
1

System Busses / Networks-on-Chip

EECE 579 - Advanced Topics in VLSI Design
Spring 2009
Brad Quinton

2

Outline
1. Simple systems busses

• Overview
• AMBA APB
• Advantages/Limitations

2. Complex systems busses
• Overview
• AMBA AHB
• Advantages/Limitations

3. Networks-on-Chip (NoC)
• Overview
• AMBA AXI
• Research Topics: Topology, Protocol, VLSI Implementation...
• Review: “A Generic Architecture for On-Chip Packet-

Switched Interconnections”

3

Bluetooth “Platform” SoC

ARM7TDMI

DAP I/F

RADIO
I/F

SPEECH
I/F

SHARED
MEMORY

CONTROLLER

LMC

BRIDGE

POWER &
CLOCK

CONTROL
DMA

SMC

 PLL
CLOCKS

SHARED
MEMORY

TIC

DECODER

ARBITER

AHB APB

ADC

text ACI USBUARTUARTTIMERSPICGPIOWATCH
DOG

Processor
Memory
Controller

Application Specific Logic

Low-speed I/O and Support Logic

System Bus /
Hardware I/F

4

Simple System Busses

5

Simple System Busses

• The primary goal of a simple system bus is to
allow software (running on a processor) to
communicate with other hardware in the SoC

• There are many different implementation ... but
they are all very similar

6

Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:

7

Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:

– Load Operation: Copies a word of data from a
specific address to a local register

– Store Operation: Copies a word of data from a
local register to a specific address

8

Embedded Processor I/O

• RISC-based embedded processors
communicate with external hardware using two
simple instructions:

– Load Operation: Copies a word of data from a
specific address to a local register

– Store Operation: Copies a word of data from a
local register to a specific address

• The simple system bus is just a direct
extension of this model

9

Embedded Processor I/O

10

Embedded Processor I/O

Software
sets up the
register with
the address
and data ...

11

Embedded Processor I/O

Software
sets up the
register with
the address
and data ...

Blocks
decode
addresses
to see if
they are the
targets...

12

Embedded Processor I/O

Software
sets up the
register with
the address
and data ...

Blocks
decode
addresses
to see if
they are the
targets...

Data
transferred
between
register and
hardware

13

AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores

14

AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores

Simple Bus

15

AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores

Simple Bus Complex Bus

16

AMBA Specification

• AMBA: Advanced Microcontroller Bus
Architecture

• Created by ARM to enable standardized
interfaces to their embedded processors

• Actually three standards: APB, AHB, and AXI

• Very commonly used for commercial IP cores

NoCSimple Bus Complex Bus

17

AMBA APB: Read Operation

18

AMBA APB: Read Operation

Target Address

19

AMBA APB: Read Operation

Target Address

Transaction
Type

20

AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode

21

AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode

Optional (for
asynchronous
implementations
...)

22

AMBA APB: Read Operation

Target Address

Transaction
Type

Address
Decode

Optional (for
asynchronous
implementations
...)

Read Data

23

AMBA APB: Write Operation

24

AMBA APB: Write Operation

Common Signals
Between Read and
Write

25

AMBA APB: Write Operation

Write Data

Common Signals
Between Read and
Write

26

Remember Our Case Study

- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:

27

- data width:16 bits

- address width: 16 bits

- read cycle time: 50 ns

- write cycle time: 50 ns

Simple generic processor interface:

System bus

Remember Our Case Study

28

Simple Bus Advantages

• Simple to implement
• Easy to understand
• Simple programming model
• Easy to add new hardware blocks
• Minimal hardware requirements (most of the

signals are shared)

29

Simple Bus Limitations

• Single Master - limits parallelism
• Scalability - performance suffers as bus is

loaded...
• Single outstanding request - poor throughput

and multi-threading performance bottleneck

30

Case Study: Single Master

• Imagine a new
partition:

– APS Bit Error
Monitor
communicates
directly with Switch

• Simple bus doesnʼt
work...

31

Case Study: Single Master

No Path

• Imagine a new
partition:

– APS Bit Error
Monitor
communicates
directly with Switch

• Simple bus doesnʼt
work...

32

Case Study: Single Master

No Path

• This can make software the bottleneck in the
system....

• Imagine a new
partition:

– APS Bit Error
Monitor
communicates
directly with Switch

• Simple bus doesnʼt
work...

33

Single Master Summary

• A bus that is limited to a single master:

– Makes inter-block communication inefficient
– Limits parallelism between hardware and software
– Increases reliance on interrupts
– Creates software performance bottlenecks
– Is not compatible with multiple processors

34

Scalability

35

Scalability

Blocks are functionally
easy to add, but....

36

Scalability

Each new
block
increases
the delay
on the
address
and data

Blocks are functionally
easy to add, but....

37

Scalability Summary

• Simple busses are not scaleable because:

– The address and data “fan-out” to each target
– Adding a new block increases the load on the bus
– Increased fanout + greater load = reduce

performance

38

Single Outstanding Request

39

Single Outstanding Request
Processor is stalled waiting for response...

40

Single Outstanding Request
Processor is stalled waiting for response...

best-case <= 50% efficiency

41

Single Outstanding Request Summary

• Busses limited to a single outstanding request:

– Reduce software performance since the software
must “stall” on the first transaction

– Are not able to achieve full bus throughput since the
data bus is idle during the address phase

42

Complex System Busses

43

Complex Systems Busses

• The complex system bus is attempts to
address some of the issues with the simple
bus:

– Multi-master
– Pipelined transactions

• There are many different ways to go about
this...

44

AMBA AHB

• AHB addresses many of the limitations of APB:

– multi-master
– multiple outstanding transactions (sort of...)
– back-to-back transactions

• Unfortunately, this adds significant complexity

45

Bring on the complexity...

46

Bring on the complexity...

CPU #1

CPU #2

IP Block
#1

IP Block
#1

IP Block
#2

IP Block
#3

IP Block
#4

47

Bring on the complexity...

Request

CPU #1

CPU #2

IP Block
#1

IP Block
#1

IP Block
#2

IP Block
#3

IP Block
#4

48

Bring on the complexity...

Request
Grant

CPU #1

CPU #2

IP Block
#1

IP Block
#1

IP Block
#2

IP Block
#3

IP Block
#4

49

Bring on the complexity...

Request
Grant

Transaction
CPU #1

CPU #2

IP Block
#1

IP Block
#1

IP Block
#2

IP Block
#3

IP Block
#4

50

Bus Arbitration

• When multiple masters share a bus there must
be some central resource to manage the bus:
an arbiter

• Once there is competition for the bus, it is
possible that it is not ready when you need it:
backpressure

• Backpressure adds complexity and hurt
performance

51

Request / Grant Protocol

52

Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

53

Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted

54

Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted

Then the
transaction
proceeds

55

Request / Grant Protocol

Before a transaction a
master makes a request
to the central arbiter

Eventually the request is
granted

Then the
transaction
proceeds

Performance Impact

56

Pipelined Transactions

• To help improve bus efficiency the
transactions on the bus can be pipelined

• This is really a simple implementation of
multiple outstanding transactions

• The address for one transaction can be
presented before the data from the previous
transaction has been completed

57

Pipelined Transactions

58

Pipelined Transactions

Transaction A Starts

59

Pipelined Transactions

Transaction A Starts

Transaction B Starts

60

Pipelined Transactions

Transaction A Starts

Transaction B Starts

Transaction A Completes

61

Pipelined Transactions

Transaction A Starts

Transaction B Starts

Transaction A Completes

Notice backpressure

62

Advantages

• Relatively easy to add new blocks
• Still has the familiar bus structure
• Low hardware cost
• Bus arbitration “solves” many ordering

problems

63

Disadvantages

• Busses that require arbitration:
– must route signals to the arbitration logic and back
– must find a “fair” way to share the bus
– slaves are not always available => backpressure
– difficult to provide performance guarantees...

• Still potentially a bandwidth bottleneck

• Still doesnʼt scale well when blocks are added

• Multiple outstanding transactions not handled
well - no ordering information

64

Networks-on-Chip (NoCs)

65

Networks-on-Chip

• It is clear that even with significant design
effort the bus-style interconnect is not going to
sufficient for large SoCs:

– the physical implementation does not scale: bus
fanout, loading, arbitration depth all reduce
operating frequency

– the available bandwidth does not scale: the single
bus must be shared by all masters and slaves

66

Networks-on-Chip

• It is clear that even with significant design
effort the bus-style interconnect is not going to
sufficient for large SoCs:

– the physical implementation does not scale: bus
fanout, loading, arbitration depth all reduce
operating frequency

– the available bandwidth does not scale: the single
bus must be shared by all masters and slaves

• Lets start again: Leverage research from
data networking

67

What do we want?

• The SoCs of the future will:

– have 100s of hardware blocks,
– have billions of transistors,
– have multiple processors,
– have large wire-to-gate delay ratios,
– handle large amounts of high-speed data,
– need to support “plug-and-play” IP blocks

• Our NoC needs to be ready for these SoCs...

68

The Ideal Network

• What would the ideal network look like?:

– Low area overhead
– Simple implementation
– High-speed operation
– Low-latency
– High-bandwidth
– Operate at a constant frequency even with

additional blocks
– Increase available bandwidth as blocks are added
– Provide performance guarantees
– Have a “universal” interface

69

The Ideal Network

• What would the ideal network look like?:

– Low area overhead
– Simple implementation
– High-speed operation
– Low-latency
– High-bandwidth
– Operate at a constant frequency even with

additional blocks
– Increase available bandwidth as blocks are added
– Provide performance guarantees
– Have a “universal” interface

These are competing
requirements: Design a
network that is the
“best” fit.

70

What do we need to decide?

• Network Interface
• Network Protocol / Transaction Format
• Network Topology
• VLSI Implementation

71

Network Interface

• We want our network to be “plug-and-play” so
industry standardization is key

• However the standard be universal enough to
address many different needs

• AMBA AXI is an example of an attempt at this

72

AMBA AXI

• ARM added the AXI specification to Version
3.0 of the AMBA standard

• New approach: define the interface and leave
the interconnect up to the designers

• Good plan since a specific bus implementation
is no longer required

• It is possible to use AXI to build many different
NoCs

73

AMBA AXI

• Interface divided into 5 channels:

– Write Address
– Write Data
– Write Response
– Read Address
– Read Data/Response

• Each channel is independent and use two-
way flow control

74

AMBA AXI Read Channels

75

AMBA AXI Read Channels

Independent

76

AMBA AXI Read Channels

Give me some data

Independent

77

AMBA AXI Read Channels

Give me some data

Here you go

Independent

78

AMBA AXI Read Channels

Give me some data

Here you go

Independent

channels synchronized
with ID # or “tags”

79

AMBA AXI Write Channels

80

AMBA AXI Write Channels

Independent

Independent

81

AMBA AXI Write Channels

Iʼm sending data. Please store it.

Independent

Independent

82

AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.
Independent

Independent

83

AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.

I received that data correctly.

Independent

Independent

84

AMBA AXI Write Channels

Iʼm sending data. Please store it.

Here is the data.

I received that data correctly.

Independent

Independent

channels synchronized
with ID # or “tags”

85

AMBA AXI Flow-Control

• Information moves
only when:

– Source is Valid, and
– Destination is Ready

• On each channel the
master or slave can
limit the flow

• Very flexible

86

AMBA AXI Flow-Control

• Information moves
only when:

– Source is Valid, and
– Destination is Ready

• On each channel the
master or slave can
limit the flow

• Very flexible

Transfer

87

AMBA AXI Flow-Control

• This definition of very independent, fully
flow-controlled channels is very useful

• However, there is a potential problem:

88

AMBA AXI Flow-Control

• This definition of very independent, fully
flow-controlled channels is very useful

• However, there is a potential problem:
DEADLOCK

89

AMBA AXI Flow-Control

• This definition of very independent, fully
flow-controlled channels is very useful

• However, there is a potential problem:
DEADLOCK

• On a write transaction the master must not
wait for AWREADY before asserting
WVALID

90

AMBA AXI Read

91

AMBA AXI Read

Read Address Channel

Read Data Channel

92

AMBA AXI Write

93

AMBA AXI Write

Write Address Channel

Write Response Channel

Write
Data
Channel

94

A True Interface Specification

• Because of the channel independence and
the two-way flow-control the interface does
not dictate the network protocol, transaction
format, network topology, or VLSI
implementation

• For example:
– if you want to build a packet-based network, you

can “backpressure” the data channel while you build
the packet header from the address channel
information,

– you can use store-and-forward, or cut-through,
– etc.

95

Network Protocol / Transaction Format

• There are many choice for network protocols
and transactions formats:

– circuit-switched : plan and provision a connection
before communication starts

– packet-switched : issues packets which compete
for network resources

– hybrids: schedule connectivity (dynamic or static)

96

Network Protocol / Transaction Format

• There are many choice for network protocols
and transactions formats:

– circuit-switched : plan and provision a connection
before communication starts

– packet-switched : issues packets which compete
for network resources

– hybrids: schedule connectivity (dynamic or static)

• There is still lots of research here....

97

Network Topology

• How should your network elements be
interconnected:

– Fully Connected (N2): high area cost, high performance
– Mesh: low area cost, potential poor performance
– Hypercube: medium area, traffic dependent

performance
– Fat-tree: medium area, traffic dependent performance
– Torus: medium area, traffic dependent performance

98

Network Topology

• There is lots of research here....

99

Network Topology - Caveat

• There has been a lot of research on topologies for
NoCs, however it is important to realize that the
performance of a topology is highly dependent on
the traffic patterns!

• Traffic patterns in an SoC that you are designing
yourself are NOT random, therefore much of the
topology research is not applicable to most SoCs!

100

VLSI Implementation

• Once you have a topology there is still the mater of
implementing it on your SoC

• There are many considerations:

– Clocking: Synchronous, Asynchronous
– Buffer Insertion: Trade-off power, area, performance
– Register Insertion / Pipelining: Trade-off clock

frequency, area, and latency
– Packet Buffers: Trade-off area, latency and throughput

• Again, lots of research on-going...

101

Bluetooth “Platform” SoC

ARM7TDMI

DAP I/F

RADIO
I/F

SPEECH
I/F

SHARED
MEMORY

CONTROLLER

LMC

BRIDGE

POWER &
CLOCK

CONTROL
DMA

SMC

 PLL
CLOCKS

SHARED
MEMORY

TIC

DECODER

ARBITER

AHB APB

ADC

text ACI USBUARTUARTTIMERSPICGPIOWATCH
DOG

Processor
Memory
Controller

Application Specific Logic

Low-speed I/O and Support Logic

System Bus /
Hardware I/F

102

Research Paper

• Lets look at:

Guerrier, P.; Greiner, A., "A generic architecture for on-chip
packet-switched interconnections ," Design, Automation and
Test in Europe Conference and Exhibition 2000. Proceedings
, vol., no., pp.250-256, 2000

