and this knowledge should be

incorporated in the experiment design, cf. the discussion of
the control effort in Section 7.6.

Non-minimum phase zeros also limit the achievable band-
width. An explicit variance expression has been derived
which can be used for designing pre-test experiments so that
these zeros can be accurately identified (Mårtensson & Hjal-
marsson, 2003; Jansson, 2004). An interesting aspect is that
the asymptotic accuracy of the identified zeros is basically
independent of the model order when the prediction-error
method is used. Hence, model order selection is not a criti-
cal issue here.

11.5. Input design for multivariable systems

Input design is perhaps most important for multivariable
systems, especially for ill-conditioned processes such as
high-purity distillation columns. To appreciate this, notice
that the low gain directions of the system will be poorly iden-
tified unless precautions are taken to ensure that the signal
to noise ratios are sufficient in these directions. The problem
arises as the designed controller will use high gain in these
poorly identified directions which may be disastrous for the
closed-loop behavior when the model is poor. The key to
solving this is to use correlated inputs and both open loop
and closed-loop methods have been proposed to this end. In
Jacobsen (1994)an open loop grey-box experimental design
is proposed as well as a closed loop method. Another closed-
loop method is used inZhu and Butoyi (2002). A general
observation is that attempts to perform SISO identification
on such plants will fail to deliver relevant models, cf.Zhu
and Butoyi (2002)andJacobsen (1994). The approaches in
Cooley and Lee (2001)andLee (2003), already discussed in
Section 11.1, are also applicable to multivariable systems.

11.6. Input design for near-optimal restricted complexity
models

In Section 4.4 we saw that near-optimal models of re-
stricted complexity exist if the confidence region for the
full-order model is large enough. For a model structureM
of a certain complexity and a given confidence level	, this
puts an upper bound on how much information from an ex-
periment that is valuable from a statistical point of view. As
more information is added so that the least-squares estimate
for M is no longer inside the confidence region (correspond-
ing to level	) for the full-order model, there is no longer
any model inM which is near-optimal. Thus, if a certain
complexity of the model structure is pre-specified (as well
as the confidence level), such an upper bound should be in-
corporated in the experiment design constraints.

12. Validation of control designs

In this section we will discuss some ideas for validation
of control designs. We will focus on validation of stability
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but the ideas carry over to performance criteria as well. The
discussion will be limited to SISO systems.

12.1. Validating stability using the separation principle

Suppose thatG is some model of the open loop systemG◦
which is LTI and thatC is an LTI controller which has been
designed usingG such that the resulting complementary
sensitivity function isT (G,C). Then, as we have seen in
Section 7.1.2, the achieved closed-loop is guaranteed to be
stable if

‖�‖∞<1, (95)

where� = T (G,C)G−1(G◦ −G).
Suppose that some input–output data setZN is available

for validation of (95). In Section 5.4 we discussed general
principles for validation of restricted complexity models.
The advice was to use the separation principle. Here this
means first forming a full-order estimatêGN of G◦ using
the available data and then computing the estimate

�̂N = T (G,C)G−1(ĜN −G), (96)

and finally forming a confidence region for this estimate.
Using (36) gives

|�̂N(ej�)− �(ej�)|

�
∣∣∣∣T (G,C)G

∣∣∣∣
√

�2
	(n)�n,N (�)

�v(�)
N · �u(�)

which gives that if

|�̂N(ej�)| +
∣∣∣∣T (G,C)G

∣∣∣∣
√

�2
	(n)�n,N (�)

�v(�)
N · �u(�) <1

stability is guaranteed (with probability	).

12.2. Validating stability using power iterations

Suppose now that, instead of using a pre-determined data
setZN , we have the option of choosing the input. For� LTI
and stable we have that theH∞-norm coincides with the
inducedL2-norm (84) and that inputs that maximize the
ratio‖�u‖2/‖u‖2 are sinusoids with frequency where� has
maximum gain (Zhou et al., 1996; Khalil, 1996). Hence, it
would be easy to check (95) if such a sinusoid is used as
input. Unfortunately, this frequency is not known a priori
but one may envisage procedures which adapt the frequency
such that the gain is maximized. A simple method in this
spirit is as follows:

(1) Let k = 0 and select an arbitrary input sequence
{uk(t)}Nt=1 with the constraint that‖uk‖2 = � for some
constant�>0.

(2) Perform an experiment whereuk(t) is applied toG◦:
yk(t)=G◦(q)uk(t), t = 1, . . . , N .
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Fig. 16. Magnitude curve of the frequency response in Example 12.1.

(3) Filter the corresponding output through the inverse of
G: G−1yk(t).

(4) Subtractuk(t) from this signal:G−1yk(t)− uk(t)

Neglecting disturbances, Steps 2–4 give the signal

zk(t)= �(q)uk(t), t = 1, . . . , N.

(5) Let �k = ‖zk‖2/�.
(6) Let uk+1(t)= 1

�k
zk(N + 1 − t), t = 1, . . . , N .

(7) Let k = k + 1 and go to Step 2.

The �k computed in Step 5 is clearly an underbound to the
inducedL2-norm (84) of�.

When the experiments are noise free and performed under
zero initial conditions it can be shown thatuk will, modulo
transient effects, converge to a sinusoid with approximately
the desired frequency. Furthermore,

�k →
∥∥∥∥∥
N−1∑
l=0

�lq−l
∥∥∥∥∥

∞
ask → ∞

where�k, k= 1,2, . . . are the impulse response coefficients
of � and where the convergence is monotonic. Thus forN
sufficiently large, a good estimate of‖�‖∞ is obtained.

In each iteration, it is the frequency where� has maximum
gain that is amplified the most. Due to the normalization in
Step 6, the energy at other frequencies will be damped out
as the iterations proceed. The algorithm is closely related to
the power method for computing the largest eigenvalue of
a symmetric matrix and we therefore call the iterations for
power iterations.

Example 12.1.Let � be of second order with the magni-
tude curve of the frequency response given inFig. 16. The
maximum gain is at� ≈ 0.79.

Initially a white input with variance 1 and lengthN=100
is applied. It gives the output shown as the dashed line in
Fig. 17. Also shown in this figure is the output after 10
power iterations. Clearly, the latter output is not far from a
sinusoid with frequency around� = 0.79.

In Fig. 18, the estimated gain�k is given for the first
10 iterations together with‖�‖∞ (dashed line). Clearly,
the sequence of gain estimates converges exponentially fast
to a rather accurate lower bound for the true gain of the
system.
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Fig. 17. Outputs in Example 12.1. Dashed curve: initial output. Solid line: output after 10 iterations.
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Fig. 18. Solid line: gain versus iteration number in Example 12.1. Dashed
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Fig. 19. Output in Example 12.2 after 10 iterations.

Example 12.2.Power iterations applied to another� gives
the output inFig. 19 after 10 iterations. It does not even
remotely resemble a sinusoid.

The explanation is that� is not LTI in this case, in fact it
is given by the continuous time system

ẋ1 = x2,

ẋ2 = −2x3
1 − 4x2 + u,

y = x2,

sampled with a sampling timeT = 0.1.
The maximum of the gain sequence computed in Step 5

in the power iterations still is a lower bound to the induced
L2-norm. This sequence is shown inFig. 20. Also in this
case, the gain sequence increases monotonically. In Example
6.9 in Khalil (1996) an upper bound for the inducedL2-
norm of this system is given as 1/4 (marked as the dashed
line in Fig. 20). FromFig. 20we see that the lower bound
produced by the power iterations is quite accurate.

There are two conclusions to be drawn from Example
12.2. Firstly, power iterations can be used to detect non-
linearities in a system. If the iterations do not converge to a
sinusoidal signal, the system is non-linear. Secondly, power
iterationsmaygive a usefullowerbound on the inducedL2-
norm of certain non-linear systems, cf. Section 9.2. There
is no proof for the latter statement and the author certainly
does not claim that power iterations produce monotonically
increasing lower bounds, or that the produced bounds are
accurate, for general non-linear systems. However, the nice
behavior observed for this and some other non-linear sys-
tems is intriguing.

13. Concluding remarks

Looking back at the ground covered in this paper (not to
mention all that regrettably had to be omitted), it is clear
that much progress has been made in this research area since
the book (Bitmead, Gevers, & Wertz, 1990) and the SYSID
plenary in Budapest in 1991 (Gevers, 1991), which in many
respects can be seen as triggers for activities in this field.

Looking at the problem from a statistical perspective, we
first remind the reader of the guidelines in Section 6:

(i) Always first model as well as possible.
(ii) Use a very flexible model structure as benchmark for

computing confidence bounds and mean-square error.
(iii) Select the input such that the model uncertainty at fre-

quency regions of interest is insensitive to the model
complexity.

Notice that we in (i) do not refer to full-order modeling, the
aim is rather to obtain a near-optimal restricted complexity
model. Following advice (i) ensures good statistical prop-
erties and enables the under-modeling to be quantified. The
model can subsequently be simplified without loss of accu-
racy. Referring toFig. 1, this means that going from an near-
optimal restricted model to a low order controller by way of
controller reduction or model reduction will not significantly
influence the statistical properties of the procedure. Advice
(ii) ensures a reasonable assessment of the model error and
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Fig. 20. Solid line: gain versus iteration number in Example 12.2. Dashed line: upper bound onL2-norm.

as we saw in Section 6, (iii) can be ensured by inputs with
large spectral peaks (even though there seems to be more to
understand here).

From (i) follows that identification and control are not as
intertwined as might be believed:

• For agivendata set, producing the set of unfalsified mod-
els has little to do with the control problem. Once the set
of unfalsified models is obtained, what remains is a robust
control problem with, in turn, little to do with the identi-
fication problem.

There is, however, as pointed out in Section 7.4, an interface
problem between the two areas that cannot be neglected in
that the model set description obtained from system identi-
fication typically does not fit the present robust control de-
sign framework. Much work has been done in this area, cf.
Section 7.4.

In order to use (iii), it is necessary to know the modeling
requirements. For control, we have argued (Sections 7.6,
8.10, 9.2 and 11.2) that these are in principle encapsulated
by the following condition on the weighted relative error:

‖�(G◦, ĜN , T )(ĜN , C)‖��P . (97)

Condition (97) clarifies the roles of the design variables and
how these should be designed and traded off against each
other. For example, for a SISO LTI system the bound (66)
applies

‖�‖∞ � sup
�

∣∣∣∣∣T (ĜN , C(ĜN))ĜN

∣∣∣∣∣
√

�2
	(n)�n,N

�v
N · �u . (98)

From this expression we noted in Section 7.6 that there is a

• control effort versus experimental information trade-off

in force. The more aggressive controller, the more informa-
tion is necessary in order to guarantee a small‖�‖.

Condition (98) also provides guidelines for input design,
cf. Section 11.2. High input energy density is required where
the designed control effort,|T (ĜN , C(ĜN))/ĜN |, is large,
but should be small where the designed control effort is
small in order to reduce the modeling effort.

Overall, we have argued that the experiment design is the
most importantdesign variable for a successful application
and we can summarize our observations as follows:

• excite where it may hurt most.
On a principal level, the input should be chosen such
that system properties that are highly detrimental to the
closed-loop performance are revealed by the experiment,
cf. the discussion in Section 5.3, and the discussion of the
performance specifications versus experimentation effort
(Trade-off 1) in Section 7.6. See also Example 11.1.

• do not excite where it does not hurt.
There is no benefit from knowing what one does not have
to know; in this context it only means that the modeling
problem becomes more complex. Of course, it is typically
a priori difficult to be aware of which system information
one has to know for the control design and this is one of the
key problemsin identification and control. Nevertheless,
it is instructive to keep this advice in mind.

• adaptation increases accuracy.
Since the true system and the disturbances are unknown,
efficient resolution of the previous item is facilitated by
adaptive or iterative methods which are able to improve on
the input design so that future data samples contain infor-
mation of better quality from the control application point
of view. At present, the only result in this direction for
prediction error identification seems to be (Hjalmarsson
et al., 1996) which in turn is based on some restrictive
assumptions. Notably, preferential identification in con-
junction with robust control has proven a viable route for
adaptation, see Section 8.11. It should also be remarked
that there are differing opinions regarding the value of
adaptive input design (Veres, 2000).

In this context, we would like to draw the attention to the
potential of using the system itself to (semi-)automatically
generate the information of interest. This idea has been used
several times in this paper. In Section 10.2, the system was
used to generate sensitivity information. Iterative Learning
Control was used in Section 11.3.2 to gradually move the
system trajectory closer to the desired one. It was pointed
out in Section 11.3.3 that relay feedback can be seen as
a way of using the system itself to automatically gener-
ate a certain type of information. Finally, power iterations
were used in Section 12.2 to estimate the gain of a system.
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An interesting topic here is to further explore what non-linear
feedback has to offer for automatic generation of suitable
experimental conditions.

In a number of contributions, see e.g. Section 8.5, identi-
fication in closed-loop has been advocated. While this may
certainly be motivated by many reasons, e.g. safety and the
fact that most processes are already operating in closed-
loop, there is from the point of statistical accuracy not ob-
vious that closed-loop identification is preferable to open
loop identification. In Section 9.1 we saw that for bias rea-
sons, the experimental conditions should reflect thedesired
operation characteristics. A closed-loop experiment with a
poorly tuned controller may in this respect give less useful
data than a well designed open loop experiment, cf. Sec-
tion 11.3.2. Based on the high order approximation (32) it
follows (Forssell & Ljung, 2000) that when the output vari-
ance is constrained, it is optimal with closed-loop identifi-
cation with a controller that depends on thetrue systemand
the experimental constraints to counter-effect noise induced
uncertainty (variance) effectively. However, also here there
is no guarantee in practice that closed-loop data are more
informative.

While much of the work in the area has focused on LTI
systems, cf. Section 8, there has in recent years been a shift
towards more realistic problem settings where the system is
considered to exhibit different kinds of non-linear behaviors,
cf. Section 9. With the diversity of non-linear systems, one
may expect this research area to proliferate in coming years;
there are, e.g., results emerging for hybrid systems, see, e.g.,
Ferrari-Trecate, Muselli, Liberati, and Morari (2003). This
observation also accentuates the importance of close collab-
oration with application fields in order to address relevant
problems.

A number of interesting benchmarks have appeared
throughout the years, see, e.g.,Graebe (1994; 1995)and
Landau, Karimi, and Hjalmarsson (2003). To facilitate
the comparison of different algorithms, a set of generally
acknowledged benchmark problems would be most useful.

Despite the leverage that the forgiving nature of feedback
offers, the joint identification and control problem is com-
plex with many aspects that have to be balanced against
each other. Since little effort has been spent so far on pack-
aging algorithms in a way that meets the requirements of
industrial practitioners, cf.Rivera and Jun (2000) and Zhu
(1998), it is not surprising that, as reported inZhu (1998),
system identification still has had relatively little impact on
industrial control engineers in general. However, as hope-
fully evidenced by this survey, the progress in this research
area is very promising and there certainly are interesting
years ahead!
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