

Verifying the Correctness of FPGA
Logic Synthesis Algorithms

Boris Ratchev, Mike Hutton, Gregg Baeckler and Babette van Antwerpen

Altera Corporation, 101 Innovation Drive, San Jose, CA 95134 (bratchev,mhutton@altera.com)

ABSTRACT

Though verification is significantly easier for FPGA-based digital
systems than for ASIC or full-custom hardware, there are
nonetheless many places for errors to occur.

In this paper we discuss the verification problem for FPGAs and
describe several methods for verifying end-to-end correctness of
synthesis algorithms, a particularly complex portion of the CAD
flow. Though the primary contribution of this paper is the
analysis of the overall problem, we also give an algorithm for the
automatic generation of test-vectors for simulation using
information from the synthesis tool, and describe a second testing
method that generates purposefully difficult designs in
combination with input vectors to test them. We will show the
validity of these methods by standard metrics such as simulation
node-coverage and through the ability for the method to locate
forced errors introduced by the synthesis tool.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance. D.2.5 [Software Engineering]: Testing and
Debugging –Statistical Methods, Validation.

General Terms
Algorithms, Verification

Keywords
Programmable logic, FPGA, synthesis, verification, test.

1. INTRODUCTION
One of the key advantages of FPGA-based systems is the ability
for a hardware designer to very quickly generate functional
hardware. Though this is often stated in terms of the high cost of
mask generation and fabrication NREs, these costs are
increasingly dominated by the test and verification problem.

Testing includes checking for several criteria: that the HDL code
meets specification, that the CAD tools correctly processed the
code, and that the eventual chip functions properly, including
timing.

Figure 1 shows a typical CAD flow, highlighting the verification
steps. In an FPGA-based design there is no chip-test required by
the designer, because verification of the programmable logic
fabric is performed by the FPGA vendor.

Vendors test each chip for fabrication defects with manually and
automatically generated deterministic test vectors, and then bin
individual chips based on their performance. A great deal of
effort can be put into the former problem, because the cost of test
generation is amortized across the thousands of different hardware
designs which eventually use the device. To some extent the
vendor also solves the timing simulation problem because the
binning of devices into speed-grades gives increased confidence
to the user that functional operation will match in-system timing.

The efforts put into test generation for a specific design in the
ASIC flow have a secondary benefit: they test the correctness of
complicated algorithms in synthesis, placement, routing and
timing analysis in the CAD tools. Chip testing by FPGA vendors
guarantees the correctness of the FPGA hardware, but does not
also test the design or synthesis of the design being implemented
on it.

As a software problem, synthesis algorithms are tested by many
standard methods, including hand-created regression tests, design
and code reviews, proofs of algorithmic correctness to name a
few. However, it is always advantageous to supplement these
with end-to-end testing on large designs to quickly locate errors,
and this is especially true during the early debugging phase.

In this paper we will concentrate on perhaps the most difficult
aspect of the CAD flow to test, namely the synthesis of hardware
models into gate-level netlists. Synthesis is harder to verify

Functional
Simulation

Synthesis

MATLAB, C or
conceptual Model

Gate-Level Netlist

VHDL/Verilog
Model

Place&Route,
Timing Analysis,

and Layout

Timing Annotated
Netlist

Formal
Verification

Timing
Simulation

In-System
Simulation

Chip

.

.

.

Structural
ATPG

(chiptests)

Figure 1. Verification steps.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’03, February 23-25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002…$5.00.

127

because relatively simple errors, such as inverting one signal,
maintain the connectivity and timing paths in the gate-level
netlist. Errors in connectivity can generally be identified
deterministically whereas functional equivalence of Boolean logic
is NP-hard.

The compounding problem from the CAD designer’s point of
view is more pragmatic. Software engineers working on tools for
logic synthesis are almost never the same people creating the
hardware design. Most complete example designs are large
complicated systems provided as-is through problem reporting or
to maintain customer-supplier relationships. CAD designers
rarely receive simulation test-vectors or enough information about
the design to create them manually, and designs are often
incomplete or insufficiently tested at the behavioral level. One
notable exception is FPGA vendors internally generated IP, which
is a great source of high-quality finished test designs with well-
designed vectors and often complicated functionality. Further
problems with testing on FPGAs include non-synthesizable
hardware such as embedded RAM and dedicated DSP (multiplier)
hardware, and complicated registers with multiple clock-domains.

The testing goals of hardware and software designers are also
different. A hardware designer is interested in testing one design
over the course of its development cycle of 6 months or more and
can put significant effort into test generation, formal verification,
and even develop their hardware models with test in mind (BIST
and design-for-test). Tool designers want to test their tools on
hundreds of different designs quickly and easily and have no
influence on the design of the original hardware.

Our goal is to supplement standard software testing with tools to
automatically detect incorrect logic introduced by synthesis
algorithms. The standard methods for ensuring software quality
involve regression tests, algorithm and code reviews, assertions
and cross-check code and multiple other forms of independent
testing. These techniques can be aided by end-to-end testing of
large designs. Specifically, we want to analyze the correctness of
the entire synthesis system through algorithmic changes, including
advanced sequential synthesis algorithms such as retiming and
other manipulation of registers.

Automatic testing serves a further purpose to speed the debugging
process, since many of the formal testing metrics are not yet in
place during the development of an algorithm. However in a
mature software system the previous version of the software is a
trustworthy comparison point. Furthermore in the case of
synthesis the correctness problem is well-defined.

Section 2 of this paper provides further background and outlines
some existing approaches. Section 3 introduces our method for
solving the problem, and how the resulting tool RVEC fits into
the verification flow. Section 4 shows some empirical results on
test-coverage and error detection. Section 5 outlines issues with
false positives; most are solved in our current implementation but
some remain open. Section 6 describes efforts to generate
particularly difficult sequential designs in concert with input
vectors as an additional testing method. We conclude in Section
7.

The primary contributions of this paper are in the discussion and
analysis of the overall problem as much as in the proposal of a
specific algorithm.

2. PREVIOUS WORK
There are a number of existing approaches for testing digital logic
that are related to this problem. These include the standard ATPG
testability theory, formal verification, and random vector
generation.

2.1 Structural Testing
Structural testing techniques model errors in a combinational
design in terms of fault models (stuck-at-0 or stuck-at-1) (e.g. [4],
[1]). These techniques use the logical functionality of the gate-
level netlist to create tests for simulation that sensitize each wire
in the netlist. Values required to test a fault on one wire are
propagated backwards through gates to the primary inputs using
the functionality of the gates in the design. Testing of sequential
circuits require unwrapping the netlist to the combinational
model. Since the techniques are largely for generating vectors for
chip-test, one of the important optimization criteria is the
shortness of the test-vectors, since time on test machines is
expensive.

Brand [2] applied the use of testing theory directly to our problem
at hand, namely verifying the equivalence of successive stages of
synthesis. He gave an O(n2) time and space algorithm for
combinational circuits, and successfully verified the set of ISCAS
circuits through several basic synthesis algorithms.

In practice these techniques have several drawbacks. The netlists
we are considering can have over 100,000 logic elements, and the
computational complexity of deterministic ATPG is too high –
Rudnick and Patel [12] show empirical results on relatively small
MCNC and ISCAS circuits taking upwards of 4 hours on simple
circuits, and 80 hours when re-timing operations are involved.
Though such time could be feasible in the context of generating a
chip-test, it is not feasible for the problem of running hundreds of
designs to verify changes to synthesis tools.

2.2 Formal Verification
Formal Verification techniques attempt to heuristically prove the
sequential equivalence of two netlists using, for example,
structural partitioning followed by BDD-based analysis. We
attempted to use several commercially available formal
verification tools and found that they can generate some
impressive results for a designer interested in verifying a single
circuit. However, to avoid the vast number of false errors, the
user is required to either restrict the operation of synthesis to
“verification safe” operations (similar to forbidding compiler
optimizations and instruction re-ordering to ensure ease of
debugging in a software debugger), or annotate the netlist with
many properties of the synthesis operations. These may be
reasonable for the hardware designer, but it is not feasible for the
algorithmic testing problem. Commercial tools also have issues
with re-timing, multiple clock domains and non-synthesizable
hardware, requiring design-specific work in order to use the tools.

2.3 Random Vector Generation
The use of simulation with random vectors is more attractive than
the previous two from a practical point of view. The concept is
simple: randomly perturb the input vectors for the design over a
period of time, observe the resulting output vectors, and then
simulate the same test vectors on the modified netlist and compare
the resulting output vectors.

128

The overwhelming advantage of using random vectors is
simplicity, most importantly the ability to deal with complex
hardware such as RAM and DSP blocks in simulation, but not as
part of test generation. The disadvantage is the lack of complete
coverage of the netlist.

There have been multiple attempts to improve the use of
randomness in testing. Rudnick and Patel [12] give a hybrid
algorithm to speed up structural test generation with techniques
from genetic algorithms. The textbook by Mazumder and
Rudnick [10] discusses multiple such approaches using genetic
algorithms.

The primary issues we found with random vector generation are
that naïve methods of vector generation “don’t work” – to get any
reasonable amount of simulation coverage, we found that more
intelligent generation to deal with glitching, secondary signals,
power-up state and latches was required.

3. RVEC VECTOR GENERATION
3.1 Verification Flow
RVEC is a C++ standalone executable that produces random
vectors for simulation stimulus for designs compiled by Altera’s
Quartus II software. Though Quartus is a relatively large tool
implementing the entire FPGA CAD flow, we are primarily
concerned with the synthesis and simulation subsystems, which
we will denote QSYN and QSIM. (Note that these terms are used
to aid this presentation, and don’t correspond to terms used in
Quartus documentation or help). QSYN takes as input VHDL,
Verilog, EDIF, Altera AHDL or schematic designs, and outputs a
gate-level netlist. QSIM takes a gate or logic-element level netlist
and a vector file, and provides either the output-vectors from
simulation, or (if they are included in the input file), pass or fail.

The flow for generating golden vectors with RVEC is shown in
Figure 2. A design is compiled with QSYN to produce the file
qsyn.info, which is used by RVEC to determine information about
the design. RVEC takes the qsyn.info file and a parameterization
file params.txt to output the vector file, which is then used by
QSIM to simulate the design and generate the “golden” output
vectors. The golden vector outputs are used to verify
modifications to QSYN, as shown in Figure 3.

The QSIM module currently implemented in Quartus does not yet
have the ability to perform behavioral simulation with a testbench.
However, it is feasible to implement this flow as well, using 3rd
party simulation tools such as ModelSim. In this case a
behavioral model of embedded RAM and any other dedicated
hardware blocks would be required—these models are already
provided by Altera Corp. This simulation approach provides the
additional benefits of comparing the user’s HDL directly to the
end-result of synthesis.

3.2 Program Description
This section discusses the input and output files for vector
generation. The two input files are qsyn.info and params.txt. The
output file is the set of vectors generated by RVEC

Input signals in a design cannot be treated the same. A global
reset signal, for example, could force all flip-flops in the design to
0. When this signal is active the netlist is largely untested.
Similarly the values seen at pins will usually only change with the

controlling clock, so a random vector pattern which keeps the
clock high or low for long periods of time is similarly inefficient.
The generator must be aware of bidir (tristate) pins and their
enables in order to separate out input from output functionality.
Gated clocks (modified by user logic, e.g. to halve the frequency
with a counter), though poor design practice in FPGAs, are
nonetheless common.

Thus, we require some information from QSYN to effectively
generate patterns for these special-case signals. The most
important information is the identification of input, output and
bidir pins, all clocks in the design, asynchronous secondary
signals (clear, asynchronous load, clock-enable, output enable)
and an indication whether they should be “mostly high” or
“mostly low”. This latter information is a function of the Altera-
specific hardware-–an active low reset would be an example of a
mostly high signal, since usually the reset is not being exercised.
An output enable would be neither mostly high nor mostly low,
but would also not be expected to toggle as often as a typical
input.

QSYN
(synthesis)

Gate-Level
Netlist

VHDL/Verilog
Model

.

.

.

qsyn.info

RVEC

params.txt

design.vec QSIM
(simulation)

golden.vec

Figure 2. RVEC flow for generating golden vectors

QSYN*
(synthesis)

Gate-Level
Netlist

VHDL/Verilog
Model

.

golden.vec QSIM
(simulation)

pass/fail report

* New or changed
algorithm or

new software
release

.

Figure 3. RVEC flow for verifying new synthesis algorithm.

129

An example qsyn.info file identifying a design with 4 data pins is
shown in Figure 4. Two clocks and three asynchronous signals
are identified, along with the active polarity of the secondary
signals.

Most designs have several asynchronous signals in each of the
high and low polarities, and a number of different clock domains.

Additional input to RVEC is contained in params.txt; an example
is shown in Figure 5. This file contains general parameterization
information such as the types of clocks to generate, the setup and
hold times necessary to make the simulation work properly and so
on. Much of the contents of params.txt could be considered
default values to the algorithm; it is just more convenient to
expose it to experimentation. Params.txt allows us to change
information on parameters such as clock duty cycle, but we
haven’t put much effort into evaluating this parameter to-date. In
the example above we are asking for 100 cycles, with a frequency
of 1Hz, duty cycle of 0.1 and register tsu=0.5 ms.

The output of this small example is shown in Figure 6. The
waveform shows four types of signals.

• The clocks are at the top and change as specified in
params.txt.

• The asynchronous-high signal, in this naming convention, is
high most of the time and gets reset once in a while. The
resetting happens deterministically every total_cycles/10
cycles.

• The asynchronous-low signals have the mirrored behavior to
that of asynchronous-high ones.

• The asynchronous-both signals are next (two of them). They

are allowed to randomly change every total_cycles/5 times.

• The regular inputs are next—four of them. They are allowed
to randomly change every clock cycle. One of the inputs is a
bidir pin. This is why the waveform editor produces a
bidir~result pin for the output of the pin. Also RVEC uses L
and H instead of 0 and 1 for bidirs to prevent contention,
though these details would be tool-specific.

• Finally we have the outputs with X values since there is no
simulation results in this file.

Example: For a 1000 cycle vector, inputs get a chance to change
every cycle, asynchronous-both have a chance to change every
100 cycles asynchronous-high or low pins get reset (not random)
every 200 cycles.

One fact that is difficult to see from the picture is that no two
signals change at the same time. This is done to prevent race
conditions other unpredictable simulation behavior (e.g. the reset
and clock signals reaching a register at the same time)—see
Section 5.

3.3 Algorithm
The algorithm for generating the random vectors involves
manipulating a hashtable with each vector’s time as the key.
Below we explain the terminology and the procedure for
obtaining the vectors.

A vector is defined to be a set of values for each input signal in
the design at a discrete point in time.

Figure 6. Resulting output of RVEC as viewed in QSIM.

INPUTS clk1 clk2 asy_hi1 asy_both1 asy_both2 asy_lo1 in1 in2
in3 bidir ;

CLOCKS clk1 clk2;

ASYNCH_MOSTLY_HI asy_hi1 ;

ASYNCH_MOSTLY_LO asy_lo1 ;

ANY_ASYNCH asy_both1 asy_both2 ;

OUTPUTS out1 out2 out3 bidir ;

Figure 4. Sample QSYN.INFO file

FREQ 1

The setup time (ms) we want to use. All inputs change one or
more tsu steps before the clock’s rising edge.

TSU 0.5

The clock’s duty cycle.

DUTY_CYC 0.1

length of the random vector--it is MAX_CYCLES * Period ns

MAX_CYCLES 100

Figure 5. Sample PARAMS.TXT

130

An example of three consecutive vectors is:

102.5> 0 0 1

102.9> 1 0 1

105.0> 1 1 1

This example specifies that, at time 102.5 in the simulation, the
three input pins change to 0, 0, and 1, respectively, independent
of their previous values. They then change to 101 and 111 at
times 102.9 and 105.0. The hashtable containing the above
vectors would have three entries with the vector times as the keys
and an array of the signal values (0 and 1) as the table entry.

The algorithm works as follows: For each clock cycle:

1. Insert clock edges (vectors): Since the clocks are what
determine the allowed times for all other transitions, we
insert values for each clock edge (rising and falling) for
each clock (there could be any number of clocks). This
must be done in a way that shifts each clock by a tsu
with respect to other clocks so that there are no two
edges changing at the same time.

2. Insert vectors (edges) for asynchronous signals. Again
care must be taken that no two edges occur at the same
time. Also the reset signals are at their non-active value
for at least one high and one low clock transition (to
ensure proper resetting of the circuit).

3. Insert vectors for regular inputs. Similarly to the
asynchronous signals we calculate the number of edges
based on the total number of such signals. For example
if we have 10 inputs there will be at most 10 edges
before each clock rising edge. At most because the edge
occurs with probability of 50%.

The above three procedures are repeated for each cycle to obtain
the whole simulation stimulus file. In the interest of saving space
we skip some details having to do with how one ensures that only
one signal changes at a time and that there is continuity in the
vectors—i.e. no undefined values exist, etc. Those details are
implementation specific and not difficult to work out.

The above algorithm produces vectors that have no two signals
switching at the same time. This is very important for preventing
false failures during verification. See Section 5 for more detail on
why signals cannot change simultaneously.

Some further implementation details:

• All clocks have the same frequency since we have no way of
knowing how fast the user meant to run them. In future
versions of the tool we would like to represent related clocks,
at least those generated by simple multiply and divide
relationships, or generated by phase-locked loops.

• Keep the clock duty cycle low (e.g. 10-30%) This makes it
easier for RVEC to keep track of what signal changes go
with what tick. Since the frequency used is very slow, the
clock will be high for long enough.

• The random generator has a fixed seed for now so that every
time you run RVEC on the same design you will get the
same vector (provided the parameters in params.txt are not
changed). This allows consistent results during
experimentation. Further, it facilitates tracing of simulation
mismatches.

4. RESULTS AND METRICS OF SUCCESS
4.1 Simulation Coverage
The effectiveness of simulation vectors is often evaluated by the
percentage of nodes that transition at least once during the
simulation. Note that even 100% coverage does not mean 100%
chance of finding an error.

For the statistics reported here we are using more than 150
designs with a median size of 5000 LEs (4-LUT+FF). They are
drawn from a number of sources, including complete industrial
(customer) designs, internally generated IP and specific testing
designs.

The first several attempts at vector generation with RVEC
generated very poor simulation coverage, in the order of 10-20%
of nodes. Modifications to correctly deal with setup and hold on
clocks brought this up further, and the correct handling of
asynchronous signals and latches gained an additional 10%. The
final results of RVEC as described in Section 3 have 67% node
coverage on smaller designs and 40% on larger designs. The
overall simulation coverage is 52%.

The simulation coverage is better viewed as a histogram. Figure
7, ignoring the split bars for now, shows a histogram of the
number of designs in each coverage bin.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

Simulation Coverage

N
um

be
r

of
 d

es
ig

ns missed (65%)

identified (35%)

Figure 7. Histogram of simulation coverage, and
breakdown into identified vs. missed errors using RVEC.

0

20

40

60

80

100

120

LE count for each design

C
ov

er
ag

e
%

Figure 8. Coverage partly correlated to design-size.

131

These coverage metrics are determined using a relatively short
simulation time, only 1000 clock cycles. In general, generating
longer series of vectors will increase coverage. However, as will
be seen shortly, it really isn’t necessary to do so, because we are
able to locate errors in the design with relatively high confidence
even with very short simulations.

Some of the design-specific reasons for low coverage, such as
latches and gated clocks are discussed in Section 5. Though we
get a better coverage for smaller than larger designs in a
bipartition of the design-set, and there is a mild correlation
between design-size and simulation coverage with vectors of
length 1000, it is really the more complicated nature of the larger
designs that is determining coverage. This is illustrated in Figure
8, which shows the simulation coverage for the larger half of
designs. Designs are sorted from smallest to largest LE count and
plotted against their coverage. Though there is a definite
downward trend in coverage it does not apply to all designs.
Well-written synchronous designs with no combinational cycles
or gated clocks are able to achieve near 100% simulation
coverage, even with only 1000 clock cycles of testing time.

4.2 Identification of Forced Errors
The true effectiveness of the system is in the ability to find errors
introduced by the synthesis algorithms. To test this we created
debug-options for the synthesis tool to intentionally invert one
random logic signal in the netlist.

Since current designs typically contain from 5000 to 100,000
logic elements, this type of forced error is a relatively small
change to the netlist. It does not change the connectivity, which
would make the error quite easy to find, and this is also a
relatively common sort of problem for a synthesis tool to
introduce at the gate-level.

The split bars of Figure 7 indicate the proportion of designs, by
simulation coverage, for which simulation identifies the erroneous
connection. Overall, we can identify the forced error 35% of the
time on simulation coverage of 52%. The metric is higher for
smaller designs, where the error can be seen 50.6% of the time on
simulation coverage of 67%. On larger designs only 22% of errors
are detected on simulation coverage of 40%. This follows
intuition, because we are only observing external pins, and larger
designs, which could have greater latency, can take longer to
propagate the error. In general, then, it makes sense to simulate
longer for larger designs.

One might think that 35% probability of finding an error is low.
In the case of chip-tests it is not at all useful. But for the purpose
of identifying problems in synthesis as a supplemental tool it is
more than sufficient – suppose that a single such error might
occur in only 10% of our 150 designs and we have a 35% chance
of noticing it with this quick simulation. Then the probability that
such a problem in the synthesis tool will not be caught is
(0.65)^15 or <<1%. This is excellent for debugging purposes, as
well as being a strong addition to other testing schemes. Here our
assumption is that a wire inversion is a good model of possible
synthesis errors. Even if the reader disagrees with that model our
point remains valid—the power of testing more than one design at
a time should be evident.

We further tested the method when more than one forced errors
are introduced per design. These results are shown in Figure 9.

The probability of identifying incorrect results in a single design
increases asymptotically with the number of errors introduced,
from 35% in the base case to almost 90% when 32 forced errors
are introduced in the netlist.

5. FALSE POSITIVES AND OTHER
PITFALLS
The largest problem with verification is the analysis of false
positives – test-cases that are reported as simulation mismatches
(flagged errors) even though the synthesis is correct. Debugging
of false positives provides useful information into the testing
problem in itself, but only if the number of false positives is
manageable.

As a metric of false positives, we can compare the results of two
trusted synthesis outputs using the methodology of Section 4, and
then manually explore the simulation mismatches. This shows
that we obtain a manually verified false positive in about 2% of
our design-set for the default simulation time, and up to 5% when
the designs are simulated for 10X the normal time.

This process was done in concert with the development of RVEC.
In reality we began with very high proportions of false positives
and this 2% rate represents the current status of the tool.

It is interesting to look at the source of false positives, how they
influenced modifications to the vector generation process, and
those issues that we can’t actually solve at this time.

We define three types of simulation. Functional simulation
occurs on the netlist before most synthesis processing. Zero-delay
simulation occurs on the netlist after conversion to basic FPGA
logic elements, but where all routing and LUT delays are set to 0.
Timing simulation occurs on the annotated netlist after placement
when all routing and cell delays are known. Our experimentation
is using zero-delay simulation.

The two primary classifications of false positives are those arising
from simultaneous switching and those arising from
combinational cycles in the netlist (i.e. latches).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 4 8 16 32

Number of errors introduced

missed

caught

Figure 9. Probability of finding errors as more of them are
introduced into the netlist.

132

When two signals such as a DFF clock and asynchronous
secondary signal (e.g. clear) arrive simultaneously, the order in
which ties are processed in slightly different netlists will cause
different results in simulation for the following clock-cycle until
the clear is applied. Simultaneous switching is solved in RVEC
by the interaction with the synthesis tool. Because we know the
characteristics of such signals before vector generation, we can
ensure prioritization of the signals by slightly delaying one in a
consistent manner. Note that the hardware implementation of the
FF in the FPGA typically has prioritization on these signals, so we
are basically emulating this for functional simulation. Regular
inputs should not change at the same time as well. A good rule of
thumb we came up with is that every vector (entry in the hash
table) should contain one and only one signal value that is
different from the previous vector (no simultaneous signal
switching at any one time).

Simulation mismatches dropped by 5X when the proper handling
of asynchronous and clock signals and non-simultaneous
switching were added to RVEC.

A second issue is latches. Randomly generated vectors perform
poorly on designs that make extensive use (intentional or
unintentional) of asynchronous logic. A well-designed latch will
perform properly in both functional and timing simulation given
valid input, but can oscillate given input that is not expected by
the designer. In FPGA based designs the problem is not really
intentional latches, but poor coding style that generates false-path
latches. These become large combinational cycles in the timing
graph, and cause different behavior on different netlist orderings,
unless the paths are known to be false-paths for timing.

About 10% of designs will have some asynchronous logic. The
designs with large combinational cycles are typically ones with
false paths. Figure 10 shows the top 30 or so designs in the
design-set along with their number of long combinational cycles
as a percentage of design-size in LEs. We identify the 5 designs
which generate false positives in simulation, all of which fall at
the top-end of the scale (remaining designs with no long cycles
are not shown).

We have no effective way of dealing with designs containing long
combinational cycles using this method, so these are tested with
standard regression tests and other means. We hope to remove

this limitation in the future. For practicality reasons we simply
exclude the known “bad apples” from the designs used in practice
for testing with this method.

Other designs that are problematic for this type of testing are
complicated I/O protocols, such as PCI. It would be difficult for
any automatic tool to generate appropriate vectors to accomplish
the necessary startup handshaking to properly initialize the design,
and without initialization the circuit cannot be exercised.

6. VERGEN: DESIGNS WITH VECTORS
RVEC is a useful addition to the overall testing methodology.
However, for debug and test purposes, we also want to provide
particularly difficult designs for the synthesis tool to deal with
while at the same time using realistic constructs. Real designs
don’t necessarily hit all the corner cases.

VERGEN is a ~2000 line C program that spits out pseudo-
random Verilog HDL. It also generates compile scripts and a set
of vector inputs for MAX+PLUS II (Altera’s previous-generation
software) or Quartus. It can be tuned at compile time for designs
of any size, the current favorite settings make designs from ~7K to
~12K lines of Verilog which map into ~1.5K to ~2.5K logic cells.
Thus far, we have only used VERGEN to exercise synthesis
algorithms, which generally don’t need 50,000 LUTs, but we
hope to apply it to place&route in the future by generating large
designs. Table 1 shows some sample small designs output by
VERGEN along with their LE counts. Though these designs are
1500 to 2500 LEs, in theory the designs can be any size.

The algorithm creates a bank of input pins then installs chunks of
logic reusing a percentage of the signals as it goes. Leftover
signals are routed to output pins. The selection of logic chunks is
random with some heuristic tuning and parameterization to
prevent creating too few or too many output signals. Other

Table 1. Designs from VERGEN, showing
Verilog lines of code and 4-LUT logic elements

in Stratix [9].

 Design Verilog LE
vergen01 9525 2256
vergen02 8585 2022
vergen03 8485 1931
vergen04 9118 2183
vergen05 8960 1972
vergen06 10233 2305
vergen07 9113 2024
vergen08 9393 2240
vergen09 8298 1933
vergen10 8314 1788
vergen11 9239 2256
vergen12 9063 2017
vergen13 9292 2027
vergen14 8996 2021
vergen15 11068 2023
vergen16 9177 2667
vergen17 7371 2093
vergen18 9113 1554
vergen19 9081 2085
vergen20 8792 2026
vergen21 9232 1937
vergen22 9104 1931
vergen23 8317 2001
vergen24 8653 1959
vergen25 9114 1972

Designs With Large Combinational Cycles

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Designs failing simulation comparison

Figure 10. Nodes that are part of a long combinational
cycle are shown as percentage of total nodes (y-axis). The

dark bars are designs with false positives.

133

controllable attributes are critical path length and numbers of
registers (before minimization) and the ability of different
constructs being used.

The high-level blocks used include finite state machines, 4:1
MUX, random 3 in 3 out tables, 8 bit linear feedback shift-
registers, tristate MUXes, tangles of XOR gates, inverters, priority
encoders, 3 input < comparators, and registers with an assortment
of secondary signals on 2 clock and reset domains.

Because VERGEN is generating the Verilog code, it also
generates appropriate test vectors for use in simulating the code.
So RVEC is not needed on VERGEN designs.

Figure 11 shows an example output of VERGEN. The actual
output is about 8000 lines of Verilog, which we have hand-edited
to fit in one column. Not all language constructs are shown, but
this illustrates a number of the ones used: Notice the comparator
used to generate alpha in the first always block, marvin is a simple
DFF, ebay is a registered 4:1 mux, and
{starbucks,atchoo,thor,hinge,hulk} form a 5-bit counter.
VERGEN is particularly useful at exercising state-machine
processing, arithmetic and high-level synthesis operations, though
we are easily able to add other interesting objects (multipliers,
switching networks, etc.) as the needs arise.

The amusing node names serve the very serious purpose of
speeding up debugging. People can remember that they saw a
particular signal called atchoo but not dff23421.

VERGEN generates clean synchronous design models (e.g. no
incomplete case statements) so we get very high simulation
coverage – 85% to 95% over 1000 clock cycles, and no false
positives. Error detection on these designs is 81% for 1000
clock-cycles, vs. the 35% seen on the large industry designs. As a
further advantage, we can target structures that trigger specific
algorithms and thus exercise them well and introduce a good
chance of finding errors.

Note that various different approaches to generating synthetic test
designs exist in the literature (e.g. [7], [11], [6]). Of these Iwama
and Hino [7] is the only one intended for synthesis evaluation but
this is aimed at quality of results testing rather than correctness,
and generates gate-level netlists rather than HDL, by modifying a
seed circuit, so does not exercise Verilog elaboration and high-
level synthesis.

7. CONCLUSIONS
In this paper we have discussed the overall problem of synthesis
verification using simulation. This included a study of the use of
random-vector generation, identifying the issues and pitfalls that
arise in simulation with random vectors, and with FPGA design
simulation in general.

In concert with this analysis we outlined a tool, called RVEC, to
intelligently generate vectors for simulation testing on large
FPGA designs. This tool constructs vectors in combination with
information from the synthesis tool to provide proper behavior for
clocks, asynchronous signals, bi-directional pins and other special
logic, and solve the problem of false positives arising from
simultaneous logic transitions and partially solve the problem on
latches which occur on these designs. The purpose of RVEC is to

// Made by one of Gregg’s many toys - 04-10-02
module vsm_009 (
 bravo, charlie, delta, babette, yeanyow
 <<snip>>
 clock0, clock1, reset0, reset1);
 <<snip>>
 input jupiter;
 <<snip>>
 output lala;
 <<snip>>
 reg purplehaze;
 <<snip>>
 parameter alpha_0=0,alpha_1=1,alpha_2=2,...
 reg [2:0] alpha;

always @(posedge clock0 or posedge reset0)
 begin
 if (reset0)
 alpha = alpha_0;
 else
 case (alpha)
 alpha_0: begin
 if ({kappa,salmon,ebi } == 4)
 alpha = alpha_6;
 else if ({kappa,salmon,ebi} == 5)
 alpha = alpha_4;
 <<snip>>
 end
 default: alpha = alpha_0;
 endcase
 end

always @(posedge clock0 or posedge reset0)
 begin
 if (reset0)
 marvin = 0;
 else
 marvin = bullet;
 end

always @(posedge clock0 or posedge reset0)
 begin
 if (reset0)
 ebay = 0;
 else
 case ({nail,yankee})
 0 : ebay = duck;
 1 : ebay = mortar;
 2 : ebay = romeo;
 3 : ebay = juliet;
 default : ebay = 0;
 endcase
 end

always @(ocha)
 begin
 tako = !ocha;
 end

always @(posedge clock1 or posedge reset1)
 begin
 if (reset1)
 {starbucks_atchoo_thor,hinge,hulk} = 0;
 else
 {starbucks,atchoo,thor,hinge,hulk} =
 {starbucks,atchoo,thor,hinge,hulk}+1;
 end
endmodule

Figure 11. Edited code snippets from 8000 line

VERGEN design in Verilog.

134

allow testing on large industrial designs that do not already have
test-vectors.

To further exercise specific constructs seen in synthesis, we
described an additional tool, VERGEN, which outputs both large
Verilog designs and vectors to test them. VERGEN is intended
to exercise corner cases in synthesis by connecting together
common building blocks. Though not described in detail, the
circuit-generation provided by VERGEN is also a strong step
forward in the automatic generation of synthetic test designs.

Through various statistical means, we showed the validity of these
tools to help the testing process. With RVEC we were able to
show that an error in a synthesis tool only needs to appear a single
time in about 10% of netlists to have a high probability of being
caught automatically. With designs from VERGEN this
probability is significantly higher, because we control both the
design and vector generation processes.

We should emphasize that these methods and tools are additive to
standard software testing methodologies (e.g. hand design of
regression tests, code reviews, assertions and self-checking code)
and testing designs with human-generated vectors, plus other
tools not described. They provide additional confidence in the
quality of synthesis results as black-box tests, and provide
guidance on problems during the debug of new algorithms. We
would not recommend using any one tool as the only testing
mechanism on a complicated software system.

We have successfully applied these tools and others for debugging
and testing Quartus native synthesis (QNS) vs. MAX+PLUS II,
QNS across releases and for new synthesis algorithms, and in
particular for debugging some of the more difficult algorithms
such as observability don’t-care minimization and register re-
timing. Others at Altera have used them for debugging and
testing advanced algorithms in place&route that manipulate LUT-
masks, perform register re-timing, or otherwise modify the
connectivity of the netlist.

ACKNOWLEDGEMENTS

The authors would like to thank Sinan Kaptanoglu and David
Mendel for reading the paper and making many valuable
suggestions on the exposition.

REFERENCES

[1] M. Abramovici, M.A. Breuer and A.D. Friedman, Digital

Systems Testing and Testable Design. IEEE Press, 1990.
[2] D. Brand, “Verification of Large Synthesized Designs”, in

Proc. Int’l Conference on Computer-Aided Design
(ICCAD). 1993. pp. 534-537.

[3] A. El-Maleh, T. Marchok, J. Rajski and W. Maly, “On Test
Set Preservation of Retimed Circuits”, in Proc. Design
Automation Conference (DAC). pp. 176-182, 1995.

[4] G.D. Hachtel and F. Somenzi, Logic Synthesis and
Verification Algorithms. Kluwer, 1998.

[5] S.Y. Huang, K.T. Cheng and K.C. Chen, “Verifying
Sequential Equivalence using ATPG Techniques.” In
ACM Trans. Design Automation of Electronic Systems
(TODAES). Vol.6 No.2, pp 244-275, 2001.

[6] M. Hutton, J. Rose and D. Corneil. “Automatic
Generation of Synthetic Sequential Benchmark Circuits”,
IEEE Trans. CAD. Vol. 21 No. 8, pp 928-940, 2002.

[7] K. Iwama and K. Hino, “Random Generation of Test
Instances for Logic Optimizers,” in Proc. Design
Automation Conference (DAC). pp. 430-434, 1994.

[8] W. Kunz, “HANNIBAL: An Efficient Tool for Logic
Verification Based on Recursive Learning”, in Proc. Int’l
Conference on Computer-Aided Design (ICCAD). pp.
538-543, 1993.

[9] D. Lewis et. al., “The Stratix PLD Routing and Logic
Architecture”. In Proc. ACM/IEEE Symposium on FPGAs
(FPGA), (to appear), 2003.

[10] P. Mazmuder and E.M. Rudnick. Genetic Algorithms for
VLSI Design, Layout and Test Automation. Prentice Hall,
1999.

[11] J. Pistorius, E. Eegai and M. Minoux, “PartGen: A
generator of very large circuits to benchmark the
partitioning of FPGAs,” IEEE Trans. Computer-Aided
Design. Vol. 19, pp. 1314-1321, 2000.

[12] E.M. Rudnik and J. Patel, “Combining Deterministic and
Genetic Approaches for Sequential Circuit Test
Generation”, in Proc. Design Automation Conference
(DAC). pp. 183-188, 1995.

135

