
Hardware/Software Partitioning for
SoCs

EECE 579 - Advanced Topics in VLSI Design
Spring 2009
Brad Quinton

Goals of this Lecture
• Automatic hardware/software partitioning is big

topic...

• In this lecture, I will try to:

– explain the problem that we are trying to solve,
– outline a basic strategy to attack the problem,
– highlight the big challenges,
– provide enough background to appreciate the

assigned paper

Outline
1. Hardware/Software Partitioning in an SoC

Context
2. A Procedure for Automatic Hardware/Software

Partitioning
3. Control and Data Flow Graphs
4. Allocation and Scheduling
5. Algorithms
6. Summary
7. Introduction to: “Hardware-Software

Cosynthesis for Microcontrollers”

Hardware/Software Partitioning
in an SoC Context

SoCs
• As we have discussed previously, the problem

of hardware/software partitioning is particularly
relevant to Systems-on-Chip (SoCs):

– the final SoC will likely include both software and
hardware any case

– the software resources are under the SoC
designers control

– the hardware resources are under the SoC
designers control

– the interface between the software and hardware is
under the SoC designers control

SoCs
• As we have discussed previously, the problem

of hardware/software partitioning is particularly
relevant to Systems-on-Chip (SoCs):

– the final SoC will likely include both software and
hardware any case

– the software resources are under the SoC
designers control

– the hardware resources are under the SoC
designers control

– the interface between the software and hardware is
under the SoC designers control

• Too much flexibility....?

Very Large Design Space
• Given this flexibility the design space is

extremely large

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space
• Given this flexibility the design space is

extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space

Power?

• Given this flexibility the design space is
extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space

Power? Device Cost?

• Given this flexibility the design space is
extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space

Power? Device Cost? Development Cost?

• Given this flexibility the design space is
extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space

Power? Device Cost? Development Cost? Features?

• Given this flexibility the design space is
extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Very Large Design Space

Power? Device Cost? Development Cost? Features? Markets?

• Given this flexibility the design space is
extremely large

• How many processors? What kind?
• What frequency should they operate at?
• How much memory? How much bandwidth?
• How much application specific hardware?
• How frequency should it run at?
• System bus? NoC? DMA Controller?

Case Study: High Level System View

Requirement:

If the Bit Error Rate of any given working STS-1 channel exceeds 4
errored frames in a 10-frame sliding window, the egress channel
must switch to the protection STS-1 within 300 µs.*

* Note: This is a simplified version of the true requirement.

Case Study: Final Design (Hardware)

Working
SONET
Stream

External
Processor

Can we automate this?

• Maybe we can get a computer to perform these
trade-offs for us...

• Not only would this make our lives easier, but
we might get better results!

The Dream ...

The Dream ...

re-run as
requirements
change

The Dream ...

re-run as
requirements
change

re-run for each
new technology

The Dream ...

re-run as
requirements
change

re-run for each
new technology

create new
variants for
different
markets: high
performance,
low power,
etc.

Is It Possible?
• There are two highly related problems that give

us hope:

– Software Compilation
– High-level Synthesis

• At least we have a starting point...

Software Compilers
• Goal: Given a high-level program (for instance

C, C++, Java) generate machine code

• Long history ... earliest compiler in 1952!

• For example: gcc, Turbo C++

• Very popular, widely used, well understood

Software Compilers
• Basic idea:

– the hardware resources are a given,
– the problem is to allocate and schedule them

efficiently

• There is lots of information about this... start with
gcc webpage: http://gcc.gnu.org

• UBC Courses: CPSC 411, ...

High-level Synthesis
• Goal: Given a high-level hardware description

(SystemVerilog, SystemC, C, VHDL) generate a
RTL representation

• Much newer than software compilers: first
commercial product in 1994

• For example, Synopsys Behavioral Compiler,
MATLAB HDL Coder

• Still a niche product; hardware design mostly
still write RTL....

High-level Synthesis
• Basic Idea:

– Generate enough hardware to meet some timing,
throughput, or other constraint

• This topic is covered in detail in EECE 583

• In fact, next weeks 583 lecture is on High-level
Synthesis...

Hardware/Software Partitioning
• Hardware/Software partitioning has many of the

challenges of both Software Compilation and
High-level Synthesis

• ... but, it is even harder, as we will see!

A Procedure for
Hardware/Software Partitioning

Where do we start?

Where do we start?
• Need to have a software readable

representation

• We need to be able to map this to both
hardware and software constructs

• Look to High-level Synthesis for the basic
procedure...

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)
2. Optimize this representation (remove

redundancy, organize operations)

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)
2. Optimize this representation (remove

redundancy, organize operations)
3. Allocate the operations to the available

resources (hardware, software)

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)
2. Optimize this representation (remove

redundancy, organize operations)
3. Allocate the operations to the available

resources (hardware, software)
4. Schedule the utilization and interactions of the

resources

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)
2. Optimize this representation (remove

redundancy, organize operations)
3. Allocate the operations to the available

resources (hardware, software)
4. Schedule the utilization and interactions of the

resources
5. Bind the operations to the resources

Basic Procedure
1. Generate a software readable representation of

the problem (for instance, a graph...)
2. Optimize this representation (remove

redundancy, organize operations)
3. Allocate the operations to the available

resources (hardware, software)
4. Schedule the utilization and interactions of the

resources
5. Bind the operations to the resources
6. Generate the hardware and software

representations (C, Verilog...)

Control and Data Flow Graphs

Control and Data Flow Graphs
• We can use control and data flow graphs

(CDFGs) to represent the functional behavior of
our SoC in a software readable form

• CDFGs capture all of the control and data flow
of the device (i.e. they are a complete
representation of the behaviour)

• Usually generated manually, although there is
some work on automatic generation....

Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;

Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;

Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;

Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;

What about control info?
• Data flow graphs only capture part of the story...

• We need to capture control flow as well.

Control and Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;
while (A > 0) loop

A := A - 1;
end loop;

Control and Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;
while (A > 0) loop

A := A - 1;
end loop;

Control and Data Flow Graph

E := B * C + 4;
F := D + 17;
A := E + F;
while (A > 0) loop

A := A - 1;
end loop;

Control and Data Flow Graph
• directed acyclic graph: edges and nodes

• edges: transfer value or control

• nodes:

– Operational nodes: Responsible for arithmetic, logical
or relational operations

– Call nodes: Calls to subprogram
– Control nodes: Responsible for conditionals and

loops
– Storage nodes: Assignment operators, holding

registers

CDFG Optimization
• Once we have generated the CDFG it is

possible to perform optimizations on the graph
before it is partitioned...

– dead code elimination
– loop unrolling
– etc.

• These optimization are used extensively in
software compliers

CDFG Optimization

CDFG Optimization

CDFG Optimization

CDFG Optimization

Key Challenges
• The construction of the CDFG itself may be

biased towards hardware or software

– We want to leave the decision up to the tool, but as
we decided on the structure of the graph we are
influencing the decision

• Optimization at this point may also be biased
towards hardware or software

– For instance in the previous example, eliminating
operators saves software execution time... but
hardware instances can operate in parallel so is there
value?

Allocation and Scheduling

Allocation and Scheduling
• Now that we have a structure we can work with

we can start to partition the problem....

• Any part of the graph may be implemented in
hardware or software

• However, the target resources are not
homogeneous which makes decisions hard!

Software Only....

Software Only....

Resource Cost:

Software Only....

one instruction
Resource Cost:

Software Only....

one instruction
one instruction

Resource Cost:

Software Only....

one instruction
one instruction

one instruction

one instruction

one instruction
one
instruction

Resource Cost:

Software Only....

one instruction
one instruction

one instruction

one instruction

one instruction
one
instruction

Resource Cost:
Communications
Overhead:

Software Only....

one instruction
one instruction

one instruction

one instruction

one instruction
one
instruction

Resource Cost:
Communications
Overhead:0 - reg. access

Software Only....

one instruction
one instruction

one instruction

one instruction

one instruction
one
instruction

Resource Cost:
Communications
Overhead:0 - reg. access

0 - reg. access
0 - reg. access

0 - reg. access

0 - reg. access

0 - reg. access

Software Only....

one instruction
one instruction

one instruction

one instruction

one instruction
one
instruction

Resource Cost:
Communications
Overhead:0 - reg. access

0 - reg. access
0 - reg. access

0 - reg. access

0 - reg. access

0 - reg. access

Essentially a problem
of scheduling
instructions...

Hardware Only...

Resource Cost:

Hardware Only...

Resource Cost:
x logic gates

Hardware Only...

Resource Cost:
x logic gates

y logic gates

z flip-flops

y logic gates

n logic gates

y logic gates

Hardware Only...

Resource Cost:
x logic gates

y logic gates

z flip-flops

y logic gates

n logic gates

y logic gates

Communications
Overhead:m wires

Hardware Only...

Resource Cost:
x logic gates

y logic gates

z flip-flops

y logic gates

n logic gates

y logic gates

Communications
Overhead:m wires

m wires

m wires

m wires

m wires

m wires
Essentially a problem
minimizing the
number of gates in
the circuit...

Mixed...

Mixed...

Hardware

• Now things are difficult...

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

– cost trade-off: gates
versus run time?

2 instructions
or

100 gates?

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

– cost trade-off: gates
versus run time?

2 instructions
or

100 gates?

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

– cost trade-off: gates
versus run time?

– parallelism: is the software
stalled?

2 instructions
or

100 gates?

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

– cost trade-off: gates
versus run time?

– parallelism: is the software
stalled?

– complier efficiency /
synthesis efficiency

2 instructions
or

100 gates?

Mixed...

Hardware

• Now things are difficult...

– hardware/software
communication overhead

– cost trade-off: gates
versus run time?

– parallelism: is the software
stalled?

– complier efficiency /
synthesis efficiency

2 instructions
or

100 gates?

Key Challenges
• Hardware/Software communication imposes a

significant performance overhead

• Software and hardware have different cost
metrics

• Often requires finding parallelism between
hardware and software

• Breaking up the problem can often reduce the
efficiency of both the software compiler and
hardware synthesis

Algorithms

Algorithms
• Any algorithm that we use must take into

account the key issues that we identified in the
previous section...

• We will not try to cover algorithms in detail in
this class:

– EECE 583 -> High-level Synthesis
– Research papers: look for “cosynthesis”,

“hardware/software partitioning”, etc.

• Lets summarize some approaches...

Algorithms
• Software-centric:

– Generate software and then try to identify sections to
migrate to hardware

• Hardware driven:
– Generate hardware and then try to identify circuits to

migrate to software

• Iterative:
– Iteratively assign some nodes to hardware and to

software then evaluating results

Simulated Annealing
• At a very high-level:

1. Randomly assign each node to be hardware or
software

2. Calculate the cost of the resulting design
3. Swap one assignment randomly
4. Re-calculate the cost of with this new design
5. If the cost is low keep the assignment, if not revert the

swap
6. If cost > goal goto 3.

Simulated Annealing
• At a very high-level:

1. Randomly assign each node to be hardware or
software

2. Calculate the cost of the resulting design
3. Swap one assignment randomly
4. Re-calculate the cost of with this new design
5. If the cost is low keep the assignment, if not revert the

swap
6. If cost > goal goto 3.

Needs to be fast and accurate...
hard for this problem!

Summary

Summary
• SoCs are built with both hardware and

software, so we have to make a choice...

• The partition between these two aspect of the
implementation has a dramatic effect on the
cost, power and performance of the SoC

• It is possible to automate this task, however it is
difficult to get good results

“Hardware-Software Cosynthesis for
Microcontrollers”

Paper
• This paper is quite old (1993)

• They are trying to solve to of building a multi-chip
system, but it is very similar the SoC problem...

• Hard problem: Automated hardware-software
partitioning is still not mainstream!

• Interesting to see where the challenges were and how
they handled them

• Lets look at the paper....

Paper

Ernst, R.; Henkel, J.; Benner, T., "Hardware-
software cosynthesis for
microcontrollers," Design & Test of
Computers, IEEE , vol.10, no.4, pp.64-75,
Dec 1993

End.

