Lecture 2

DSM Interconnect

R. Saleh Dept. of ECE University of British Columbia res@ece.ubc.ca

- Deep submicron interconnect issues have been plaguing the integrated circuit designer for about 15 years
- The problems still persist, but there are some well-known solutions to the most critical issues
- This lecture will cover fabrication and reliability issues, followed by the effect of technology scaling on wires: resistance, coupling capacitance and inductance
- We will also discuss solutions to these problems
- References:
 - 1) "Inteconnect Design", HJS Textbook, Chapter 10
 - 2) "The Future of Wires", Ho et al., Proc. of IEEE, April 2001

Making Wires

Making Wires (cont'd)

3. Deposit first metal layer and then pattern to provide desired connections

 Repeat same steps for all subsequent layers

Final Profile in 0.25um vs. 90nm

EECE579

Purpose of Multi-level Wires

Today, wires are made of copper (both metal and via)

Reliability and Fabrication Issues

Reducing Coupling Capacitance

Chemical Mechanical Polishing

Metal Fill Patterns

• Use dummy metal fill to reduce uneven topography on a layer

• Also critical to step dummy dies around wafer periphery

Antenna Effects

- As each metal layer is placed on the chip during fabrication, charge builds up on the metal layers due to CMP¹, etc.
- If too much charge accumulates on gate of MOS transistor, it could damage the oxide and short the gate to the bulk terminal

- Higher levels of metal accumulate more charge so they are more troublesome (i.e., metal 5 is worse than metal 1)
- Need to discharge metal lines during processing sequence to avoid transistor damage (becomes a design/layout issue)
 - ^{1.} CMP is chemical mechanical polishing which is used to planarize each layer before the next layer is placed on the wafer.

Preventing Antenna Effects

- A number of different approaches for antenna repairs:
- Diode Insertion Make sure all metal lines are connected to diffusion somewhere to discharge the metal lines during fabrication

-diodes costs area

- need to optimize number and location
- causes problems for design verification tool

• Note that there are always diodes connecting to source/drain regions of all transistors and charge on each layer is drained before next layer is added...so why are we worried?

• Gate input of next device may not be connected to a diode until it's too late...charge accumulation on metal exceeds threshold

Technology Scaling Effects

Effect of DSM Interconnect (Circa 1993)

More Realistic Delay Trends

Example of Wire Length Distribution

Let's Look at Wire Models

- Very short wires (intra-cell and inter-cell) simply require a grounded capacitance model $\dot{\perp}_{\rm C}$
- Longer wires require a simple RC models. These are wires that are connections within a block R

 Interblock wires are the global wires that have to modeled as a distributed RC model which we convert to a lumped RC ladder

• What is the delay along the distributed line as a function on length L?

Use Elmore delay =
$$(r \Delta L)(c \Delta L) + 2(r \Delta L)(c \Delta L) + ... + N(r \Delta L)(c \Delta L)$$

= $(\Delta L)^2 rc(1 + 2 + ... + N)$
= $(\Delta L)^2 rc(N)(N+1)/2 \approx (\Delta L)^2 rcN^2/2$
= $L^2 rc/2$ (measured value is $\approx 0.4 rcL^2$)

	-		
	Length	Length	Delay (s)
Table of Delays	20 um	or 0.02 mm	13 fs
for different	200 um	or .2 mm	1.3 <i>ps</i>
Wire Lengths	1,000 um	or 1 mm	32 <i>ps</i>
	2,000 um	or 2 mm	128 <i>ps</i>
	5,000 um	or 5 mm	800 <i>ps</i>

EECE579

Buffer Insertion

• Make long wires into short wires by inserting buffers periodically. Divide interconnect into N sections as follows:

- Delay per stage: $t_{segment}$ =Elmore delay of a stage with π model
- Total delay : t_{total} = N x t_{segment}
- What is the optimal number of buffers?
 Find N such that ∂t_{total}/ ∂N = 0 ⇒ N ≈ sqrt(0.5rcL²/t_{pbuf})

For L=5mm case, $N \approx 6$

Therefore, 6 inverters should be inserted (Note that the buffer delay is actually a function of the interconnect length - ignored)

Coupling Between Lines in DSM Layout

Over 80% of
 interconnections
 in a UDSM chip
 are parallel
 crossing lines
 with 3D effects

Interconnect Capacitance Profiles

- We decompose the total capacitance into three components:
 - Area capacitance
 - Lateral capacitance
 - Fringe capacitance

$$C_{total} = 2C_{area} + 2C_{lateral} + 2C_{fringe}$$

Metal Dimensions

• T=wire thickness, H=vertical wire separation, S=horizontal wire separation, W=wire width, L=wire length

W=width, T=thickness, H=height between layers, S=spacing

- T and H are fixed parameters based on the fabrication process
- W, S and L are under the designer's control

Area Capacitances

• Area capacitance per unit length can be simply calculated using:

$$C_a = \frac{\varepsilon_{ox}}{t_{ox}} W = 0.035 \text{fF/um (W/H)}$$

Lateral Capacitances

• Lateral capacitance per unit length for closely spaced wires can be calculated using: C = c = S = 0.025 fE/um (T/S)

$$C_{L} = \varepsilon_{ox} S = 0.035 \text{ fF/um} (\text{T/S})$$

For widely spaced wires, C₁ drops off as 1/S

Fringing Capacitances

• Fringing capacitance per unit length for widely spaced wires can be approximated to be (actually depends on H and T which are fixed):

$$C_{\text{fringe}} = 0.05 \text{fF/um}$$

1

Total Capacitance

• For closely spaced wires, assume fringe is small

 $C_{total} = 2C_a + 2C_L = 0.2 fF/um$

• For widely spaced wires, assume lateral is small

$$C_{total} = 2C_a + 2C_{fringe} = 0.2 \text{fF/um}$$

• For medium spaced wires, C_f and C_L will both exist and vary with S

Coupling Effects

• New model of interconnect

• Each driver connected to A,B,C or D can act as aggressor

• Coupling capacitance could inject noise or affect delay

First-order Noise Analysis

• Assume that aggressor and driver resistances are negligible

• If V_1 changes by V_{DD} , what change ΔV do we expect to see at the internal node in the worst case?

$$\Delta V_2 = \frac{C_c V_{dd}}{C_c + C_g}$$

First-Order Delay Analysis

Signal Integrity Effect on Timing

Net delay due to a single coupled aggressor net

Net delay due to multiple coupled aggressor nets

Performance impact: 300 picosecond delay (3% of a clock cycle)

Performance impact: over 2 nanosecond delay (20+% of a clock cycle) • Space out the signals as much as possible, but it cost area.

• Use Vdd and Gnd to shield wires wherever required

Inductance

• Complete interconnect model should include inductance

 With increasing frequency and a decrease in resistance due to wide wires and the use of copper, inductance will begin to influence clocks/busses:

- Inductance, by definition, is for a loop not a wire
 - inductance of a wire in an IC requires knowledge of return path(s)
 - inductance extraction for a whole chip is virtually impossible...

Impact of on-chip self-inductance

FIGURE 6.9 Waveforms for various R_s and Z_0 combinations with a finite input rise time. The top plot shows the case when $R_s > Z_0$; the output is an exponential waveform. In the bottom plot $R_s < Z_0$; the waveform rings. The delay time t_d , rise time t_r , and settling time t_s are also shown.

Other Inductance Effects

- For most gates R_{eff} is in the order of k Ω so typically $R >> j\omega L$
 - response is dominant by RC delay for most signals
- Only the large drivers have a small enough R_{on} to allow the inductance to control the dynamic response
 - clocks
 - busses
- For clocks, self-inductance term can dominate the response (especially if shielding is used)
- For busses, mutual inductance term dominates and creates noise events that could cause malfunction
- For power supplies, inductance can also be a problem due to the Ldi/dt drop (in addition to the IR drop) as supplies scale down

Capacitive and Inductive Noise

For most wires, $j\omega L < (Rwire+Rdrive)$ for the frequency and R of interest. So, for delay, L is not a big issue currently.

But ωL can be ≈ 20 - 30% of R so noise may be seen on adjacent line (mutual coupling)

Dangerous scenario is a combination of localized capacitive coupling noise and long range mutual inductive coupling noise

EECE579