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Outline
1. Simple systems busses

• Overview
• AMBA APB
• Advantages/Limitations

2. Complex systems busses
• Overview
• AMBA AHB
• Advantages/Limitations

3. Networks-on-Chip (NoC)
• Overview
• AMBA AXI
• Research Topics: Topology, Protocol, VLSI Implementation...
• Review: “A Generic Architecture for On-Chip Packet-

Switched Interconnections”
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Simple System Busses
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Simple System Busses

• The primary goal of a simple system bus is to
allow software (running on a processor) to
communicate with other hardware in the SoC

• There are many different implementation ... but
they are all very similar
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Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:
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Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:

– Load Operation: Copies a word of data from a
specific address to a local register

– Store Operation:  Copies a word of data from a
local register to a specific address
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Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:

– Load Operation: Copies a word of data from a
specific address to a local register

– Store Operation:  Copies a word of data from a
local register to a specific address

• The simple system bus is just a direct
extension of this model
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Embedded Processor I/O
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Embedded Processor I/O

Software
sets up the
register with
the address
and data ...
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Embedded Processor I/O

Software
sets up the
register with
the address
and data ...

Blocks
decode
addresses
to see if
they are the
targets...
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Embedded Processor I/O

Software
sets up the
register with
the address
and data ...

Blocks
decode
addresses
to see if
they are the
targets...

Data
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AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores
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AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores

NoCSimple Bus Complex Bus
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AMBA APB: Read Operation
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AMBA APB: Read Operation

Target Address
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AMBA APB: Read Operation

Target Address

Transaction
Type
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AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode
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AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode

Optional (for
asynchronous
implementations
...)
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AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode

Optional (for
asynchronous
implementations
...)

Read Data
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AMBA APB: Write Operation



24

AMBA APB: Write Operation

Common Signals
Between Read and
Write
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AMBA APB: Write Operation

Write Data

Common Signals
Between Read and
Write
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Remember Our Case Study

- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:
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- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:

System bus

Remember Our Case Study
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Simple Bus Advantages

• Simple to implement
• Easy to understand
• Simple programming model
• Easy to add new hardware blocks
• Minimal hardware requirements (most of the

signals are shared)
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Simple Bus Limitations

• Single Master - limits parallelism
• Scalability - performance suffers as bus is

loaded...
• Single outstanding request - poor throughput

and multi-threading performance bottleneck
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Case Study: Single Master

• Imagine a new
partition:

– APS Bit Error
Monitor
communicates
directly with Switch

• Simple bus doesnʼt
work...
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Case Study: Single Master

No Path

• Imagine a new
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Case Study: Single Master

No Path

• This can make software the bottleneck in the
system....

• Imagine a new
partition:

– APS Bit Error
Monitor
communicates
directly with Switch

• Simple bus doesnʼt
work...
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Single Master Summary

• A bus that is limited to a single master:

– Makes inter-block communication inefficient
– Limits parallelism between hardware and software
– Increases reliance on interrupts
– Creates software performance bottlenecks
– Is not compatible with multiple processors
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Scalability
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Scalability

Blocks are functionally
easy to add, but....
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Scalability

Each new
block
increases
the delay
on the
address
and data

Blocks are functionally
easy to add, but....



37

Scalability Summary

• Simple busses are not scaleable because:

– The address and data “fan-out” to each target
– Adding a new block increases the load on the bus
– Increased fanout + greater load = reduce

performance
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Single Outstanding Request
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Single Outstanding Request
Processor is stalled waiting for response...
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Single Outstanding Request
Processor is stalled waiting for response...

best-case <= 50% efficiency
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Single Outstanding Request Summary

• Busses limited to a single outstanding request:

– Reduce software performance since the software
must “stall” on the first transaction

– Are not able to achieve full bus throughput since the
data bus is idle during the address phase
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Complex System Busses
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Complex Systems Busses

• The complex system bus is attempts to
address some of the issues with the simple
bus:

– Multi-master
– Pipelined transactions

• There are many different ways to go about
this...
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AMBA AHB

• AHB addresses many of the limitations of APB:

– multi-master
– multiple outstanding transactions (sort of...)
– back-to-back transactions

• Unfortunately, this adds significant complexity
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Bring on the complexity...
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Bring on the complexity...
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Bring on the complexity...
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Bring on the complexity...
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Bring on the complexity...
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Bus Arbitration

• When multiple masters share a bus there must
be some central resource to manage the bus:
an arbiter

• Once there is competition for the bus, it is
possible that it is not ready when you need it:
backpressure

• Backpressure adds complexity and hurt
performance
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Request / Grant Protocol
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Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter
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Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted
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Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted

Then the
transaction
proceeds
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Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted

Then the
transaction
proceeds

Performance Impact
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Pipelined Transactions

• To help improve bus efficiency the
transactions on the bus can be pipelined

• This is really a simple implementation of
multiple outstanding transactions

• The address for one transaction can be
presented before the data from the previous
transaction has been completed
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Pipelined Transactions
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Pipelined Transactions

Transaction A Starts
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Pipelined Transactions

Transaction A Starts

Transaction B Starts
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Pipelined Transactions

Transaction A Starts

Transaction B Starts

Transaction A Completes
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Pipelined Transactions

Transaction A Starts

Transaction B Starts

Transaction A Completes

Notice backpressure



62

Advantages

• Relatively easy to add new blocks
• Still has the familiar bus structure
• Low hardware cost
• Bus arbitration “solves” many ordering

problems
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Disadvantages

• Busses that require arbitration:
– must route signals to the arbitration logic and back
– must find a “fair” way to share the bus
– slaves are not always available => backpressure
– difficult to provide performance guarantees...

• Still potentially a bandwidth bottleneck

• Still doesnʼt scale well when blocks are added

• Multiple outstanding transactions not handled
well - no ordering information
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Networks-on-Chip (NoCs)
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Networks-on-Chip

• It is clear that even with significant design
effort the bus-style interconnect is not going to
sufficient for large SoCs:

– the physical implementation does not scale: bus
fanout, loading, arbitration depth all reduce
operating frequency

– the available bandwidth does not scale: the single
bus must be shared by all masters and slaves
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Networks-on-Chip

• It is clear that even with significant design
effort the bus-style interconnect is not going to
sufficient for large SoCs:

– the physical implementation does not scale: bus
fanout, loading, arbitration depth all reduce
operating frequency

– the available bandwidth does not scale: the single
bus must be shared by all masters and slaves

• Lets start again:  Leverage research from
data networking
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What do we want?

• The SoCs of the future will:

– have 100s of hardware blocks,
– have billions of transistors,
– have multiple processors,
– have large wire-to-gate delay ratios,
– handle large amounts of high-speed data,
– need to support “plug-and-play” IP blocks

• Our NoC needs to be ready for these SoCs...



68

The Ideal Network

• What would the ideal network look like?:

– Low area overhead
– Simple implementation
– High-speed operation
– Low-latency
– High-bandwidth
– Operate at a constant frequency even with

additional blocks
– Increase available bandwidth as blocks are added
– Provide performance guarantees
– Have a “universal” interface
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The Ideal Network

• What would the ideal network look like?:

– Low area overhead
– Simple implementation
– High-speed operation
– Low-latency
– High-bandwidth
– Operate at a constant frequency even with

additional blocks
– Increase available bandwidth as blocks are added
– Provide performance guarantees
– Have a “universal” interface

These are competing
requirements:  Design a
network that is the
“best” fit.
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What do we need to decide?

• Network Interface
• Network Protocol / Transaction Format
• Network Topology
• VLSI Implementation
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Network Interface

• We want our network to be “plug-and-play” so
industry standardization is key

• However the standard be universal enough to
address many different needs

• AMBA AXI is an example of an attempt at this
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AMBA AXI

• ARM added the AXI specification to Version
3.0 of the AMBA standard

• New approach: define the interface and leave
the interconnect up to the designers

• Good plan since a specific bus implementation
is no longer required

• It is possible to use AXI to build many different
NoCs
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AMBA AXI

• Interface divided into 5 channels:

– Write Address
– Write Data
– Write Response
– Read Address
– Read Data/Response

• Each channel is independent and use two-
way flow control
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AMBA AXI Read Channels
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AMBA AXI Read Channels

Independent
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AMBA AXI Read Channels

Give me some data

Independent
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AMBA AXI Read Channels

Give me some data

Here you go

Independent
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AMBA AXI Read Channels

Give me some data

Here you go

Independent

channels synchronized
with ID # or “tags”
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AMBA AXI Write Channels
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AMBA AXI Write Channels

Independent

Independent



81

AMBA AXI Write Channels

Iʼm sending data. Please store it.

Independent

Independent
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AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.
Independent

Independent
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AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.

I received that data correctly.

Independent

Independent
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AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.

I received that data correctly.

Independent

Independent

channels synchronized
with ID # or “tags”
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AMBA AXI Flow-Control

• Information moves
only when:

– Source is Valid, and
– Destination is Ready

• On each channel the
master or slave can
limit the flow

• Very flexible
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AMBA AXI Flow-Control

• Information moves
only when:

– Source is Valid, and
– Destination is Ready

• On each channel the
master or slave can
limit the flow

• Very flexible

Transfer
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AMBA AXI Flow-Control

• This definition of very independent, fully
flow-controlled channels is very useful

• However, there is a potential problem:
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• This definition of very independent, fully
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• However, there is a potential problem:
DEADLOCK
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AMBA AXI Flow-Control

• This definition of very independent, fully
flow-controlled channels is very useful

• However, there is a potential problem:
DEADLOCK

• On a write transaction the master must not
wait for AWREADY before asserting
WVALID
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AMBA AXI Read
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AMBA AXI Read

Read Address Channel

Read Data Channel
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AMBA AXI Write
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AMBA AXI Write

Write Address Channel

Write Response Channel

Write
Data
Channel
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A True Interface Specification

• Because of the channel independence and
the two-way flow-control the interface does
not dictate the network protocol, transaction
format, network topology, or VLSI
implementation

• For example:
– if you want to build a packet-based network, you

can “backpressure” the data channel while you build
the packet header from the address channel
information,

– you can use store-and-forward, or cut-through,
– etc.
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Network Protocol / Transaction Format

• There are many choice for network protocols
and transactions formats:

– circuit-switched : plan and provision a connection
before communication starts

– packet-switched : issues packets which compete
for network resources

– hybrids: schedule connectivity (dynamic or static)
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Network Protocol / Transaction Format

• There are many choice for network protocols
and transactions formats:

– circuit-switched : plan and provision a connection
before communication starts

– packet-switched : issues packets which compete
for network resources

– hybrids: schedule connectivity (dynamic or static)

• There is still lots of research here....
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Network Topology

• How should your network elements be
interconnected:

– Fully Connected (N2): high area cost, high performance
– Mesh: low area cost, potential poor performance
– Hypercube: medium area, traffic dependent

performance
– Fat-tree: medium area, traffic dependent performance
– Torus: medium area, traffic dependent performance
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Network Topology

• There is lots of research here....
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Network Topology - Caveat

• There has been a lot of research on topologies for
NoCs, however it is important to realize that the
performance of a topology is highly dependent on
the traffic patterns!

• Traffic patterns in an SoC that you are designing
yourself are NOT random, therefore much of the
topology research is not applicable to most SoCs!
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VLSI Implementation

• Once you have a topology there is still the mater of
implementing it on your SoC

• There are many considerations:

– Clocking: Synchronous, Asynchronous
– Buffer Insertion: Trade-off power, area, performance
– Register Insertion / Pipelining: Trade-off clock

frequency, area, and latency
– Packet Buffers: Trade-off area, latency and throughput

• Again, lots of research on-going...
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Research Paper

• Lets look at:

Guerrier, P.; Greiner, A., "A generic architecture for on-chip
packet-switched interconnections ," Design, Automation and
Test in Europe Conference and Exhibition 2000. Proceedings
, vol., no., pp.250-256, 2000


