
Using Estimates from Behavioral Synthesis Tools in
Compiler-Directed Design Space Exploration ∗

Byoungro So, Pedro C. Diniz, and Mary W. Hall
University of Southern California / Information Sciences Institute

4676 Admiralty Way Suite 1001
Marina del Rey, California 90292

{bso,pedro,mhall}@isi.edu

ABSTRACT
This paper considers the role of performance and area esti-
mates from behavioral synthesis in design space exploration.
We have developed a compilation system that automati-
cally maps high-level algorithms written in C to application-
specific designs for Field Programmable Gate Arrays (FP-
GAs), through a collaboration between parallelizing com-
piler technology and high-level synthesis tools. Using several
code transformations, the compiler optimizes a design to in-
crease parallelism and utilization of external memory band-
width, and selects the best design among a set of candidates.
Performance and area estimates from behavioral synthesis
provide feedback to the compiler to guide this selection. Es-
timates can be derived far more quickly (up to several orders
of magnitude faster) than full synthesis and place-and-route,
thus allowing the compiler to consider many more designs
than would otherwise be practical. In this paper, we exam-
ine the accuracy of the estimates from behavioral synthesis
as compared to the fully synthesized designs for a collection
of 209 designs for five multimedia kernels. Though the es-
timates are not completely accurate, our results show that
the same design would be selected by the design space explo-
ration algorithm, whether we use estimates or actual results
from place-and-route, because it favors smaller designs and
only increases complexity when the benefit is significant.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Automatic Synthesis, Optimization;
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids

General Terms
Design, Experimentation

∗Funded by the National Science Foundation (NSF) under
grant CCR-0209228 and the Defense Advanced Research Project
Agency (DARPA) under contract #F30602-98-2-0113

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

Keywords
Synthesis Techniques for Reconfigurable Computing, Design
Space Exploration, Rapid Prototyping, Field-Programmable-
Gate-Array, High-level Synthesis

1. INTRODUCTION
The extreme flexibility and the growing capacity of Field

Programmable Gate Arrays (FPGAs) has made them the
medium of choice for fast hardware prototyping and a popu-
lar vehicle for the realization of custom computing machines.
These custom computing machines can achieve substantial
performance gains over traditional computing architectures
by exploiting vast amounts of instruction-level parallelism,
customizable and reconfigurable I/O bandwidth or simply
by implementing directly in hardware specialized and com-
plex functions that would otherwise takes thousands of pro-
cessor instructions.

Mapping computations to FPGA-based architectures, how-
ever, is a lengthy and error prone process. Programmers
must assume the role of hardware designers in bridging the
semantic gap between high-level programming languages such
as C and hardware-oriented programming languages such
as VHDL. For this purpose, we have developed DEFACTO,
an automated system for mapping high-level algorithm de-
scriptions written in C to FPGAs, based on a collabora-
tion between a parallelizing compiler and high-level synthe-
sis tools [4]. Using several code transformations, the system
optimizes a design to increase parallelism and utilization of
external memory bandwidth. Because of the complexity of
synthesis, it is difficult for compiler analysis to predict a
priori the performance and space characteristics of the re-
sulting design. Thus, like a human designer, the compiler
must engage in an iterative process called design space ex-
ploration, of synthesizing a design, examining the results,
and modifying the design to trade off between performance
and area. Completely synthesizing a design is prohibitively
slow (hours to days). Instead, our system exploits estima-
tion from behavioral synthesis to determine specific hard-
ware parameters with which it can quantitatively evaluate
the application of a transformation to derive an optimized
and feasible implementation of the computation. Behav-
ioral synthesis estimates can be derived far more quickly
(up to several orders of magnitude faster) than full synthesis
and place-and-route, thus allowing the compiler to consider
many more designs than would otherwise be practical.

In previous work, we described the automated design space

30.4

514

exploration algorithm implemented in DEFACTO, and pre-
sented estimates from behavioral synthesis, demonstrating
that for five multimedia kernels, automated design space ex-
ploration selected a near-optimal design among those con-
sidered, while only searching on average 0.3% of the search
space [8]. This prior work relied strictly on behavioral syn-
thesis estimates for guiding design selection, under the as-
sumption that these estimates were accurate performance
and area predictors of FPGA designs. In this paper, we eval-
uate the accuracy of behavioral synthesis estimation, when
used in conjunction with our design space exploration algo-
rithm. By examining a total of 209 automatically-generated
design alternatives for five multimedia kernels, we conclude
that, while not fully accurate, behavioral synthesis estimates
nevertheless lead the compiler algorithm to the same de-
sign as if the compiler had access to the actual implemen-
tation data from fully synthesizing all of the alternative
implementations. While there are a few systems that au-
tomatically synthesize hardware designs from C specifica-
tions (e.g., [12]), to our knowledge this is the first imple-
mented system that combines parallelizing compiler tech-
nology and behavioral synthesis estimation, in an automated
design space exploration algorithm.

The remainder of the paper is organized as follows. In the
next section we discuss the analyses and transformations our
algorithm uses. In section 3, we describe the optimization
goal of our design space exploration algorithm in mapping
loop nest computations to hardware. In section 4, we present
the interface between our compiler and common synthesis
tools. In section 5 , we present experimental results for the
application of this algorithm to five multimedia kernels. We
survey related work in section 6 and conclude in section 7.

2. SYSTEM OVERVIEW
To automate design space exploration, we must define a

set of transformations to be applied and metrics to evaluate
specific candidate designs. We now describe the set of trans-
formations, and we discuss the metrics in the next section.
Fig. 1 shows the steps of automatic application mapping in
the DEFACTO compiler. We leverage the Stanford Univer-
sity Intermediate Format (SUIF) system, and augment its
analyses with transformations for FPGA-based systems.

The design of the DEFACTO system is largely motivated
by the observation that the potential of synthesis tools can
be greatly improved by employing state-of-the-art paral-
lelizing compiler analyses. In particular, data dependence
analyses allow compilers to understand data access patterns
in multi-dimensional arrays, absent from current synthesis
tools. Using data dependence information, the DEFACTO
compiler, can successfully identify multiple accesses to the
same array locations across iterations of multi-dimensional
loop nests. This analysis can be used to identify opportuni-
ties for exploiting parallelism, eliminate unnecessary mem-
ory accesses, guide iteration reordering transformations, and
optimize mapping of data to external memories. In contrast,
synthesis tools for the most part only perform optimizations
on scalar variables, and within the body of a loop, and not
across loop iterations. On the other hand, synthesis tools
offer capabilities not present in conventional technology, in-
cluding scheduling, allocation, and binding of hardware re-
sources. To this end, the DEFACTO system combines these
two complementary technologies in an integrated system.

In this paper, we focus on mapping a loop nest com-

Algorithm (C/Fortran)

Compiler Optimizations (SUIF)
• Unroll and Jam
• Scalar Replacement
• Custom Data Layout

SUIF2VHDL Translation

Behavioral Synthesis Estimation

Unroll Factor
Selection

Logic Synthesis / Place&Route

Figure 1: Design Flow

putation to a single FPGA with multiple external memo-
ries. The compiler techniques employed in our system tar-
get the enormous potential for parallelism in FPGA-based
systems, since the number of specific resources is not fixed,
and we customize the implementation to increase utilization
of available memory bandwidth. We exploit instruction-
level and memory parallelism using loop unrolling (for in-
nermost loops) and unroll-and-jam for outer loops. Unroll-
and-jam involves unrolling one or more loops in a nest and
fusing copies of the inner loop together [2]. As a result, the
logical operations and their corresponding operands in the
loop body are replicated and exposed to behavioral synthe-
sis optimizations. Scalar replacement is used to reduce the
number of memory accesses by replacing certain array refer-
ences with temporary scalar variables that will be mapped
to on-chip registers by behavioral synthesis. As such, the
subsequent references to the same array element need not
access memory. For the remaining memory accesses after
scalar replacement, custom data layout [9] distributes the
accesses across multiple memories, according to their access
pattern, such that the accesses can be performed in paral-
lel across multiple memories. Thus, it effectively increases
memory bandwidth utilization. Next the compiler translates
the SUIF intermediate code into behavioral VHDL.

The design space exploration algorithm involves an itera-
tive evaluation to find the best unroll factors for loops in a
loop nest computation. For each fixed set of unroll factors,
unroll-and-jam, scalar replacement and custom data layout
are performed. This design space exploration strategy is
fast, since it bypasses logic synthesis and place-and-route as
much as possible. In addition, it does not explore all pos-
sible designs in a brute-force way. The optimization search
considers only a very small portion of the possible unroll
factors, because it is guided by the set of metrics described
in the following section.

3. OPTIMIZATION STRATEGY
In this section, we summarize the design space exploration

algorithm, most of which was presented in more depth in [8].
Using the previously described code transformations, the
optimization criteria for mapping a loop nest computation
to an FPGA with multiple external memories are as follows:

1. The design must not exceed the capacity constraints
of the system.

2. Minimize the execution time.

3. For a given performance, minimize space usage.

The motivation for the first two criteria is obvious, but the
third criterion is also needed for several reasons. First, if two

515

designs have equivalent performance, the smaller design is
more desirable, in that it frees up space for other uses of the
FPGA logic, such as to map other loop nests. In addition, a
smaller design usually has less routing complexity, and may
achieve a faster clock rate, which typically translates into
faster overall execution time and consequently less consumed
energy. Moreover, the third criterion suggests a strategy for
selecting among a set of candidate designs that meet the
first two criteria.

Our compiler uses several metrics, specific to a particular
design implementation, to guide the selection of a design. As
input to behavioral synthesis, the compiler specifies a target
clock rate Clock targ, and derives from synthesis estimates,
as discussed in Section 4, the following metrics. Area(d) of
design d, related to criterion 1 above, estimates overall de-
sign area and Cycles(d) estimates overall number of cycles,
related to criterion 1. Another metric, related to criteria 2
and 3, is Balance(d), defined by F (d)/C(d), and is the result
of combining Cycles(d) with compiler analysis of the data
accessed by each inner loop iteration of the design. Here,
F (d) refers to the data fetch rate, the data bits that external
memory can provide per cycle, thus capturing the system’s
external memory bandwidth assuming the number of memo-
ries used by the design. C (d) refers to the data consumption
rate, the total data bits that the computation can consume
per cycle. If Balance(d) is close to 1, both memories and
FPGAs are busy. If Balance(d) is less than 1, the design is
memory bound; if greater than one, it is compute bound.

In this paper, we introduce an additional metric Effi-
ciency(d1, d2), related to criterion 3, to compare two nearby
designs d1 and d2 with respect to their relative space uti-
lization. Efficiency(d1, d2) is defined by (Cycles(d1) - Cy-
cles(d2))/(Area(d2) - Area(d1)).

Our system applies these metrics in the design space ex-
ploration algorithm to determine the appropriate unroll fac-
tors for the loops in a loop nest, eliminating the need to
consider all possible unroll factors. An additional concept,
a memory bandwidth saturation point, refers to a certain
unroll factor where the data is being fetched at a rate cor-
responding to the maximum bandwidth of the target archi-
tecture. The data fetch rate monotonically increases as the
unroll factor increases until it reaches a saturation point, be-
yond which, the data fetch rate does not improve. Similarly,
the data consumption rate also monotonically increases as
the unroll factor increases, but less than linearly due to
data dependences and idle time waiting on memory accesses.
From these monotonicity properties of the fetch rate and
consumption rate, Balance also increases monotonically as
the unroll factor increases until it reaches the saturation
point as the data fetch rate increases faster than the data
consumption rate. Balance decreases monotonically beyond
the saturation point because the data fetch rate does not
increase, but the data consumption rate is still increasing.

For an inherently compute-bound design, performance may
continue to improve as unroll factors increase, but perhaps
not enough to justify the increased space usage. To cap-
ture this notion, we compute Efficiency(d1,d2) to compare
a design d1 that uses a particular unroll factor with a design
d2 that uses a larger unroll factor. If Efficiency is below a
predefined threshold, our algorithm selects d1 over d2.

We rely on these metrics and monotonicity properties to
limit the number of designs that must be searched by the
compiler, while still meeting our optimization criteria. The

overall approach increases unroll factors only when doing
so will have large performance gains, and we will see in Sec-
tion 5 that such a strategy is very compatible with using be-
havioral synthesis estimates. Even though there is some loss
of accuracy due to increased cycle time as design complexity
grows, the improvement in performance due to unrolling and
unroll-and-jam transformations outweighs the reductions in
achieved clock rate.

4. BEHAVIORAL ESTIMATION
The design space exploration approach described in this

paper relies on behavioral synthesis estimates to assess the
impact on the hardware designs of each of the program
transformations the compiler algorithm performs. We now
describe how the compiler interfaces with behavioral syn-
thesis and uses it to guide optimizations.

4.1 Functional Interface
This interface allows the compiler to request estimates

from behavioral synthesis tools for a given design and with
specific resource and/or timing constraints. The compiler
uses a set of internal functions to format the request using
the syntax specific to the synthesis tool. The implemen-
tation then invokes the synthesis tool in batch mode and
parses the results the tool generates in the form of report
files into data structures. The interface then allows the com-
piler to inspect the data structures to extract data about
the estimates via a set of functions. This interface is cur-
rently operational for the Mentor Graphics’ MonetTM tool
(MT R44) and for the Synopsys Behavioral CompilerTM (BC
v2000.05).

Although the interface supports a much richer set of re-
source constraints, in the current implementation of the de-
sign space exploration algorithm the compiler only sets the
target clock rate, Clock targ, for the various hardware pro-
cesses along with the maximum allowed clock overhead. Be-
havioral synthesis returns C-steps(d), the number of control
cycles per iteration each loop, and Areaest(d), the estimated
area of the design, in terms of number of slices.

The interface also exports a wealth of information about
the synthesized design not exploited by the the current de-
sign space exploration algorithm. For example, the esti-
mated clock rate Clockest reported by behavioral synthesis
can differ substantially from Clock targ requested by the com-
piler. An excessively large discrepancy between these two
metrics might suggest a design that is stressing the capacity
of the target FPGA or simply exercising a poor algorithmic
implementation of either the design, the tool or both. The
design exploration algorithm could potentially observe this
gap and react accordingly by adjusting the aggressiveness of
its internal search algorithm, as for example, reducing the
maximum unrolling amount explored.

4.2 Deriving Area and Speed Metrics
Using the interface outlined above, our compiler derives

quantitative metrics for the performance and FPGA area
for each design. To derive Cycles(d), the compiler multiplies
C-steps(d), by the number of iterations of the loops in the
nest.

The derivation of Area(d) is complicated by two main fac-
tors. First, the estimates do not include space required by
logic elements inserted due to place-and-route. Second, the
space metric provided for a given design is dependent on the

516

target FPGA devices and on the specific component library
used by the synthesis tool. In the case of our experimen-
tal set up, MonetTM does not provide Xilinx specific space
metrics, but rather abstract space metrics.

To address these two shortcomings, we apply a statistical
approach to estimate Area(d) from Areaest(d). Using the
real space capacity of a Xilinx VirtexTM XCV1000 FPGA as
C = 12, 288 slices, we have measured the exact P&R space
for 209 designs for all our experiments (described in sec-
tion 5). We then derive the ratio of the the space MonetTM

reports in its abstract space units to the measured space us-
age from place-and-route. Assuming a random normal dis-
tribution for the space-ratio (not the real area itself), we can
then compute the mean ratio range for a given confidence in-
terval, say 100(1−α)%. Using the bounds of the confidence
interval, the compiler can then compute what the real area
bounds should be based on the estimated space value (in the
abstract measure). In reality, we can take advantage of the
fact that the statistical distribution is symmetric whereas
the compiler is only interested in the lower bound for the
space-ratio range. Effectively, this allows the compiler to
use a value of α that yields a tighter, hence better bound,
than the value used for α would suggest. A value of α = 0.2
for a symmetric confidence interval of 80% effectively yields
the asymmetric confidence interval for a value of α = 0.1
that is a confidence interval of 90%.

For the 209 sample designs used in our experiments the
sample mean of the space-ratio of MonetTM estimate to the
space usage measured by place-and-route is 2.715 and the
sample variance is 0.232. For a 90% confidence interval this
ratio’s lower bound is 2.719 and thus the 12, 288 VirtexTM

slices translate into 33, 411 as estimated by MonetTM.

5. EXPERIMENTAL RESULTS
We now present experimental results for the application of

our design space exploration algorithm to a set of five mul-
timedia kernels. The goal of these experiments is twofold.
First, we compare for each design the performance estimates
from behavioral synthesis with actual performance obtained
from logic synthesis and place-and-route. Second, we deter-
mine if our design space exploration algorithm would have
selected the same design if it had accurate synthesis data
rather than estimates.

5.1 Target Applications
In this experiments, we use five multimedia kernels; namely,

• Finite Impulse Response (FIR) filter: integer multiply-
accumulate over 32 consecutive elements of a 64 ele-
ment array.

• Matrix multiply (MATMUL): integer dense matrix mul-
tiplication of a 32-by-16 matrix by a 16-by-4 matrix.

• String pattern matching (PATTERN): character match-
ing operator of a string of length 16 over an input
string of length 64.

• Jacobi iteration (JACOBI): 4-point stencil averaging
computation over the elements of an array.

• Sobel (SOBEL) edge detection: 3-by-3 window Lapla-
cian operator over an integer image.

Each application is written as a standard C program where
the computation is a single loop nest. There are no pragmas,
annotations or language extensions describing the hardware
implementation.

5.2 Methodology
We applied the design space exploration algorithm de-

scribed in section 3 to select a balanced and efficient de-
sign for each of the application kernels outlined above. In
these experiments we target a Xilinx VirtexTM XCV1000
with 4 external memories, as in the Annapolis WildStarTM[1]
board. In this platform, read and write operations to exter-
nal memory require 7 and 3 clock cycles respectively. As
part of the design space exploration the compiler derives a
set of designs in behavioral VHDL, which is then synthesized
by MonetTM.

To compare the MonetTM estimates for each design with
the real implementation metrics we performed logic synthe-
sis with Mentor’s LeonardoSpectrumTM and place-and-route
with Xilinx Foundations tool set. In these experiments we
also observe the impact of choosing different target clock
rates in the quality of the designs. This variation in target
clock rates will allow us to verify the sensitivity of our de-
sign exploration algorithm to the aggressiveness of the esti-
mation for different clock rates and its impact on the ability
of the algorithm in choosing the correct design. For these
experiments target clock rates 25MHz and 40MHz, which
are a reasonable targets for the VirtexTM parts in our tar-
get platform. The target clock was provided to behavioral
synthesis and logic synthesis as a parameter, and both tools
were directed to optimize for both performance and area.

In all, we produced behavioral synthesis results for a total
of 364 points in the design space. The full place-and-route
results were obtained for 209 of these points. Most of the
remaining points are too large to fit within the capacity of
the VirtexTM parts, and so logic synthesis does not attempt
to produce a design. For seven of the points associated with
PATTERN, there is an incompatibility between the output
of behavioral synthesis and the expected input for logic syn-
thesis, which prevents logic synthesis from producing a cor-
rect design. Thirteen points that are on the boundary of
the VirtexTM XCV1000 capacity require more memory to
synthesize than the memory available in the machine that
produced our synthesis results.

5.3 Results
The first set of results, depicted in Fig. 2 and Fig. 3, com-

pare the estimates produced by behavioral synthesis and
place-and-route, respectively, for FIR, which is a 2-deep loop
nest. Since the design space exploration algorithm evaluates
designs resulting from different unroll factors, these results
are presented as a function of unroll factors for FIR’s in-
ner and outer loops. Each curve in Fig. 2 shows results
for a fixed unroll factor for the outer loop, and each point
on a curve represents a different unroll factor for the inner
loop. As we increase the unroll factors, the amount of avail-
able parallelism increases dramatically, up to the saturation
point. For larger unroll factors, instruction-level parallelism
may improve but memory parallelism will not.

To minimize the number of points in the search space that
must be considered by the design space exploration algo-
rithm, our compiler relies on the observation that increased
parallelism, and consequently performance improvement, is
monotonic as the unroll factor for a loop is increased [8].
Monotonicity of performance improvement as a function of
unroll factors is clearly demonstrated in both the estimated
results in Fig. 2 and the actual performance in Fig. 3, ex-
cept the outer unroll factor one where there is so little re-

517

12 4 8 16 32
Inner Loop Unroll Factor

0

50 k

100 k

150 k

200 k

250 k
E

xe
cu

tio
n

T
im

e
(n

s)
Outer Loop Unroll Factor 1
Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32
Outer Loop Unroll Factor 64

selected design

FIR

Figure 2: Estimated performance.

12 4 8 16 32
Inner Loop Unroll Factor

0

100 k

200 k

300 k

400 k

500 k

600 k

E
xe

cu
tio

n
T

im
e

(n
s) Outer Loop Unroll Factor 1

Outer Loop Unroll Factor 2
Outer Loop Unroll Factor 4
Outer Loop Unroll Factor 8
Outer Loop Unroll Factor 16
Outer Loop Unroll Factor 32

selected design

FIR

Figure 3: Achieved performance.

0 2 k 4 k 6 k 8 k 10 k 12 k
Actual Space (slices)

0

100 k

200 k

300 k

400 k

500 k

600 k

700 k

800 k

A
ch

ie
ve

d
Pe

rf
or

m
an

ce
 (

ns
)

FIR
JACOBI
MM
PAT
SOBEL

selected design

Figure 4: 25MHz Time vs. Space.

0 2 k 4 k 6 k 8 k 10 k 12 k
Actual Space (slices)

0

100 k

200 k

300 k

400 k

500 k

600 k

A
ch

ie
ve

d
Pe

rf
or

m
an

ce
 (

ns
)

FIR
JACOBI
MM
PAT
SOBEL

selected design

Figure 5: 40MHz Time vs. Space.

0 2 k 4 k 6 k 8 k 10 k
Actual Space (slices)

0

0.5

1

1.5

2

2.5

3

E
st

im
at

ed
 /

A
ch

ie
ve

d
Pe

rf
or

m
an

ce

Figure 6: 25MHz Ratio vs. Space.

0 2 k 4 k 6 k 8 k 10 k 12 k
Actual Space (slices)

0

0.5

1

1.5

2

2.5

3

E
st

im
at

ed
 /

A
ch

ie
ve

d
Pe

rf
or

m
an

ce

Figure 7: 40MHz Ratio vs. Space.

duction in cycles due to unrolling that the clock degradation
outweighs the benefit. The Efficiency metric captures this
behavior and prevents selection of such designs.

We compare actual performance of all five programs as a
function of measured space in terms of slices in Fig. 4 and
Fig. 5, for a 25MHz and 40MHz target clock rate, respec-
tively. We see a trend that performance varies somewhat
for the smaller designs, but eventually we reach a point (re-
lated to the saturation point) where performance improves
at most modestly but space continues to grow. We see from
these figures that, for all programs, our algorithm selects
one of the best-performing designs, and the smallest design
among those of comparable performance. In all programs,
we can acquire better performance with the 40MHz target
clock rate.

To examine the accuracy of the estimates, we plot the
ratio of estimated to actual performance across the five pro-
grams in Fig. 6 and Fig. 7 for a 25MHz and 40MHz target
clock rate, respectively. The Y-axis is the ratio of estimated
to actual performance, so that values above 1 obtained bet-
ter than expected performance, and below 1 worse than
expected performance. The X-axis is measured space, so
that we can see how estimation accuracy varies as the de-
sign grows more complex. The number of c-steps remains
the same from behavioral synthesis through the final de-
sign, but there is some variation in clock rate achieved by
place-and-route as the design grows due to increased routing
complexity. For most of the small designs (corresponding to
low values of the unroll factor), the target 25MHz was overly
conservative and place-and-route was able to achieve a faster
clock rate. As a result, for these designs, the estimated per-
formance was also very conservative, yielding a ratio well
above 1. These very small designs tended not to be selected
by our algorithm because the number of cycles was signif-

icantly higher than those for slightly larger unroll factors,
but they show that, when the clock rate is overly pessimistic,
the algorithm would benefit from examining Clockest, as dis-
cussed in Section 4. For the large designs, the target clock
rate was too optimistic, but the degradation of the clock rate
was at most 20% below the target 25MHz. These results re-
veal a discrepancy between the estimated and the actual
performance most noticeable for the designs too small than
for the larger designs. In Fig. 7, the accuracy of estimates
improves over the accuracy for 25MHz for the smaller de-
signs, but can be much worse for the larger designs (beyond
about 50% utilization of the FPGA at 6k slices).

Overall, despite some fluctuations in the accuracy of the
estimates, for either target clock rates, our algorithm selects
the appropriate design because it favors smaller designs and
only increases complexity if a significant benefit will be ob-
tained.

6. RELATED WORK
We now describe current behavioral synthesis capabilities

and existing approaches for design space exploration.

6.1 Behavioral Synthesis Capabilities
Current behavioral synthesis tools such as MonetTM [7]

or the Synopsys Behavioral CompilerTM [10] allow the pro-
grammer to control the application of loop unrolling for
loops with known bounds. The programmer must first con-
vert an application to behavioral VHDL, explicitly map ar-
ray variables to memories and registers, and then select the
order in which the loops must execute. Next the program-
mer must manually determine the exact unrolling factor for
each of the loops. Given the effort and interaction between
the transformations, this approach to design space explo-
ration is extremely awkward and error-prone. To the best

518

of our knowledge no commercial tool exploits sophisticated
metrics such as balance to guide the application of loop
transformations automatically.

6.2 Loop Transformations
Other researchers have also recognized the value of ex-

ploiting loop transformations in the mapping of regular loop
computations to FPGA-based architectures. Derrien and
Rajopadhye [3] describe a tiling strategy for doubly nested
loops. They model performance analytically and select a
tiling factor that minimizes the iteration’s execution time.
In their work, there is no notion of a search algorithm and
no interaction with high-level synthesis.

6.3 Design Space Exploration
The PICO project at Hewlett-Packard [6] addresses the

exploration of embedded systems for a target architecture
that consists of an EPIC processor, a programmable hard-
ware accelerator and a memory hierarchy. PICO decom-
poses the system design space into smaller design spaces
for each of the major components. To address the inter-
actions between the components, PICO uses dilation pa-
rameters thereby obtained a parameterized set of Paretto
designs for each component. It then composes together, in
a hierarchical fashion, enforcing that only components with
the compatible dilation parameters can be merged. Rather
than a single design, PICO offers for each design a selected
component a set of parameterized componments.

Halambi et al. [5] developed a tool-kit generator system
to allow designers to evaluate the impact of architectural
characteristics in the mapping of an application to a SoC
solution. At the core of this approach is an on-line profiling
data to evaluate a given partitioning strategy. The system
generates a compiler and simulator for each architecture and
then uses the profiling with the application’s input to under-
stand what the performance is, and why, thereby providing
value feedback to designers on how to modify the character-
istics of the system.

6.4 Discussion
The work presented in this paper differs from these ef-

forts in several respects. First, our approach takes as input
a sequential application description (using a familiar pro-
gramming language and not a graphical data-flow oriented
specification as Cocentric[11]) and does not rely on anno-
tations to directly control the compiler to apply specific
transformations. Second, we use high-level data dependence
analysis techniques and estimation to guide the application
of the transformations as well as evaluate the various de-
sign points. We are able to handle multi-dimensional array
variables absent in existing tools. Finally, we use a com-
mercially available behavioral synthesis tool to complement
the parallelizing compiler techniques rather than creating an
architecture specific synthesis flow that partially replicates
the functionality of existing tools.

7. CONCLUSION
In this paper, we have demonstrated that behavioral syn-

thesis estimation can be effectively employed in a system
that automatically explores the hardware design space of al-
ternative compiler-generated FPGA designs. Although per-
formance and space estimates from behavioral synthesis are
not as accurate as fully synthesizing the design, we find that,

when combined with our compiler algorithm for guiding de-
sign space exploration, the estimates nevertheless lead us
to the best design, according to our selection criteria. The
combined system quickly explores a broad range of designs,
yielding solutions in a few hours that would take weeks to
derive otherwise.

As technology advances increase the density of FPGA de-
vices, tracking Moore’s law for conventional logic, devices
will be able to support more sophisticated functions. With
the trend towards on-chip integration of internal memories,
FPGAs with special-purpose functional units are becoming
attractive as a replacement for ASICs and for custom em-
bedded computing architectures. We foresee a growing need
to combine the strengths of high-level program analysis tech-
niques, to complement the capabilities of current and future
synthesis tools.

8. REFERENCES
[1] Annapolis Microsystems Inc. WildStarTM

Reconfigurable Computing Engines. User’s Manual,
r3.3 edition, 1999.

[2] S. Carr and K. Kennedy. Improving the ratio of
memory operations to floating-point operations in a
loop. ACM Trans. Program. Lang. Syst. (TOPLAS),
16(6):1768–1810, Nov. 1994.

[3] S. Derrien and S. Rajopadhye. Loop tiling for
reconfigurable accelerators. In Proc. of the Eleventh
Intl. Symp. on Field Programmable Logic, 2001.

[4] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler.
Bridging the Gap between Compilation and Synthesis
in the DEFACTO System. In Proc. of the 14th

Workshop on Languages and Compilers for Parallel
Computing (LCPC’01), Berlin, 2001. Springer Verlag.

[5] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt,
and A. Nicolau. EXPRESSION: A Language for
Architecture Exploration through Compiler/Simulator
Retargetability. In Proc. of the Conf, on Design
Automation and Test Europe (DATE99), March 1999.

[6] V. Kathail, S. Aditya, R. Schreiber, B. Rau,
D. Cronquist, and M. Sivaraman. PICO:
Automatically Designing Custom Computers. In IEEE
Computer, pages 39–47, Sept. 2002.

[7] Mentor Graphics Inc. MonetTM User’s Manual, 2002.

[8] B. So, M. Hall, and P. Diniz. A Compiler Approach to
Fast Hardware Design Space Exploration in
FPGA-based Systems. In Proc. of the 2002 Conf. on
Programming Languages Design and Implementation
(PLDI’02). ACM Press, June 2002.

[9] B. So, H. Ziegler, and M. Hall. A Compiler Support
for Custom Data Layout. In Proc. of the 15th

Workshop on Languages and Compilers for Parallel
Computing (LCPC’02), Berlin, 2002. Springer Verlag.

[10] Synopsys Inc. Behavioral CompilerTM. User’s Guide,
http://www.synopsys.com/products/beh syn/
beh syn br.html, 1999.

[11] Synopsys Inc. CoCentricTM Data Sheet,
http://www.synopsis.com/products/cocentric studio/
cocentric studio.html, 2002.

[12] M. Weinhardt. Compilation and pipeline synthesis for
reconfigurable architectures. In Proc. of the 1997
Reconfigurable Architecture Workshop (RAW’97).
Springer Verlag, 1997.

519

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

