
Case Study: “Hardware/Software
Partitioning to Meet Real-time

Constraints”

EECE 579 Advanced Topics in VLSI
Spring 2009
Brad Quinton

Overview of this Slide Set

Look at a real-world, real-time design
problem.

Partition the implementation between
software and hardware.

Design a simple hardware/software
interface to support this partition.

Specify Application
Platform

(Co-Specification)

Partition and Map
Application Tasks to the

Platform Resources

Schedule Execution Order

Implement (Code) Tasks

Verify Functionality (Co-
verification)

Do I meet System
Requirements ?

Done

Start

Specify System
Requirements

Model (Co-simulate)
System Functionality

Do I meet System
Requirements ?

Yes

No

No

Yes

Design Description/Requirements

SONET Automatic Protection Switching (APS)

SONET (Synchronous Optical Networking):

– The North American standard for optical networking
– The vast majority of current optical networks use this standard
– Designed to be tightly synchronized and highly reliable
– Defined in standard ANSI T1-105

Automatic Protection Switching (APS):

– Ensures network reliability by switching an errored channel to a
backup channel

– Requires real-time error monitoring and switching

High Level System View

Requirement:

If the Bit Error Rate of any given working STS-1 channel exceeds 4
errored frames in a 10-frame sliding window, the egress channel
must switch to the protection STS-1 within 300 µs.*

* Note: This is a simplified version of the true requirement.

SONET Format Overview

* From : Fiber-Optic and Satellite Communication, Gilbert Held,
http://www.microsoftt.com/technet/itsolutions/network/evaluate/technol/fiberop.mspx

STS-1 (OC-1) Frame:

SONET Format Overview

STS-1 (OC-1) Frame:

Parity Byte

* From : Fiber-Optic and Satellite Communication, Gilbert Held,
http://www.microsoftt.com/technet/itsolutions/network/evaluate/technol/fiberop.mspx

The SONET standard supports multiple bit rates by multiplexing the
basic STS-1 channels together.

Our design is targeted at STS-192 (OC-192), therefore we will have
192 independent STS-1 channels to manage.

The basic STS-1 line rate is 51.48 Mbits/s, therefore our STS-192
stream will have a line rate of 9.953 Gbit/s.

SONET Multiplexing

SONET Multiplexing

51.48 Mb/s

9953 Mb/s

SONET Multiplexing

• Stream is transmitted
serially

• STS-1 channels are
interleaved on a “byte-by-
byte” basis

51.48 Mb/s

9953 Mb/s

SONET Multiplexing

Parity checking is simple way to detect bit errors.

Parity can be calculated on a single byte:

For example, we could add a bit to ensure that there are always an
even number of 1s in a 9 bit segment:

Parity Checking

00001 1110

11111 0001

11001 0001

Parity BitData byte

Notice that if one of the data bits is changed the parity will be incorrect
and we will know that we have an error.

Since optical networking tends to have low bit error rates, it is not worth
transmitting an extra bit with every byte of data.

There are a number of ways that this idea can be extended protect an
entire frame.

For example, a single byte can cover any number of proceeding bytes
as follows:

Parity Checking

10101000Parity Byte
00001001Data Byte
10000011Data Byte
10111001Data Byte
10010011Data Byte

Calculate parity for
each bit position in
a byte.

SONET Format Overview

STS-1 (OC-1) Frame:

Parity Byte

* From : Fiber-Optic and Satellite Communication, Gilbert Held,
http://www.microsoftt.com/technet/itsolutions/network/evaluate/technol/fiberop.mspx

In order to ensure that reliable communications are maintained in the
optical network we will implement automatic protection switching
(APS) by doing the following:

1. Calculate the running parity of each independent STS-1
channel.

2. Check the calculated parity of the each individual STS-1 frame
against the parity byte included in the frame overhead.

3. Record bit errors indicated by mismatched parity on a STS-1
basis.

4. If the number of frame with bit errors exceeds 4 per 10 frames
change the switch settings to use the protection channel.

Design Problem Summary

Software/Hardware Partitioning

Basic Switch Design

Basic Switch Design

The basic design does not support automatic protection switching:

=> We are going to add APS to the design.

In general, when approaching any new design, it is worthwhile to step
back a little bit, and do some “back-of-the-envelope”-type analysis

This can save a lot of time by eliminating infeasible designs and
helping you understand what the will be important in the final design

There are many ways to do this. The goal is to use basic information
that you already know, before running off to do complex analysis of
the problem.

One way:

– Propose simplest (or cheapest) solution, then try to figure out
why it won’t work.

Initial “back-of-the-envelope” Partitioning

Idea 1: All-Software Solution

Can we implement this design in software running on the processor that we
already have in our design?

Idea 1: All-Software Solution

What do we know at this point:

– The line rate is 9.953 Gb/s => There will be a new byte of data for
processing at a rate of 1.244 GHz

– The latest Intel processors run at ~2.5 GHz => in the best case (no
overhead, stalling, etc) we could execute 1 instruction per clock cycle)

Analysis:

– Even using the fastest high-end processor, and assuming very optimistic
conditions would have only 2 instructions to process each data byte

Conclusion:

– There is no way to achieve an all-software solution

Idea 2: All-Hardware Solution

Since the all-software solution is not going to work, can we implement this
design completely in hardware?

Idea 2: All-Hardware Solution

What do we know at this point:

– The software for the operator interface was already been written

– The switch hardware already exists

– Management always wants the cheapest solution that is also low-risk
and provides the fastest possible time-to-market

Analysis:

– Re-implementing existing work is risky, expensive and slow. We are
likely risking our careers if we decide to re-implement a large amount of
existing software in hardware

Conclusion:

– An all hardware solution is not a good idea

The more experience you gain as a designer, the further you will be
able to go with this kind of quick analysis.

For this example, we will stop here with the conclusion:

– Given the design real-time design requirements and the existing
design components, the design will require a combination of
hardware and software.

Initial “back-of-the-envelope” Results

Once you have done all you can based on your current experience, you
must research the specifics of the design and the target platform

You need to find out all the relevant performance details about the
platform you are working with so that you can evaluate the different
hardware/software partitions

This can be a lot of work. Real-life systems are very complicated, and
there are a lot of variables to think about.

For this example we are lucky, since we are provided with a (simplified)
version of the real information.

Design Planning

Processor Specifics

- 200 MHz clock frequency

- 25% of clock cycles are available for APS
(other clock cycles are used for OS, Crossbar
Switch, etc.)

- DRAM memory access require 100 ns

- Interrupt service routine requires 1600 ns

Basic embedded processor:

Processor/Hardware Interface

- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:

Processor/Hardware Interface

- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:

System bus

Hardware Specifics

- System clock rate: 622 MHz

- Analog serial Rx/Tx provides 2 bytes/clock (1.244
bytes/second)

Our New Hardware Design:

Overall System

Now that we know all the basic performance of elements in the
systems we can start partitioning our design.

Basic procedure:

1. Determine a potential hardware/software partition of the design
functionality.

2. Determine the worst-case performance of the system using
this design.

3. Determine if this performance meets the design requirement.
4. Continue to try new partitions until the system meets the design

requirement.

Partitioning

First, lets enumerate the basic design functionality:

Initial Partition

Alert operator to the APS switch.6

Update switch settings to use Protection STS-1.5

Determine if the 4/10 threshold has been
exceeded.

4

Track errors/frame for each STS-1.3

Compare the current parity versus parity byte in
each STS-1 frame overhead.

2

Calculate parity for each new byte in an STS-1.1

Software/
Hardware

Description#

Now, assign each function to hardware or software:

Initial Partition

SoftwareAlert operator to the APS switch.6

SoftwareUpdate switch settings to use Protection STS-1.5

SoftwareDetermine if the 4/10 threshold has been
exceeded.

4

SoftwareTrack errors/frame for each STS-1.3

HardwareCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

HardwareCalculate parity for each new byte in an STS-1.1

Software/
Hardware

Description#

Evaluation of Hardware/Software Partition

There are number of ways to evaluate the performance of a
hardware/software partition:

1. Implement the Design - Basically, try it out and see if it works.
(This is most straight forward method, but it is risky.)

2. Model the Design Components - Build software models of all
the system and then simulate to determine the worst-case
performance. (This removes the risk of creating a design that
doesn’t work, but creating models is a lot of work.)

3. Manually Calculate Performance - Identify the key
performance characteristics of each part of the design and
manually determine the worst-case performance. (This works
for small designs, but can quickly become too complicated in
real systems)

Evaluation of Hardware/Software Partition

For this example, we will manually evaluate the worst-case
performance.

First, we need to identify the worst-case condition:

Evaluation of Hardware/Software Partition

For this example, we will manually evaluate the worst-case
performance.

First, we need to identify the worst-case condition:

Each of the 192 STS-1s crosses the 4/10 errored frame threshold at
the same time, and requires protection switching

1) Calculate parity for each new byte
Our hardware system clock is 622 MHz and we receive 2 bytes of data

every clock cycle.

If we design two parity calculation blocks that run it parallel we will be
able to maintain the line rate.

--> 1 clock cycle =
1.6ns, no problem….

2) Compare the current parity versus parity byte

We must compare the current running parity for each STS-1 versus the
parity byte in the frame overhead, once per frame,

In the worst case we will have to check two parity bytes at the same
time, so we need two parity compare circuit running in parallel.

--> 2 clock cycles =
3.2 ns, Good….

3) Track errors/frame for each STS-1
In the worst case the each of the 192 STS-1 streams will contain a bit

error on the same frame.

The hardware must communicate this information to the software.

We have two choices for the interface:

1) Interrupts - Each parity byte mis-match causes an interrupt to the
processor

2) Polling - The processor continually reads information from the
hardware to determine if there is an error

Interrupts:
192 interrupts * 1600 ns/interrupt = 307200ns = 307.2µs > 300 µs APS

switch requirement --> won’t work

3) Track errors/frame for each STS-1
Polling:

We must be able to read the status of every STS-1, on every frame time.

The frame time is:

9 * 90 bytes = 810 bytes per frame

(1/51.48 Mb/s) * 8 bits/byte = 155.4ns/byte

810 bytes/frame * 155.4ns/byte = 125874ns/ frame

Read access time is:

50 ns/ 16 bit read * 12 reads = 600ns <--- works!

Solution: Hardware will maintain 12, 16-bit words which represent the
error status for each of the 192 STS-1 streams. The software will
poll each of these words once per fame time to determine the status
of the STS-1.

Interrupts vs. Polling
SIDENOTE:

This part of the example provides a good example of a trade-off that
often occurs when partitioning design problems between hardware
and software.

In general, events occur in the hardware that must be communicated to
the software portion of the system. There are two methods to handle
this:

1. The hardware can alert the software asynchronously using an
interrupt.

2. The software can periodically check the status of the hardware and
determine what has changed.

Interrupts vs. Polling
The decision of which method to use is very important from a real-time

design point of view.

Interrupts: Provide the fastest possible indication of an event, and
therefore potentially allow for very fast reactions, however because
they are asynchronous, a large number of interrupts can happen at
once, and the worst-case performance may be poor.

Polling: Allows for very predictable performance, however the reaction
to given event is slower since the worse-case it is dictated by the
period of the polling. Also, polling can be quite inefficient if the
events happened very rarely.

Because of this, real systems often use a combination of polling and in
interrupts. As well, the interrupts are often grouped into hierarchies
and categorized with different priorities.

4) Check the 4/10 threshold on each STS-1

The “sliding window” requirement makes this calculation a little bit less
straight forward.

One way to manage this is to store the STS-1 parity errors as bits in the
least significant 10 bits of a 16-bit word. Each of the 10 bits represents a
STS-1 frame that we have evaluated. ‘1’ indicates an errored frame, ‘0’
indicates a clean frame.

For example:

xxxx_xx10_0000_0010
xxxx_xx01_0000_0001
xxxx_xx00_1000_0000 Frame error

Correct Frame

STS-1 Sliding Window Error Tracking

If there is ever > 4, ‘1’ in the 10 LSBs then the threshold is exceeded

4) Check the 4/10 threshold on each STS-1

for (i := 1 to 192) {
 // manage status
 current = status[i];
 current << 1;
 if (error[i])

current = current | 0x0001;
 status[i] = current;

 // determine threshold
 sum = 0;
 for (j := 1 to 10) {
 tmp = current & 0x0001;
 sum = sum + tmp;
 current >> 1;
 }
 if (sum > 4)
 switch[i] = 1;
 else
 switch[i] = 0;
}

10 * 3 instructions

4 instructions + 2
DRAM accesses

1 instructions +
1 DRAM access

4) Check the 4/10 threshold on each STS-1

calculate time to check all 192 thresholds:

total_time

= 192 * (35 instructions + 3 DRAM accesses)

= 192 * ((35 * 5 ns) + (3 * 100 ns))

= 91200 ns

= 91.2 us

5) Update Protection Switch Settings

This is function is easy to implement since the software for the switch
settings is already implemented on the same processor. Any message
passing system will work.

We will use an array ‘switch’ stored in memory:

192 * DRAM access = 192 * 100 ns = 19200 ns = 19.2 us

In order to update the switch settings the software must make a worst case
of 192 / 16 = 12 write accesses:

12 writes * 50 ns/write = 600 ns

6) Alert Operator to Switch Status

Again, this is function is easy to implement since the software for the switch
settings implemented on the same processor. Also, there is no hard real-
time constraint on this function.

We will simply pass a message to the display software, and assume that it
will be displayed eventually….

Overall Worst Case Timing

Therefore our worst case time to perform an APS switch is….

N/AAlert operator to the APS switch.6

600ns +
19.2 us

Update switch settings to use Protection STS-1.5

91.2usDetermine if the 4/10 threshold has been
exceeded.

4

600nsTrack errors/frame for each STS-1.3

3.2nsCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

1.6nsCalculate parity for each new byte in an STS-1.1

LatencyDescription#

Overall Worst Case Timing

Therefore our worst case time to perform an APS switch is….

N/AAlert operator to the APS switch.6

600ns +
19.2 us

Update switch settings to use Protection STS-1.5

91.2usDetermine if the 4/10 threshold has been
exceeded.

4

600nsTrack errors/frame for each STS-1.3

3.2nsCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

1.6nsCalculate parity for each new byte in an STS-1.1

LatencyDescription#

Total: 111.6 us

Processor Utilization

We have designed a partition that will meet the real-time requirement, but
we were also constrained to use only 25% of the processor clock cycles, so
we need to check this as well:

Frame time = 125874 ns = 125.9 us

APS Software = 111.6 us / frame

Therefore, the APS Software requires 88.64% of the resources!

This is a problem. Our partition does not meet the design requirements.

Now, we can take another at partitioning the design:

New Partition

SoftwareAlert operator to the APS switch.6

SoftwareUpdate switch settings to use Protection STS-1.5

HardwareDetermine if the 4/10 threshold has been
exceeded.

4

HardwareTrack errors/frame for each STS-1.3

HardwareCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

HardwareCalculate parity for each new byte in an STS-1.1

Software/
Hardware

Description#

3) Track errors/frame for each STS-1
Using hardware we can track the errors/frame in much the same way

that we had envisioned in the software implementation.

We will maintain 192, 10-bit shift registers (One for each STS-1 stream)
This will give use a complete view of the last ten frames.

This storage only
take one clock
cycle = 1.6ns

4) Check the 4/10 threshold on each STS-1
Using hardware we can easily evaluate the number of ‘1’ in our 10-bit

shift registers and determine if the threshold has been exceeded.

This can be done for each STS-1 and a single bit used to indicate
whether the threshold has been exceeded.

This check and
storage will take 2
clock cycles = 3.2 ns

5) Update Protection Switch Settings

In order to determine which (if any) STS-1 need switching the software
needs to read the values stored in the hardware status registers.

The values are stored as 12, 16-bit words (one per STS-1):

12 reads * 50 ns/read = 600 ns

In order to update the switch settings the software must make a worst case
of 12 write accesses:

12 writes * 50 ns/write = 600 ns

New Partition Overall Worst Case Timing

With this new partition our worst case time to perform an APS switch is….

N/AAlert operator to the APS switch.6

600ns +
600ns

Update switch settings to use Protection STS-1.5

3.2nsDetermine if the 4/10 threshold has been
exceeded.

4

1.6nsTrack errors/frame for each STS-1.3

3.2nsCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

1.6nsCalculate parity for each new byte in an STS-1.1

LatencyDescription#

New Partition Overall Worst Case Timing

With this new partition our worst case time to perform an APS switch is….

N/AAlert operator to the APS switch.6

600ns +
600ns

Update switch settings to use Protection STS-1.5

3.2nsDetermine if the 4/10 threshold has been
exceeded.

4

1.6nsTrack errors/frame for each STS-1.3

3.2nsCompare the current parity versus parity byte in
each STS-1 frame overhead.

2

1.6nsCalculate parity for each new byte in an STS-1.1

LatencyDescription#

Total: ~1.2 us

New Partition Processor Utilization

We have designed a partition that will meet the real-time requirement, but
we were also constrained to use only 25% of the processor clock cycles, so
we need to check this as well:

Frame time = 125874 ns = 125.9 us

APS Software = 1.2 us / frame

Therefore, the APS Software requires < 1% of the resources!

We are done! Our partition meets the design requirements.

Final Design

Final Design (Hardware)

Working
SONET
Stream

External
Processor

Final Design (Software)
while (1) {
 // check STS-1 status
 for (i := 1 to 12) {
 errorStatus[i] = externalRead(i);
 }

 // update switch settings -- if necessary

 for (j := 1 to 12) {

 if (errorStatus[j] > 0) {

 externalWrite(j, errorStatus[j]);

 updateDisplay(j, errorStatus[j]);

 }

 }

 // wait until end of frame

 frame_wait();

}

Summary

- SONET Automatic Protection Switching (a real-time design problem)

- Initial “back-of-the-envelop” evaluation of software/hardware partitions

- Evaluating the performance of a specific software/hardware partition

- Changing a software/hardware partitions to achieve a higher performance

