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ABSTRACT 

Though verification is significantly easier for FPGA-based digital 
systems than for ASIC or full-custom hardware, there are 
nonetheless many places for errors to occur. 

In this paper we discuss the verification problem for FPGAs and 
describe several methods for verifying end-to-end correctness of 
synthesis algorithms, a particularly complex portion of the CAD 
flow.  Though the primary contribution of this paper is the 
analysis of the overall problem, we also give an algorithm for the 
automatic generation of test-vectors for simulation using 
information from the synthesis tool, and describe a second testing 
method that generates purposefully difficult designs in 
combination with input vectors to test them.  We will show the 
validity of these methods by standard metrics such as simulation 
node-coverage and through the ability for the method to locate 
forced errors introduced by the synthesis tool. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance. D.2.5 [Software Engineering]: Testing and 
Debugging –Statistical Methods, Validation.  

General Terms 
Algorithms, Verification 

Keywords 
Programmable logic, FPGA, synthesis, verification, test. 

1. INTRODUCTION 
One of the key advantages of FPGA-based systems is the ability 
for a hardware designer to very quickly generate functional 
hardware.  Though this is often stated in terms of the high cost of 
mask generation and fabrication NREs, these costs are 
increasingly dominated by the test and verification problem. 

Testing includes checking for several criteria:  that the HDL code 
meets specification, that the CAD tools correctly processed the 
code, and that the eventual chip functions properly, including 
timing. 

Figure 1 shows a typical CAD flow, highlighting the verification 
steps.  In an FPGA-based design there is no chip-test required by 
the designer, because verification of the programmable logic 
fabric is performed by the FPGA vendor.   

 

 

 

Vendors test each chip for fabrication defects with manually and 
automatically generated deterministic test vectors, and then bin 
individual chips based on their performance.  A great deal of 
effort can be put into the former problem, because the cost of test 
generation is amortized across the thousands of different hardware 
designs which eventually use the device.  To some extent the 
vendor also solves the timing simulation problem because the 
binning of devices into speed-grades gives increased confidence 
to the user that functional operation will match in-system timing. 

The efforts put into test generation for a specific design in the 
ASIC flow have a secondary benefit:  they test the correctness of 
complicated algorithms in synthesis, placement, routing and 
timing analysis in the CAD tools.  Chip testing by FPGA vendors 
guarantees the correctness of the FPGA hardware, but does not 
also test the design or synthesis of the design being implemented 
on it. 

As a software problem, synthesis algorithms are tested by many 
standard methods, including hand-created regression tests, design 
and code reviews, proofs of algorithmic correctness to name a 
few.  However, it is always advantageous to supplement these 
with end-to-end testing on large designs to quickly locate errors, 
and this is especially true during the early debugging phase. 

In this paper we will concentrate on perhaps the most difficult 
aspect of the CAD flow to test, namely the synthesis of hardware 
models into gate-level netlists.  Synthesis is harder to verify 
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Figure 1.  Verification steps.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FPGA’03, February 23-25, 2003, Monterey, California, USA. 
Copyright 2003 ACM 1-58113-651-X/03/0002…$5.00. 

127



    

 

because relatively simple errors, such as inverting one signal, 
maintain the connectivity and timing paths in the gate-level 
netlist.  Errors in connectivity can generally be identified 
deterministically whereas functional equivalence of Boolean logic 
is NP-hard. 

The compounding problem from the CAD designer’s point of 
view is more pragmatic.  Software engineers working on tools for 
logic synthesis are almost never the same people creating the 
hardware design.  Most complete example designs are large 
complicated systems provided as-is through problem reporting or 
to maintain customer-supplier relationships.   CAD designers 
rarely receive simulation test-vectors or enough information about 
the design to create them manually, and designs are often 
incomplete or insufficiently tested at the behavioral level.   One 
notable exception is FPGA vendors internally generated IP, which 
is a great source of high-quality finished test designs with well-
designed vectors and often complicated functionality.  Further 
problems with testing on FPGAs include non-synthesizable 
hardware such as embedded RAM and dedicated DSP (multiplier) 
hardware, and complicated registers with multiple clock-domains. 

The testing goals of hardware and software designers are also 
different.  A hardware designer is interested in testing one design 
over the course of its development cycle of 6 months or more and 
can put significant effort into test generation, formal verification, 
and even develop their hardware models with test in mind (BIST 
and design-for-test).  Tool designers want to test their tools on 
hundreds of different designs quickly and easily and have no 
influence on the design of the original hardware. 

Our goal is to supplement standard software testing with tools to 
automatically detect incorrect logic introduced by synthesis 
algorithms.  The standard methods for ensuring software quality 
involve regression tests, algorithm and code reviews, assertions 
and cross-check code and multiple other forms of independent 
testing.  These techniques can be aided by end-to-end testing of 
large designs.  Specifically, we want to analyze the correctness of 
the entire synthesis system through algorithmic changes, including 
advanced sequential synthesis algorithms such as retiming and 
other manipulation of registers.   

Automatic testing serves a further purpose to speed the debugging 
process, since many of the formal testing metrics are not yet in 
place during the development of an algorithm.  However in a 
mature software system the previous version of the software is a 
trustworthy comparison point. Furthermore in the case of 
synthesis the correctness problem is well-defined. 

Section 2 of this paper provides further background and outlines 
some existing approaches.  Section 3 introduces our method for 
solving the problem, and how the resulting tool RVEC fits into 
the verification flow.  Section 4 shows some empirical results on 
test-coverage and error detection.  Section 5 outlines issues with 
false positives; most are solved in our current implementation but 
some remain open.  Section 6 describes efforts to generate 
particularly difficult sequential designs in concert with input 
vectors as an additional testing method.  We conclude in Section 
7. 

The primary contributions of this paper are in the discussion and 
analysis of the overall problem as much as in the proposal of a 
specific algorithm. 

2. PREVIOUS WORK 
There are a number of existing approaches for testing digital logic 
that are related to this problem.  These include the standard ATPG 
testability theory, formal verification, and random vector 
generation. 

2.1 Structural Testing 
Structural testing techniques model errors in a combinational 
design in terms of fault models (stuck-at-0 or  stuck-at-1) (e.g. [4], 
[1]).  These techniques use the logical functionality of the gate-
level netlist to create tests for simulation that sensitize each wire 
in the netlist.  Values required to test a fault on one wire are 
propagated backwards through gates to the primary inputs using 
the functionality of the gates in the design. Testing of sequential 
circuits require unwrapping the netlist to the combinational 
model.  Since the techniques are largely for generating vectors for 
chip-test, one of the important optimization criteria is the 
shortness of the test-vectors, since time on test machines is 
expensive. 

Brand [2] applied the use of testing theory directly to our problem 
at hand, namely verifying the equivalence of successive stages of 
synthesis.  He gave an O(n2) time and space algorithm for 
combinational circuits, and successfully verified the set of ISCAS 
circuits through several basic synthesis algorithms. 

In practice these techniques have several drawbacks.  The netlists 
we are considering can have over 100,000 logic elements, and the 
computational complexity of deterministic ATPG is too high – 
Rudnick and Patel [12] show empirical results on relatively small 
MCNC and ISCAS circuits taking upwards of 4 hours on simple 
circuits, and 80 hours when re-timing operations are involved.   
Though such time could be feasible in the context of generating a 
chip-test, it is not feasible for the problem of running hundreds of 
designs to verify changes to synthesis tools.   

2.2 Formal Verification 
Formal Verification techniques attempt to heuristically prove the 
sequential equivalence of two netlists using, for example, 
structural partitioning followed by BDD-based analysis.  We 
attempted to use several commercially available formal 
verification tools and found that they can generate some 
impressive results for a designer interested in verifying a single 
circuit.  However, to avoid the vast number of false errors, the 
user is required to either restrict the operation of synthesis to 
“verification safe” operations (similar to forbidding compiler 
optimizations and instruction re-ordering to ensure ease of 
debugging in a software debugger), or annotate the netlist with 
many properties of the synthesis operations.  These may be 
reasonable for the hardware designer, but it is not feasible for the 
algorithmic testing problem.  Commercial tools also have issues 
with re-timing, multiple clock domains and non-synthesizable 
hardware, requiring design-specific work in order to use the tools. 

2.3 Random Vector Generation 
The use of simulation with random vectors is more attractive than 
the previous two from a practical point of view.  The concept is 
simple:  randomly perturb the input vectors for the design over a 
period of time, observe the resulting output vectors, and then 
simulate the same test vectors on the modified netlist and compare 
the resulting output vectors. 
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The overwhelming advantage of using random vectors is 
simplicity, most importantly the ability to deal with complex 
hardware such as RAM and DSP blocks in simulation, but not as 
part of test generation.  The disadvantage is the lack of complete 
coverage of the netlist. 

There have been multiple attempts to improve the use of 
randomness in testing.  Rudnick and Patel [12] give a hybrid 
algorithm to speed up structural test generation with techniques 
from genetic algorithms.  The textbook by Mazumder and 
Rudnick [10] discusses multiple such approaches using genetic 
algorithms. 

The primary issues we found with random vector generation are 
that naïve methods of vector generation “don’t work” – to get any 
reasonable amount of simulation coverage, we found that more 
intelligent generation to deal with glitching, secondary signals, 
power-up state and latches was required. 

3. RVEC VECTOR GENERATION 
3.1 Verification Flow 
RVEC is a C++ standalone executable that produces random 
vectors for simulation stimulus for designs compiled by Altera’s 
Quartus II software.  Though Quartus is a relatively large tool 
implementing the entire FPGA CAD flow, we are primarily 
concerned with the synthesis and simulation subsystems, which 
we will denote QSYN and QSIM. (Note that these terms are used 
to aid this presentation, and don’t correspond to terms used in 
Quartus documentation or help).  QSYN takes as input VHDL, 
Verilog, EDIF, Altera AHDL or schematic designs, and outputs a 
gate-level netlist.  QSIM takes a gate or logic-element level netlist 
and a vector file, and provides either the output-vectors from 
simulation, or (if they are included in the input file), pass or fail. 

The flow for generating golden vectors with RVEC is shown in 
Figure 2.  A design is compiled with QSYN to produce the file 
qsyn.info, which is used by RVEC to determine information about 
the design.  RVEC takes the qsyn.info file and a parameterization 
file params.txt to output the vector file, which is then used by 
QSIM to simulate the design and generate the “golden” output 
vectors.  The golden vector outputs are used to verify 
modifications to QSYN, as shown in Figure 3. 

The QSIM module currently implemented in Quartus does not yet 
have the ability to perform behavioral simulation with a testbench.  
However, it is feasible to implement this flow as well, using 3rd 
party simulation tools such as ModelSim.  In this case a 
behavioral model of embedded RAM and any other dedicated 
hardware blocks would be required—these models are already 
provided by Altera Corp.  This simulation approach provides the 
additional benefits of comparing the user’s HDL directly to the 
end-result of synthesis. 

3.2 Program Description 
This section discusses the input and output files for vector 
generation. The two input files are qsyn.info and params.txt. The 
output file is the set of vectors generated by RVEC 

Input signals in a design cannot be treated the same.  A global 
reset signal, for example, could force all flip-flops in the design to 
0.  When this signal is active the netlist is largely untested.  
Similarly the values seen at pins will usually only change with the 

controlling clock, so a random vector pattern which keeps the 
clock high or low for long periods of time is similarly inefficient. 
The generator must be aware of bidir (tristate) pins and their 
enables in order to separate out input from output functionality.  
Gated clocks (modified by user logic, e.g. to halve the frequency 
with a counter), though poor design practice in FPGAs, are 
nonetheless common. 

Thus, we require some information from QSYN to effectively 
generate patterns for these special-case signals.  The most 
important information is the identification of input, output and 
bidir pins, all clocks in the design, asynchronous secondary 
signals (clear, asynchronous load, clock-enable, output enable) 
and an indication whether they should be “mostly high” or 
“mostly low”.  This latter information is a function of the Altera-
specific hardware-–an active low reset would be an example of a 
mostly high signal, since usually the reset is not being exercised.  
An output enable would be neither mostly high nor mostly low, 
but would also not be expected to toggle as often as a typical 
input. 
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Figure 2.  RVEC flow for generating golden vectors 
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An example qsyn.info file identifying a design with 4 data pins is 
shown in Figure 4.  Two clocks and three asynchronous signals 
are identified, along with the active polarity of the secondary 
signals. 

Most designs have several asynchronous signals in each of the 
high and low polarities, and a number of different clock domains. 

Additional input to RVEC is contained in params.txt; an example 
is shown in Figure 5.  This file contains general parameterization 
information such as the types of clocks to generate, the setup and 
hold times necessary to make the simulation work properly and so 
on.  Much of the contents of params.txt could be considered 
default values to the algorithm; it is just more convenient to 
expose it to experimentation.  Params.txt allows us to change 
information on parameters such as clock duty cycle, but we 
haven’t put much effort into evaluating this parameter to-date. In 
the example above we are asking for 100 cycles, with a frequency 
of 1Hz, duty cycle of 0.1 and register tsu=0.5 ms. 

The output of this small example is shown in Figure 6.  The 
waveform shows four types of signals. 

• The clocks are at the top and change as specified in 
params.txt.  

• The asynchronous-high signal, in this naming convention, is 
high most of the time and gets reset once in a while. The 
resetting happens deterministically every total_cycles/10 
cycles. 

• The asynchronous-low signals have the mirrored behavior to 
that of asynchronous-high ones. 

• The asynchronous-both signals are next (two of them). They 

are allowed to randomly change every total_cycles/5 times. 

• The regular inputs are next—four of them. They are allowed 
to randomly change every clock cycle. One of the inputs is a 
bidir pin. This is why the waveform editor produces a 
bidir~result pin for the output of the pin. Also RVEC uses L 
and H instead of 0 and 1 for bidirs to prevent contention, 
though these details would be tool-specific. 

• Finally we have the outputs with X values since there is no 
simulation results in this file. 

Example: For a 1000 cycle vector, inputs get a chance to change 
every cycle, asynchronous-both have a chance to change every 
100 cycles asynchronous-high or low pins get reset (not random) 
every 200 cycles. 

One fact that is difficult to see from the picture is that no two 
signals change at the same time. This is done to prevent race 
conditions other unpredictable simulation behavior (e.g. the reset 
and clock signals reaching a register at the same time)—see 
Section 5.   

3.3 Algorithm 
The algorithm for generating the random vectors involves 
manipulating a hashtable with each vector’s time as the key. 
Below we explain the terminology and the procedure for 
obtaining the vectors. 

A vector is defined to be a set of values for each input signal in 
the design at a discrete point in time.   

 

 

Figure 6. Resulting output of RVEC as viewed in QSIM. 

 

INPUTS clk1 clk2 asy_hi1 asy_both1 asy_both2  asy_lo1 in1 in2 
in3 bidir ; 

CLOCKS clk1 clk2; 

ASYNCH_MOSTLY_HI asy_hi1 ; 

ASYNCH_MOSTLY_LO asy_lo1 ; 

ANY_ASYNCH asy_both1 asy_both2 ; 

OUTPUTS out1 out2 out3 bidir ; 

Figure 4.  Sample QSYN.INFO file 

FREQ 1 

# The setup time (ms) we want to use. All inputs change one or  
# more tsu steps before the clock’s rising edge. 

TSU 0.5  

# The clock’s duty cycle. 

DUTY_CYC 0.1  

# length of the random vector--it is MAX_CYCLES * Period ns 

MAX_CYCLES 100 

Figure 5.  Sample PARAMS.TXT 
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An example of three consecutive vectors is: 

102.5> 0 0 1 

102.9> 1 0 1 

105.0> 1 1 1 

This example specifies that, at time 102.5 in the simulation, the 
three input pins change to 0, 0, and 1, respectively, independent 
of their previous values.  They then change to 101 and 111 at 
times 102.9 and 105.0. The hashtable containing the above 
vectors would have three entries with the vector times as the keys 
and an array of the signal values (0 and 1) as the table entry. 

The algorithm works as follows: For each clock cycle: 

1. Insert clock edges (vectors): Since the clocks are what 
determine the allowed times for all other transitions, we 
insert values for each clock edge (rising and falling) for 
each clock (there could be any number of clocks). This 
must be done in a way that shifts each clock by a tsu 
with respect to other clocks so that there are no two 
edges changing at the same time. 

2. Insert vectors (edges) for asynchronous signals. Again 
care must be taken that no two edges occur at the same 
time. Also the reset signals are at their non-active value 
for at least one high and one low clock transition (to 
ensure proper resetting of the circuit). 

3. Insert vectors for regular inputs. Similarly to the 
asynchronous signals we calculate the number of edges 
based on the total number of such signals. For example 
if we have 10 inputs there will be at most 10 edges 
before each clock rising edge. At most because the edge 
occurs with probability of 50%. 

The above three procedures are repeated for each cycle to obtain 
the whole simulation stimulus file. In the interest of saving space 
we skip some details having to do with how one ensures that only 
one signal changes at a time and that there is continuity in the 
vectors—i.e. no undefined values exist, etc. Those details are 
implementation specific and not difficult to work out. 

The above algorithm produces vectors that have no two signals 
switching at the same time. This is very important for preventing 
false failures during verification. See Section 5 for more detail on 
why signals cannot change simultaneously. 

Some further implementation details: 

• All clocks have the same frequency since we have no way of 
knowing how fast the user meant to run them.  In future 
versions of the tool we would like to represent related clocks, 
at least those generated by simple multiply and divide 
relationships, or generated by phase-locked loops. 

• Keep the clock duty cycle low (e.g. 10-30%) This makes it 
easier for RVEC to keep track of what signal changes go 
with what tick. Since the frequency used is very slow, the 
clock will be high for long enough. 

• The random generator has a fixed seed for now so that every 
time you run RVEC on the same design you will get the 
same vector (provided the parameters in params.txt are not 
changed). This allows consistent results during 
experimentation.  Further, it facilitates tracing of simulation 
mismatches. 

4. RESULTS AND METRICS OF SUCCESS 
4.1 Simulation Coverage 
The effectiveness of simulation vectors is often evaluated by the 
percentage of nodes that transition at least once during the 
simulation.  Note that even 100% coverage does not mean 100% 
chance of finding an error. 

For the statistics reported here we are using more than 150 
designs with a median size of 5000 LEs (4-LUT+FF).  They are 
drawn from a number of sources, including complete industrial 
(customer) designs, internally generated IP and specific testing 
designs. 

The first several attempts at vector generation with RVEC 
generated very poor simulation coverage, in the order of 10-20% 
of nodes.  Modifications to correctly deal with setup and hold on 
clocks brought this up further, and the correct handling of 
asynchronous signals and latches gained an additional 10%.  The 
final results of RVEC as described in Section 3 have 67% node 
coverage on smaller designs and 40% on larger designs.  The 
overall simulation coverage is 52%. 

The simulation coverage is better viewed as a histogram.  Figure 
7, ignoring the split bars for now, shows a histogram of the 
number of designs in each coverage bin. 
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These coverage metrics are determined using a relatively short 
simulation time, only 1000 clock cycles.  In general, generating 
longer series of vectors will increase coverage.  However, as will 
be seen shortly, it really isn’t necessary to do so, because we are 
able to locate errors in the design with relatively high confidence 
even with very short simulations. 

Some of the design-specific reasons for low coverage, such as 
latches and gated clocks are discussed in Section 5.  Though we 
get a better coverage for smaller than larger designs in a 
bipartition of the design-set, and there is a mild correlation 
between design-size and simulation coverage with vectors of 
length 1000, it is really the more complicated nature of the larger 
designs that is determining coverage.  This is illustrated in Figure 
8, which shows the simulation coverage for the larger half of 
designs.  Designs are sorted from smallest to largest LE count and 
plotted against their coverage.  Though there is a definite 
downward trend in coverage it does not apply to all designs.  
Well-written synchronous designs with no combinational cycles 
or gated clocks are able to achieve near 100% simulation 
coverage, even with only 1000 clock cycles of testing time. 

4.2 Identification of Forced Errors 
The true effectiveness of the system is in the ability to find errors 
introduced by the synthesis algorithms.  To test this we created 
debug-options for the synthesis tool to intentionally invert one 
random logic signal in the netlist.  

Since current designs typically contain from 5000 to 100,000 
logic elements, this type of forced error is a relatively small 
change to the netlist.  It does not change the connectivity, which 
would make the error quite easy to find, and this is also a 
relatively common sort of problem for a synthesis tool to 
introduce at the gate-level. 

The split bars of Figure 7 indicate the proportion of designs, by 
simulation coverage, for which simulation identifies the erroneous 
connection.  Overall, we can identify the forced error 35% of the 
time on simulation coverage of 52%.  The metric is higher for 
smaller designs, where the error can be seen 50.6% of the time on 
simulation coverage of 67%. On larger designs only 22% of errors 
are detected on simulation coverage of 40%.  This follows 
intuition, because we are only observing external pins, and larger 
designs, which could have greater latency, can take longer to 
propagate the error.  In general, then, it makes sense to simulate 
longer for larger designs. 

One might think that 35% probability of finding an error is low.  
In the case of chip-tests it is not at all useful.  But for the purpose 
of identifying problems in synthesis as a supplemental tool it is 
more than sufficient – suppose that a single such error might 
occur in only 10% of our 150 designs and we have a 35% chance 
of noticing it with this quick simulation.  Then the probability that 
such a problem in the synthesis tool will not be caught is 
(0.65)^15 or <<1%.  This is excellent for debugging purposes, as 
well as being a strong addition to other testing schemes. Here our 
assumption is that a wire inversion is a good model of possible 
synthesis errors. Even if the reader disagrees with that model our 
point remains valid—the power of testing more than one design at 
a time should be evident. 

We further tested the method when more than one forced errors 
are introduced per design.  These results are shown in Figure 9.  

The probability of identifying incorrect results in a single design 
increases asymptotically with the number of errors introduced, 
from 35% in the base case to almost 90% when 32 forced errors 
are introduced in the netlist.   

 

5. FALSE POSITIVES AND OTHER 
PITFALLS 
The largest problem with verification is the analysis of false 
positives – test-cases that are reported as simulation mismatches 
(flagged errors) even though the synthesis is correct.   Debugging 
of false positives provides useful information into the testing 
problem in itself, but only if the number of false positives is 
manageable. 

As a metric of false positives, we can compare the results of two 
trusted synthesis outputs using the methodology of Section 4, and 
then manually explore the simulation mismatches.   This shows 
that we obtain a manually verified false positive in about 2% of 
our design-set for the default simulation time, and up to 5% when 
the designs are simulated for 10X the normal time. 

This process was done in concert with the development of RVEC.  
In reality we began with very high proportions of false positives 
and this 2% rate represents the current status of the tool. 

It is interesting to look at the source of false positives, how they 
influenced modifications to the vector generation process, and 
those issues that we can’t actually solve at this time. 

We define three types of simulation.  Functional simulation 
occurs on the netlist before most synthesis processing.  Zero-delay 
simulation occurs on the netlist after conversion to basic FPGA 
logic elements, but where all routing and LUT delays are set to 0.  
Timing simulation occurs on the annotated netlist after placement 
when all routing and cell delays are known.  Our experimentation 
is using zero-delay simulation.  

The two primary classifications of false positives are those arising 
from simultaneous switching and those arising from 
combinational cycles in the netlist (i.e. latches). 
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Figure 9.  Probability of finding errors as more of them are 
introduced into the netlist. 
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When two signals such as a DFF clock and asynchronous 
secondary signal (e.g. clear) arrive simultaneously, the order in 
which ties are processed in slightly different netlists will cause 
different results in simulation for the following clock-cycle until 
the clear is applied.  Simultaneous switching is solved in RVEC 
by the interaction with the synthesis tool.  Because we know the 
characteristics of such signals before vector generation, we can 
ensure prioritization of the signals by slightly delaying one in a 
consistent manner.  Note that the hardware implementation of the 
FF in the FPGA typically has prioritization on these signals, so we 
are basically emulating this for functional simulation. Regular 
inputs should not change at the same time as well. A good rule of 
thumb we came up with is that every vector (entry in the hash 
table) should contain one and only one signal value that is 
different from the previous vector (no simultaneous signal 
switching at any one time). 

Simulation mismatches dropped by 5X when the proper handling 
of asynchronous and clock signals and non-simultaneous 
switching were added to RVEC. 

A second issue is latches.  Randomly generated vectors perform 
poorly on designs that make extensive use (intentional or 
unintentional) of asynchronous logic.  A well-designed latch will 
perform properly in both functional and timing simulation given 
valid input, but can oscillate given input that is not expected by 
the designer.  In FPGA based designs the problem is not really 
intentional latches, but poor coding style that generates false-path 
latches.  These become large combinational cycles in the timing 
graph, and cause different behavior on different netlist orderings, 
unless the paths are known to be false-paths for timing. 

About 10% of designs will have some asynchronous logic. The 
designs with large combinational cycles are typically ones with 
false paths.  Figure 10 shows the top 30 or so designs in the 
design-set along with their number of long combinational cycles 
as a percentage of design-size in LEs.  We identify the 5 designs 
which generate false positives in simulation, all of which fall at 
the top-end of the scale (remaining designs with no long cycles 
are not shown). 

We have no effective way of dealing with designs containing long 
combinational cycles using this method, so these are tested with 
standard regression tests and other means.  We hope to remove 

this limitation in the future.   For practicality reasons we simply 
exclude the known “bad apples” from the designs used in practice 
for testing with this method.   

Other designs that are problematic for this type of testing are 
complicated I/O protocols, such as PCI.  It would be difficult for 
any automatic tool to generate appropriate vectors to accomplish 
the necessary startup handshaking to properly initialize the design, 
and without initialization the circuit cannot be exercised. 

6. VERGEN:  DESIGNS WITH VECTORS 
RVEC is a useful addition to the overall testing methodology.  
However, for debug and test purposes, we also want to provide 
particularly difficult designs for the synthesis tool to deal with 
while at the same time using realistic constructs.  Real designs 
don’t necessarily hit all the corner cases. 

VERGEN is a ~2000 line C program that spits out pseudo-
random Verilog HDL.  It also generates compile scripts and a set 
of vector inputs for MAX+PLUS II (Altera’s previous-generation 
software) or Quartus.  It can be tuned at compile time for designs 
of any size, the current favorite settings make designs from ~7K to 
~12K lines of Verilog which map into ~1.5K to ~2.5K logic cells.  
Thus far, we have only used VERGEN to exercise synthesis 
algorithms, which generally don’t need 50,000 LUTs, but we 
hope to apply it to place&route in the future by generating large 
designs.  Table 1 shows some sample small designs output by 
VERGEN along with their LE counts.  Though these designs are 
1500 to 2500 LEs, in theory the designs can be any size. 

The algorithm creates a bank of input pins then installs chunks of 
logic reusing a percentage of the signals as it goes.   Leftover 
signals are routed to output pins.   The selection of logic chunks is 
random with some heuristic tuning and parameterization to 
prevent creating too few or too many output signals.  Other 

Table 1.  Designs from VERGEN, showing 
Verilog lines of code and  4-LUT logic elements 

in Stratix [9]. 

 Design Verilog        LE 
vergen01 9525 2256 
vergen02 8585 2022 
vergen03 8485 1931 
vergen04 9118 2183 
vergen05 8960 1972 
vergen06 10233 2305 
vergen07 9113 2024 
vergen08 9393 2240 
vergen09 8298 1933 
vergen10 8314 1788 
vergen11 9239 2256 
vergen12 9063 2017 
vergen13 9292 2027 
vergen14 8996 2021 
vergen15 11068 2023 
vergen16 9177 2667 
vergen17 7371 2093 
vergen18 9113 1554 
vergen19 9081 2085 
vergen20 8792 2026 
vergen21 9232 1937 
vergen22 9104 1931 
vergen23 8317 2001 
vergen24 8653 1959 
vergen25 9114 1972 

Designs With Large Combinational Cycles  
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Figure 10.  Nodes that are part of a long combinational 
cycle are shown as percentage of total nodes (y-axis). The 

dark bars are designs with false positives. 

133



    

 

controllable attributes are critical path length and numbers of 
registers (before minimization) and the ability of different 
constructs being used. 

The high-level blocks used include finite state machines, 4:1 
MUX, random 3 in 3 out tables, 8 bit linear feedback shift-
registers, tristate MUXes, tangles of XOR gates, inverters, priority 
encoders, 3 input < comparators, and registers with an assortment 
of secondary signals on 2 clock and reset domains. 

Because VERGEN is generating the Verilog code, it also 
generates appropriate test vectors for use in simulating the code.  
So RVEC is not needed on VERGEN designs. 

Figure 11 shows an example output of VERGEN.  The actual 
output is about 8000 lines of Verilog, which we have hand-edited 
to fit in one column.  Not all language constructs are shown, but 
this illustrates a number of the ones used: Notice the comparator 
used to generate alpha in the first always block, marvin is a simple 
DFF, ebay is a registered 4:1 mux, and 
{starbucks,atchoo,thor,hinge,hulk} form a 5-bit counter.  
VERGEN is particularly useful at exercising state-machine 
processing, arithmetic and high-level synthesis operations, though 
we are easily able to add other interesting objects (multipliers, 
switching networks, etc.)  as the needs arise. 

The amusing node names serve the very serious purpose of 
speeding up debugging.  People can remember that they saw a 
particular signal called atchoo but not dff23421. 

VERGEN generates clean synchronous design models (e.g. no 
incomplete case statements) so we get very high simulation 
coverage – 85% to 95% over 1000 clock cycles, and no false 
positives.   Error detection on these designs is 81% for 1000 
clock-cycles, vs. the 35% seen on the large industry designs.  As a 
further advantage, we can target structures that trigger specific 
algorithms and thus exercise them well and introduce a good 
chance of finding errors. 

Note that various different approaches to generating synthetic test 
designs exist in the literature (e.g. [7], [11], [6]).  Of these Iwama 
and Hino [7] is the only one intended for synthesis evaluation but 
this is aimed at quality of results testing rather than correctness, 
and generates gate-level netlists rather than HDL, by modifying a 
seed circuit, so does not exercise Verilog elaboration and high-
level synthesis. 

7. CONCLUSIONS 
In this paper we have discussed the overall problem of synthesis 
verification using simulation.   This included a study of the use of 
random-vector generation, identifying the issues and pitfalls that 
arise in simulation with random vectors, and with FPGA design 
simulation in general.   

In concert with this analysis we outlined a tool, called RVEC, to 
intelligently generate vectors for simulation testing on large 
FPGA designs.  This tool constructs vectors in combination with 
information from the synthesis tool to provide proper behavior for 
clocks, asynchronous signals, bi-directional pins and other special 
logic, and solve the problem of false positives arising from 
simultaneous logic transitions and partially solve the problem on 
latches which occur on these designs.  The purpose of RVEC is to 

// Made by one of Gregg’s many toys - 04-10-02 
module vsm_009 ( 
  bravo, charlie, delta, babette, yeanyow 
  <<snip>> 
  clock0, clock1, reset0, reset1); 
  <<snip>> 
  input jupiter; 
  <<snip>> 
  output lala; 
  <<snip>> 
  reg purplehaze; 
  <<snip>> 
    parameter alpha_0=0,alpha_1=1,alpha_2=2,... 
    reg [2:0] alpha; 
 
 
always @(posedge clock0 or posedge reset0) 
  begin 
    if (reset0) 
      alpha = alpha_0; 
    else 
      case (alpha) 
        alpha_0: begin 
          if ({kappa,salmon,ebi } == 4) 
            alpha = alpha_6; 
          else if ({kappa,salmon,ebi} == 5) 
            alpha = alpha_4; 
          <<snip>>             
          end 
        default: alpha = alpha_0; 
      endcase 
  end 
 
always @(posedge clock0 or posedge reset0) 
  begin 
    if (reset0) 
      marvin = 0; 
    else 
      marvin = bullet; 
  end 
 
always @(posedge clock0 or posedge reset0) 
  begin 
    if (reset0) 
      ebay = 0; 
    else 
    case ({nail,yankee}) 
       0 : ebay = duck; 
       1 : ebay = mortar; 
       2 : ebay = romeo; 
       3 : ebay = juliet; 
       default : ebay = 0; 
    endcase 
  end 
 
always @(ocha) 
  begin 
      tako = !ocha; 
  end 
 
always @(posedge clock1 or posedge reset1) 
  begin 
    if (reset1) 
      {starbucks_atchoo_thor,hinge,hulk} = 0; 
    else 
      {starbucks,atchoo,thor,hinge,hulk} =    
        {starbucks,atchoo,thor,hinge,hulk}+1; 
  end 
endmodule 

 
Figure 11.  Edited code snippets from 8000 line           

VERGEN design in Verilog. 
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allow testing on large industrial designs that do not already have 
test-vectors. 

To further exercise specific constructs seen in synthesis, we 
described an additional tool, VERGEN, which outputs both large 
Verilog designs and vectors to test them.   VERGEN is intended 
to exercise corner cases in synthesis by connecting together 
common building blocks.  Though not described in detail, the 
circuit-generation provided by VERGEN is also a strong step 
forward in the automatic generation of synthetic test designs. 

Through various statistical means, we showed the validity of these 
tools to help the testing process.  With RVEC we were able to 
show that an error in a synthesis tool only needs to appear a single 
time in about 10% of netlists to have a high probability of being 
caught automatically.  With designs from VERGEN this 
probability is significantly higher, because we control both the 
design and vector generation processes. 

We should emphasize that these methods and tools are additive to 
standard software testing methodologies (e.g. hand design of 
regression tests, code reviews, assertions and self-checking code) 
and testing designs with human-generated vectors, plus other 
tools not described.  They provide additional confidence in the 
quality of synthesis results as black-box tests, and provide 
guidance on problems during the debug of new algorithms.  We 
would not recommend using any one tool as the only testing 
mechanism on a complicated software system. 

We have successfully applied these tools and others for debugging 
and testing Quartus native synthesis (QNS) vs. MAX+PLUS II, 
QNS across releases and for new synthesis algorithms, and in 
particular for debugging some of the more difficult algorithms 
such as observability don’t-care minimization and register re-
timing.  Others at Altera have used them for debugging and 
testing advanced algorithms in place&route that manipulate LUT-
masks, perform register re-timing, or otherwise modify the 
connectivity of the netlist. 
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