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Overview of Lecture

• Power distribution in the past was a fairly simple task

• Goal of power distribution system is to deliver the required 
current across the chip while maintaining the voltage levels 
necessary for proper operation of logic circuits

• Interconnect effects have created problems of IR drop, Ldi/dt, 
electromigration.

• Power distribution is now a complex task in deep submicron

• Clock design is also a complex issue in DSM due to RC delay 
components in the interconnect and power dissipation

• Overall examination of the issues of clock skew and IR drop, 
and how to manage them using circuit techniques

• Reference:
1) “Power Grid and Clock Design”, HJS Textbook, Chapter 11
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Design Issues of Power Distribution

• Goal: Get Vdd and Gnd to all gates in the circuit

• Design Challenges:

– How many power and ground pins should we allocate?

– Which layers of metal should be used to route 
power/ground?

– How wide should be make the wires to minimize voltage 
drops and reliability problems

– How do we maintain VDD and Gnd within the noise budget?
– How do we verify overall power distribution system?
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Power Distribution Issues - IR Drop

• Narrowing line widths 
have increased metal line 
resistance

• As current flows through 
power grid, voltage drops 
occur => IR drops

• Actual voltage supplied to 
gates is less than Vdd

• Impacts speed and 
functionality; must be 
within 10% noise budget

• Need to ensure this is not 
a problem near the end of 
the design at tapeout!
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Power Grid Issues – Electromigration (EM)

• As large current flows 
down narrow wires, metal 
begins to migrate

• Metal lines break over time 
due to metal fatigue 

• Mean-time to failure is 
based on average/peak 
current density

• Need to ensure that current 
density levels do not 
exceed limits set by 
foundry design rules

• Cu is 10X better than Al 
but we typically see 3X
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Power Routing Examples

Block A Block B Block A Block B

Single Trunk Multiple Trunks

How do we deliver power to two adjacent blocks to avoid IR and EM?
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Simple Routing Examples – cont’d

Block A Block B

Double-Ended Connections Wider Trunks

Block A Block B
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Interleaved Power/Ground Routing

Interleaved Vdd/Gnd
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Power Grid Architecture

Metal5

Metal4

Via Arrays

Power Grid Using M4/M5
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Power Grid Issues – Static IR Drop

• Block placement and 
global power routing 
determines IR drop 
on the chip

• Possible solutions

– Rearrange blocks

– More Vdd pins

– Connect bottom 
portion of grid to 
top portion
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Power Grid Issues – Static IR Drop

• If we connect bottom 
portion of grid to top 
portion, the IR drop is 
reduced significantly

• However, this is only 
one part of the 
problem

• We must also 
examine 
electromigration
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Case Study – IR and EM Tradeoff
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Block Interaction yields IR Drop
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Effect of Ldi/dt

• In addition to IR drop, power system inductance is also an issue

• Inductance may be due to power pin or power bump
• Overall voltage drop is:

Vdrop = IR + L di

• Simple Example:

– Drop across inductors = 2 x L x di/dt = 2 x 0.2nH x 20mA/100ps = 
80mV (problematic if supply is 1.2V)

• Actual power pad or bump may need to support thousands of inverters

dt
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IR Drop and Ld/dt are Dynamic Phenomena
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On-chip Decoupling Capacitors

• On-chip decaps help to stabilize the power grid voltage

• First line of defense against noise which can extend beyond 10GHz

• Distribute decoupling capacitors (decaps) liberally throughout design

– Capacitors store up charge
– Can provide instantaneous source of current for switching
– Later, the decap charges back up to prepare for next event

L



Lecture 3RAS 18

Making a Decoupling Cap

• Decaps are basically NMOS transistors.  Top plate is polysilicon, 
bottom-plate is inverted channel, insulator is gate oxide.

• Connect poly to Vdd and source/drain to Vss

• Low-frequency capacitance is roughly COX W L.

• Since these are large capacitance to be used at high frequencies, more 
accurate representation is needed
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Standard Cell Decap Layout

• Standard cells decaps typically have the following layout since we have 
access to both P and N devices

VDD

VSS
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Decap High-Frequency Response

• Channel resistance (affects response time)

• Finite Transit Time (affects capacitance value)

Gate

n+ n+

Gate

n+ n+

- - - - - - - - - - - -

- -

+ + + + + + + + + + + ++ ++ + + ++



Lecture 3RAS 21

Use “Fingers”

• Example:

• With each division, resistance is reduced but so is capacitance.
• Question: What is the optimum # of fingers?
• Actually, PMOS is worse than NMOS so one option is to use NMOS only
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How much Decoupling Cap?

• To estimate required decap value, run SPICE on patch of chip area 
with power grid, part of logic block, and sprinkle of decaps

• Amount of decap depends on:

– Acceptable ripple on Vdd-Vss (typically 10% noise budget)
– Switching activity of logic circuits (usually need 10X switched cap)
– Current provided by power grid (di/dt)

– Required frequency response (high frequency operation)
– How much decap exists ( non-switching diffusion, gate, wire caps)
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Decap Placement

• Empty space is not necessarily the best place to fill with decap since 
P&R is done with timing and power constraints in mind.

• One method would be to try to shift cells around so that decaps can be 
placed where they are needed.

• Choose 4 different configurations:
– All decap in the center.
– All decap in the corners.
– Decap distributed evenly.
– Decap near cells that violate noise margin.

• Use an equal number of decaps for each configuration. (Equal area 
penalty.)

• Artificially manipulate the capacitance of each cell until 10%VDD noise is 
eliminated.

• Best placement scheme is one that requires the least amount of 
decoupling capacitance.
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Noise Violation Configuration
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Decap Configurations

Center Corner

Evenly Distributed Noise Violation
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Where to place Decaps?

Center Corner

Evenly Distributed Noise Violation
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Results

733pFNoise Violations

707pFEvenly Distributed

586pFCorner

684pFCenter

Total DecapStrategy

– Noise Violation Configuration: although requiring the most to 
eliminate ALL violations, requires the least to eliminate 99% of the 
violations.

– Should place decaps between charge source and destination
– Total switching capacitance in block is 350pF
– Ratio between Decoupling Capacitance and Switching Capacitance 

seems to be between 1.5-2x.
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Designing Power Distribution

• Floorplanner should be aware of IR+Ldi/dt drop and EM 
problems and design accordingly

– Requires knowledge of current distributions and voltage drop 
constraints of blocks being placed

• Provide adequate number of VDD and Gnd pins
• May need to provide multiple VDD islands for low power

• Route power distribution system according to current demands 
of the blocks 

• Widen wires based on expected current density in branches

• Distribute decoupling capacitors liberally throughout design

• Verify full chip with IR/EM tools
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Clock and Flip-flop Design

• Clocks synchronize the operation of sequential logic circuits

• Flip-flops and latches are used to gate signals through 
combinational logic on the clock edges

• Critical parameters of flip-flops are the setup and hold times
• Once we design the basic flops, we must build a clock network 

that gets the signal to the flops at roughly the same time

• We will look at clock trees, H-trees and clock grids. 

• Overall examination of the issues of clock skew, jitter, power 
and IR drop, and how to manage them using circuit techniques
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Clocked D Flip-flop

• Most widely used FF in IC design for temporary storage of data

• May be edge-triggered (Flip-flop) or level-sensitive (transparent 
latch)

CK

D      Q

Q

data output

D        Qn+1

0           0
1           1

CK

D      Q

Q

data output

Flip-flop

Latch
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Latch vs. Flip-flop

Latch (level-sensitive, transparent)

When the clock is high it passes In value to Out

When the clock is low, it holds value that In had when the clock fell

Flip-Flop (edge-triggered, non transparent)

On the rising edge of clock (pos-edge trig), it transfers the value of In to Out

It holds the value at all other times.

In
In

Out
Out

Clk
Clk

In

Out Out

In

Latch Flip-Flop

CLK CLK
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Clocking Overhead

Latch

Din

Clk

Qout

Tsetup + Tclk-q Td-q

Thold

will workFlip Flop won’t work
may work

Thold

Tsetup

FF and Latches have setup and hold times that must be satisfied:

If Din arrives before setup time and is stable after the hold time, FF will work; if Din 
arrives after hold time, it will fail; in between, it may or may not work; FF delays the 
slowest signal by the setup + clk-q delay in the worst case

Latch has small setup and hold times; but it delays the late arriving signals by Td-q

Din

Clk

Qout



Lecture 3RAS 33

Clock Definitions

• Duty Cycle = % of time clock is high over the clock 
period

• Edge Rate = rise time of clock edge from 10% to 90% 

• Latency = total path delay from root clock to leaf 
clock. (clock delay)

• Skew = difference in latency between any two clock 
branches.  (spatial variation)

• Jitter = variation in latency at any single leaf clock.  
(temporal variation)
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Clock Design Issues

• Clock cycle depends on a number of factors:

Tcycle = TClk-Q + TLogic + Tsetup+ Tskew + Tjitter

D Q

Clk

D Q

Clk

Logic

N

TLogic
TClk-Q TSetup

TSkew
TJitter

TJitter
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Clock Design Goals

• Meet Design Specs:
• Max Skew

• Min/Max Latency (Delay)

• Duty Cycle (Rise/Fall)

• Max Jitter

• Verify Resulting:
• Power Consumption

• Area (Gate Count)
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Tree and Grid

• Minimal area cost

• Requires clock-tree 
management

• Use a large superbuffer to drive 
downstream buffers

• Balancing may be an issue

• Greater area cost

• Easier skew control

• Increased power consumption

• Electromigration risk increased at drivers

• Severely restricts floorplan and routing
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Classic H-Tree

• Place clock root at 
center of chip and 
distribute as an H-tree
structure to all areas of 
the chip

• Clock is delayed by an 
equal amount to every 
section of the chip

• Local skew inside 
blocks is kept within 
tolerable limits
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Clock Skew Analysis

F
lop

F
l opLogic

Late Early

Tcycle = Td +Tsetup + Tclk-q + Tskew 

F
lop

Late

F
l op

Early

when Tskew + Thold > Tclk-q

Td

Td=0

•CLOCK SKEW causes two problems:

• The cycle time gets longer by the skew

• The part can get the wrong answer

Tclk-q Tsetup

Shows up as a HOLD time violation

Shows up as a SETUP time violation

Fix critical path

Insert buffer

Delay elements
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Overhead for a Clock

• CMOS FO4 delay is roughly 425ps/um x Leff

• For 0.13um, FO4 delay � 40 - 50ps 

– For a 1GHz clock, this allows < 20 FO4 gate delays/cycle
• Clock overhead (including margins for setup/hold)

– 2 FF/Latches cost about  2-3 FO4 delays

– skew costs approximately 2-3 FO4 delays

• Overhead of clock is roughly 4-6 FO4 delays 

• 14-16 FO4 delays left to work with for logic 
• Need to reduce skew and FF cost

CLOCK

Tcycle

Skew Tclk-q Tlogic
Tsetup
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Requirements in Flip-Flop Design

• Minimize FF overhead: small clk-q delay, tsetup, thold times

• Minimize power

– flops up to 20% of total power of high-performance systems
• High driving capability 

– Typical flip-flop load in a 0.18µm CMOS ranges from 50fF to 
over 100fF, with typical values of 100-150fF in critical paths

• Multiplexed or scan enabled

• Crosstalk insensitivity 
- dynamic/high impedance nodes are problematic

• Small load on clock to improve performance of clock and reduce 
power of clock
– clocks can consume 40% of total chip power
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ITRS Jitter and Skew Trends
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Sources of Clock Skew

Main sources:

1. Imbalance between different paths from clock source to FF’s

– interconnect length determines RC delays
– capacitive coupling effects cause delay variations

– buffer sizing

– number of loads driven

2. Process variations across die

– interconnect and devices have different statistical variations

Secondary Sources:

1. IR and Ldi/dt in power supply

2. Temperature variations across chip
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Contributors to Clock Skew

• From ISSCC 1998

Ref: Geannopoulos98
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Contributors to Clock Skew

• Intra-Die PVT Variations
• Process 

• Transistors (TT, FF, FS, SF, SS)

• Metal (Width, Thickness, etc. ~ RLC)

• Voltage (Power Grid Variations ~ IR-Drop, Ldi/dt)

• Temperature (Correlated to Power Dissipation)

• Tree Branches can’t be Perfectly 
Balanced
• Drivers ~ Wires ~ Flip-Flops
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PVT Variability Study

Variation data from IBM and ITRS2005
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Spatial Variation Models

Ref: Hashimoto05



Lecture 3RAS 47

PVT Variations

IEEE D&T of Computers Nov-Dec06; Fetzer

P

V

T
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Temperature Variations

• Clock delay varies primarily due to variations in VT and mobility, 
and temp. coeff. of wires
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IR Drop Impacts on Clock Skew

Ideal Ideal VddVdd
-- Low delayLow delay
-- Low skewLow skew

Conservative Conservative VddVdd
-- High delayHigh delay
-- Low skewLow skew

Actual IR drop impactActual IR drop impact
-- delay about 5delay about 5--15% larger15% larger
-- skew about 25skew about 25--30% larger30% larger

Delay (latency)Delay (latency)
SkewSkew
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Reducing the Effects of IR drop and Ldi/dt

• Stagger the firing of clock buffers (bad idea: increases skew)

• Use different power grid tap points for clock buffers (but it makes 
routing more complicated for automated tools)

• Use smaller buffers (but it degrades edge rates/increases delay)
• Make power busses wider (requires area but should do it)

• Use more Vdd/Vss pins; adjust locations of Vdd/Vss pins

• Put in power straps where needed to deliver current

• Place decoupling capacitors wherever there is free space

• Integrate decoupling capacitors into buffer cells These caps act 
as decoupling 

caps when they 
are not 

switching
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Power dissipation in Clocks 

• Significant power dissipation can occur in clocks in high-
performance designs:

• clock switches on every cycle so P= CV2f   (i.e., α=1)
• clock capacitance can be ~nF range, say 1nF = 1000pF
• assuming a power supply of 1.8V, CV = 1800pC of charge
• if clock switches every 2ns (500MHz), that’s 0.9A

• for VDD = 1.8V, P=IV=0.9(1.8)=1.6W in the clock circuit alone

• Much of the power (and the skew) occurs in the final drivers due 
to the sizing up of buffers to drive the flip-flops

• Key to reducing the power is to examine equation CV2f and 
reduce the terms wherever possible

– VDD is usually given to us; may not want to reduce swing due 
to coupling noise, etc.

– Look more closely at C and f
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Clock Gating

• Gate off clock to idle functional units

– need logic to generate                                          
disable signal

• increases complexity of control logic

• consumes power

• timing critical to avoid clock glitches                         
at AND gate output

– additional gate delay on clock signal
• gating AND gate can replace a buffer in 

the clock distribution tree 

• all clock trees should have same type of 
gating whether they are used or not for 
balance

• Most popular method for power reduction of clock signals and 
functional units

FF’s

Combinational

Logic

disable

clock
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Reducing Power in Clocking

• Reduce overall capacitance (shielding vs. spacing)

(a) higher total cap./less area                (b) lower cap./ more area

– Tradeoff between the two approaches due to coupling noise

– approach (a) is better for inductive noise; (b) is better for 
capacitive noise

shield clock shield Signal 1 clock Signal 2
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Clock Design Objectives

• Now that we understand the role of the clock and some of the 
key issues, how do we design it?

– Minimize the clock skew (in presence of IR drop) 

– Minimize the clock delay (latency)
– Minimize the clock power (and area)

– Maximize noise immunity (due to coupling effects)

– Maximize the clock reliability (signal EM)

• Problems that we will have to deal with

– Routing the clock to all flip-flops on the chip
– Driving unbalanced loading, which will not be known until 

the chip is nearly completed

– On-chip process/temperature variations
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Clock Verification

• Clock verification is more complex in DSM
– Must include the effects of RC Interconnect delays in 

clock skew analysis along with PVT
– Signal integrity (capacitive coupling, inductance)

• spacing vs. shielding
– IR drop and Ldi/dt
– Signal Electromigration
– Clock Jitter is difficult to verify

• time-domain variation of a given clock signal due to 
random noise, IR drop, temperature, etc.


