
Timing-Driven Placement for Hierarchical
Programmable Logic Devices

Michael Hutton, Khosrow Adibsamii and Andrew Leaver

Altera Corporation
101 Innovation Drive
San Jose, CA 95134

{mhutton, kadibsamii, aleaver}@altera.com

ABSTRACT
In this paper we discuss new techniques for timing-driven
placement and adaptive delay computation for hierarchical PLD
architectures.

Our algorithm follows the natural recursive k-way partitioning-
based approach to placement on such devices. Our contributions
include a specification of the overall TDC (timing-driven
compilation) algorithm, an analysis of heuristics such as a variant
of multi-start partitioning, a new method for adaptive delay
computation, and a discussion of the structure of critical paths and
sub-graphs on modern PLD designs.

This algorithm has been implemented in a production quality
commercial tool, and we report on the results with and without the
implementation of the new techniques. The basic result is a
substantial 38.5% average (36.3% median) improvement in
register-to-register performance across a range of real designs in
modern density ranges, at a cost of approximately 3.65X average
(2.88X median) place-and-route CPU time. (These improvements
and costs are relative to the same tool prior to the efforts
described in this paper.) A partial implementation of the new
algorithm shows approximately half the performance gain, with
approximately half the compile time cost.

Keywords
CPLD, FPGA, algorithm, heuristic algorithm, partitioning,
placement, timing-driven placement, programmable logic.

1. INTRODUCTION
We consider the problem of automatic placement of a netlist
(graph of 4-input LUTs and FFs) into a PLD architecture that is
fundamentally hierarchical in nature. This type of architecture
differs significantly in structure from a flat gate-array or island-
style part. The goal of the work described is to quickly and easily
introduce performance-driven compilation into an existing flow
based on a recursive k-way partitioning placement algorithm for
such a device. Though we will describe the work in terms of the

APEX family of devices from Altera, and in particular the 16400
LE 20K400, the techniques and results should be interesting for
any strictly hierarchical device, or for alternative architectures
which utilize recursive partitioning as a placement technique

Our work was intended for production software, and thus subject
to a number of constraints which might not be present in a purely
research context.

Firstly, compile time is important. Though our primary goal is to
increase design performance with an expected cost in compile
time, an O(n2) algorithm would represent multiple days of
compilation time for a 16000 LE part, and would be completely
infeasible on a 50000 LE part (the largest device currently
available). Thus we concentrate only on approaches which can
be implemented in near-linear time. For our example 16,000 LE
part, a 2 hour compile time should be rare, and typical time should
be an hour or less.

Secondly, our delay annotation and timing analysis must support
multiple delay constraints, both global and point-to-point. This
means the algorithm must maximize the minimum delay slack
(constraint minus actual delay) rather than simply the length of the
longest delay path (because the slowest clock may not be the most
critical), and must be amenable to more than one constraint.

Thirdly, the algorithm must incorporate a number of important
modern architectural features. Carry and cascade-chain structures
are of absolute importance. They modify (or “would modify” if
they were not present) the critical path of a majority of designs,
perturb the distribution of critical paths, and affect the
effectiveness and hence choice of algorithm.

Lastly, we constrain ourselves to a solution that can be
implemented in a short amount of person time. Since the goals
of our project were to quickly introduce better performance from
the tool, this means working within the basic confines of an
existing recursive k-way partitioning placement. Though it is
feasible in general to explore completely different approaches
(e.g. simulated annealing, quadratic or force-directed placement,
etc.) these would require a longer-term project in which large
parts of the code could be re-written.

The structure of the paper is as follows. In Section 2 we survey
some related previous work. Sections 3 and 4 introduce our
problem and target architecture and outline a basic placement
algorithm. Sections 5 to 8 discuss the distribution and structure of
critical paths, introduce our overall changes to effect timing-
driven compilation, define our adaptive delay computation, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for rofit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA 2001, February 11-13, 2001, Monterey, California, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002…$5.00.

3

finally give the complete algorithm. Section 9 gives empirical
results demonstrating the efficacy of our techniques, and we
conclude in Section 10.

2. RELATED WORK
Early papers concentrated primarily on gate-array or standard-cell
like structures, and relatively small devices. Donath et. al. [5]
though primarily discussing delay calculation for timing-driven
compilation use a binomial probability distribution to identify
possible routes from A to B in a gate-array-like part.
Sutanthavibul and Shragowitz [16] compute the k most critical
paths and iteratively re-place and re-route these paths until timing
convergence is achieved. They use a constructive placement
method, and also use path slack calculation to score these paths.
Frankel [7] describes a “limit bumping” algorithm. Basically this
is a slack allocation method, whereby slack calculated for a path is
distributed evenly among its constituent nets. Bennett et. al. [2]
follow a largely similar approach, covering more implementation
details of a complete system. The primary target device in all
these cases is a grid or gate-array-like continuous architecture, and
except the last, all of these works were created for very low-
density designs by today’s standards.

Swartz and Sechen [17] (TimberWolf) and Ebeling et. al. [6] use
simulated annealing as a tool for timing-driven placement. In the
former, the target is standard-cell devices, in the latter the
Triptych FPGA architecture. Nag and Rutenbar [11] also use
simulated annealing. They attempt the placement and routing
problem simultaneously with the goal of achieving better
performance, but at a much higher computation time.

More recent work by Betz [3] and by Marquardt, Betz, and Rose
[10] is the VPR tool. VPR is a simulated annealing based tool for
placement into island-style FPGAs. The tool uses carefully
crafted and tuned cost functions to achieve high-quality timing
and placement solutions in reasonable time; these make it the
current “champion” among academic tools for placement of
MCNC and other public-domain benchmark circuits. However,
published versions of VPR do not handle carry-chains or multiple
delay constraints, and apply primarily to non-hierarchical, island-
style architectures. Extensions to this work [9] have addressed
row-based architectures, but not fully hierarchical devices.

Senouci et. al. [15] address the issue of timing-driven placement
on hierarchical targets. Though this work is interesting for
understanding the structure of critical paths and cones, a primary
operation in their algorithm is to compute predecessor cones of all
delay destinations. Since they consider only relatively small
combinatorial circuits this computation is bounded by O(n *
number of primary outputs), which is feasible. However, typically
industrial designs have a significant proportion of flip-flops, so
for sequential circuits this computation is inherently O(n2) in the
design size and thus too expensive. An additional path-based
work by Sawkar and Thomas [14] is also inherently O(n2), and
does not suit our purposes for reasonable run-time.

Recently, Ou and Pedram [12] gave a timing-driven placement
algorithm for gate arrays based on a mixture of partitioning and
quadratic placement. One of the heuristic goals in their algorithm
is to minimize the number of times a net is cut in successive
partitions.

3. HIERARCHICAL ARCHITECTURES
The problem of placement into a hierarchical device is
fundamentally different than placement into a flat or “island” style
device. Though logic-cell delays can be assumed to be identical,
island-style interconnect is closely approximated by geometric
proximity, whereas delay in the hierarchical part is based upon
hierarchical containment, which follows a step function rather
than a continuous growth. Basically if two signals are within the
same hierarchy level, it doesn’t really matter where within that
hierarchy they are. Similarly, geometrically close cells incur
greater delay to get to other locations outside their hierarchical
boundary than to distant cells within their hierarchical boundary.
Depending on the degree of hierarchy in the part (since we
assume signals are buffered at connection points), high-fanout
nets may or may not be of major concern.

Thus, unlike a gate-array or standard-cell like part, a hierarchical
architecture has a “natural” placement algorithm based on
recursive partitioning. We will discuss this in terms of our
example device, which we describe now.

3.1 The APEX Programmable Logic Device
Figure 1 shows a diagram of the APEX 20K400 programmable
logic device, a commercial product from Altera Corporation. The
basic logic-element (LE) is a 4-input LUT and DFF pair . Groups
of 10 LEs are grouped into a logic-array-block or LAB.
Interconnect within a LAB is complete, meaning that a connection
from the output of any LE to the input of another LE in its LAB
always exists, and any signal entering the input region can reach
every LAB.

Groups of 16 LABs form a MegaLab. Interconnect within a
MegaLab requires an LE to drive a GH (MegaLab global H) line,
a horizontal line the width of the MegaLab, which switches into
the input region of any other LAB in the same MegaLab.
Adjacent LABs have the ability to interleave their input regions,
so an LE in LAB i can usually drive LAB i+1 without using a GH
line. A 20K400 MegaLab contains 279 GH lines.

The top-level architecture is a 4 by 26 array of MegaLabs.
Communication between MegaLabs is accomplished by global H
(horizontal) and V (vertical) wires, which switch at their
intersection points. The H and V lines are segmented by a bi-
directional segmentation buffer at the horizontal and vertical
centers of the chip. We will denote the use of a single (half-chip)
H or V line as H or V and a double or full-chip line through the
segmentation buffer as HH or VV. In the APEX architecture, H
and V lines cannot drive LEs directly; they drive a GH which then
functions as in the MegaLab case above (so an H delay implies an
additional GH delay). Because of segmentation of the H and V
lines, further hierarchies of same-row, same-MegaLab-column
and same-quadrant are implied for both a routability and timing
purposes. The 20K400 contains 100 H lines per MegaLab row,
and 80 V lines per LAB-column (80*16 per MegaLab column).

We can thus categorize the delay of a point-to-point connection as
“local” for same-LAB connections, GH+local for same-MegaLab,
H+GH+local for adjacent horizontal MegaLabs, V+GH+local for
same octant of the chip, and V+H+GH+local for same-quadrant of
the chip. The maximum (worst-case) delay is an
HH+VV+GH+local connection.

4

Roughly1, a local consumes 1 unit of delay, a GH 2 units of delay,
H or V 2 units of delay, and a HH or VV 4 units of delay. Thus
the ratio of the shortest (local) to longest (HH+VV+GH+local)
connection is roughly 1 to 11.

The LEs within a LAB can be configured with additional circuitry
to form a carry-chain, which is significantly faster than general-
purpose interconnect for implementing various arithmetic
functions. The particular structure is not all that important to the
software, as long as we can properly estimate delay and place
arithmetic cells in the appropriately constrained locations. A
carry chain wire is considered to be part of the logic and thus, for
a legal placement, can be considered to have constant delay.
Multi-LAB carry-chains (greater than 10 cells) form important
placement problems, because they require the entire carry-chain to
be placed in relative position.

Each MegaLab also has a 2K-bit configurable RAM, which is
accessible in much the same way as a LAB. The delay through a
RAM is also considered to be a fixed value independent of
placement. However the choice of which MegaLab contains a
particular logical RAM and the routing of address and data lines
to the RAM are part of the placement problem.

The schematic details of carry-chains, cascade chains, and
embedded RAM are beyond the scope of this paper (see [1] for
details).

1 The use of approximate delays is for easier exposition and

because the ratios change with different aspect ratios across the
range of the APEX family. Since this particular device is an
example only, the interested reader can refer to the Altera data-
book [1] or Altera software for exact wire delays on this or
other specific parts and speed-grades.

4. BASIC PLACEMENT ALGORITHM
The natural way to place a netlist in this type of part is to do a
recursive k-way partition. Each step will be referred to as a phase
in the overall algorithm. Though the effectiveness of this type of
algorithm is greatly affected by implementation details, the basic
flow is as follows.

Phase 1: Partition the netlist into a left and right horizontal halves,
minimizing the overall cut-size (number of HH wires).

Phase 2: Bi-partition each half independently, dividing the netlist
into horizontal quarters (MegaLab columns) to minimize cut-size
(H lines).

Phase 3: Partition the entire netlist into a top and bottom half,
minimizing cut-size (VV wires) while respecting the MegaLab
columns previously assigned. The result is 8 octants.

Phase 4: Partition the top and bottom netlists 13-ways into rows
to minimize the number of connections (V wires) while respecting
the previous vertical partitions.

Phase 5: Partition MegaLabs into LABs, trying to balance V-line
usage in individual columns, and the input-region of each LAB.

This recursive partitioning approach is illustrated in Figure 2.

In each of these partitioning steps, the implementation details
must count and balance secondary signals (clock, clear, enable),
RAMs, and logic cells separately, as the resulting partition must
be correct for all types of logic. Because carry-chains and other
data-path elements have regular output, care must be taken to
balance their relative placement to balance local congestion. As
mentioned earlier, this can be a particularly difficult problem,
since we often see more arithmetic functions in modern large
designs.

A recursive partitioning approach has a number of advantages:
The complexity of the algorithm is buried in the partitioning
subroutine, a well understood problem in CAD which can be
regularly updated independent of multiple architecture families.
Graph partitioning algorithms are typically fast (linear) time, and
thus the overall algorithm is also linear. Further, the partitioner
can be de-coupled from the architecture-specific details and easily
updated with new partitioning technology. The overall algorithm
is simple and easy to maintain, even in the presence of
heterogeneous resources and other constraints. Because the
production system has to deal with numerous such additions to
deal with a real architecture, and is regularly modified to deal with
new architecture families and devices, these latter issues are
particularly important.

As previously mentioned, the primary goal of this work was to
quickly and easily introduce a timing-driven algorithm within the
context of the existing place and route flow.

5. CRITICAL PATHS
We assume familiarity with a netlist defined as either a directed
hypergraph (i.e. nodes and nets) or as a directed graph, and with
the terms fanout and fanin applied to a node. For this paper,
nodes consist of primary inputs and outputs, combinatorial 4-
LUTs and registered 4-LUTs (LUT-DFF pair), carry or cascade-
chain elements, and ESB memories.

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
1
6

..

.

Mega
LAB

E
S
B

L
A
B
0

L
A
B
16

...Mega
LAB

...

E
S
B

L
A
B
0

L
A
B
16

...Mega
LAB

E
S
B

L
A
B
0

L
A
B
16

...Mega
LAB

E
S
B

L
A
B
0

L
A
B
16

...Mega
LAB

...

S

H V

GH

local

VVHH

Figure 1. APEX device, top-level view, showing
horizontal (H), vertical (V), MegaLab-horizontal
(GH) and LAB-local (local) routing lines.

5

A delay source in a netlist is either a primary input or the output
of a registered LUT. A delay destination is either a primary
output or the output of a registered LUT. A path is a directed
path from a delay source to a delay destination, and its length or
delay is the sum of the delays on its constituent nodes and edges.
Typically, since a large proportion of nodes (LUTs) are associated
with a DFF, there are a quadratic number of source-destination
pairs in a nelist. Both theoretically and empirically there are an
exponential number of paths in a netlist and they cannot be
enumerated efficiently. However, it is not hard to count either the
number of paths or the number of paths going through a given
node or wire, or to determine the length of the longest path
through a node or wire.

Logic delays are always known for the architecture. Since
interconnect delays for the architecture are known for a fixed
distance and load, a fully placed netlist has a deterministic timing
analysis. We assume a partially placed netlist has a known timing
analysis only if the placement algorithm gives the timing analyzer
an estimate of unknown interconnect delays for edges not yet
routed.

Given an annotation of nodes and edges with their electrical delay
we can compute, for each node and edge, the maximum delay
from a source or to a destination, and hence the length of the
longest path through that node or edge. Given a target delay
(constraint) on an A to B path, we define the slack delay for that
path as the (most stringent) constraint minus the actual delay of
the path. For a given node or edge, we define the slack of the
node or edge to be the minimum slack over all paths which
contain the node or edge. All these values are well-defined in a
synchronous netlist, and computable in linear time with several
graph traversals. Asynchronous circuits, either by design or
arising from false paths, are common in practice but are beyond
the scope of this discussion.

A critical path is one which has the minimum slack over all paths.
In a single-clock system with a single global fmax (register-
register) delay constraint, this is equivalent to the path with the
maximum delay. In a multi-clock system with different fmax

specifications for different clocks, or with specific point-to-point
path constraints, minimum slack is not equivalent to maximum
delay. The goal of a timing-driven compilation is to maximize the
worst-case (minimum) slack, not to minimize the worst-case
(maximum) delay. However, for simplicity we will sometimes
equate the two in discussion.

Since our goal is to modify a recursive k-way partitioning based
algorithm, the obvious approach is to change the un-weighted
partitioner into a weighted partitioner, and assign greater weight
to cutting an edge which is on a critical path. The basic difficulty
with this approach is in identifying the critical paths before the
netlist has been placed.

6. ADAPTIVE DELAY ESTIMATION:
PHASE LOCAL
The greatest issue with recursive partitioning as an algorithm for
timing-driven placement is that the true path delays are not known
in the early stages of placement. Thus the algorithm can minimize
the number of critical nets which are cut early on, yet these nets
are not actually the true critical nets by the time we are multiple
levels deep in the placement. This problem is intrinsic whether or
not the target architecture is hierarchical, but is exacerbated by
non-uniform delays in a hierarchical part.

As an example, consider the two paths shown in Figure 3 during
an early phase of the placement. If delay annotation assumes a
unit-delay model, then the shorter path A will be largely ignored,
and thus cut as many as 3 times. In a hierarchical device, this can
be catastrophic to overall delay. However, if we consider the cut
edge or net at its true value (e.g. 11 units) and all non-cuts as a
local delay (1), the partitioner would successfully balance the
number of cuts to (say) two in each path. When the various
components of the B path are cut in later phases (unless the
remainder of the path fits in the lowest hierarchy this would be
required), the initial cuts plus the later cuts will result in a poor
timing. In order to identify the correct critical nets for the
partitioner, we really need to know which nets will later receive
the less expensive cuts of lower hierarchy boundaries.

This motivates our concept of phase-local. The phase local is an
estimate of possible delays which, using statistical characteristics
of previously placed netlists, gives the most probable result of
later placement phases. This allows the standard algorithm
outlined above to achieve a higher quality placement without that
algorithm actually being modified. An additional feature of this
technique is that by combining pessimistic and typical estimators

Figure 2. Illustration of recursive partitioning
placement for APEX devices.

MegaLab columns

(only one octant shown) Octants

Horizontal Halves

13 rows

A

B

 Figure 3. Two different length paths, early in placement.

6

one can further increase the efficiency of the overall algorithm.
As further benefit the estimator is both conceptually
understandable and easy to implement in software.

6.1 Phase Local
Definition: For a hierarchical architecture with h levels of
hierarchy define the phase-local for phase i to be a weighted
average of the probabilistic delays of all stages i+1 to h.

We have calculated, for a range of benchmark designs, a
distribution representing for each “local” connection after phase i,
and the resulting average number of H, V, GH and local wires
occurring for that connection after complete placement. Though
not crucial, it is of practical benefit to calculate this value
statistically.

For our example of the APEX 20K400,

 phase_local(1) = f1(HH+VV+gh+loc, H+VV+gh+loc,
H+V+gh+loc, …, gh+loc, loc),

 phase_local(2) = f2(H+VV+gh+loc, H+V+gh
V+gh+loc, …, gh+loc, loc),

 and so on. The value phase_local(i) refers to the value of a
local delay in the i’th partitioning phase.

We found that a simple linear combination of future cut-delays
weighted by their empirical probability of occurrence was
sufficient for the first version of the algorithm, i.e. the function f1
is prob(HH)*delay(HH) + prob(VV)*delay(VV), … For f2 the
HH cuts are now known exactly and do not appear in the
calculation. All probabilities adjust accordingly. We hope to do
future experimentation whereby we tailor the definition of
phase_local to individual characteristics of the design. This is
because the probabilities of future cuts are also dependent on the
relative slack distribution of edges, on net-size (fanout), on
placement constraints (which we currently honour in the
placement, but don’t take into account for the phase local on other
nets) and on the degree of pipelining. Because of pipelining, a
design with a short unit-delay has a very different slack profile
and cut probability distribution than one with much longer unit-
delay and many carry-chains.

6.2 Pessimistic Phase Local
In the same manner as we statistically (or otherwise) calculate the
typical or expected phase-local, we can calculate the pessimistic
phase-local, defined as the weighted average based on the 95th
percentile wires in the experimental trials (rather than the average,
or 50th percentile wires).

The phase-local value defines the expected delay of an edge, and
hence determines the expected critical path delay for the netlist as
a whole. The pessimistic-phase-local determines the resulting
delay and netlist delay the edges on this path receive worse than
average behaviour in future cuts (which will always be true for
some paths and edges).

6.3 Choosing which edges to weight
By judicious choice of delay annotation we can further refine the
benefits of using the phase local. The following pseudo-code
outlines an algorithm which is much more successful than the

basic approach at marking the “correct” edges. The critical
percentage (cpct) is a parameter which will be discussed further in
Section 7.

For phase i with delay(x), phase_local(i), and
pessimistic_phase_local (i) as defined above:

1. Delay-annotate the netlist using phase_local for all unknown
connections, and determine the critical path slack.

2. Define threshold = critical_slack + cpct * slack_range.
3. Delay-annotate the netlist using pessimistic_phase_local.
4. For each wire in the netlist

if (x.slack < threshold) then
 mark x as critical.
5. Weight critical edges and partition.

The purpose of the two delay annotations is to ensure that we
mark all potentially critical edges, in addition to those which are
actually critical in the current predicted path. Essentially we mark
all edges which, under a non-optimal future partition, will be
within cpct of the current estimated critical path. By doing so, we
minimize the possiblity that the critical path will change
unexpectedly as a result of an unidentified edge being cut.

Using the phase_local alone, we find that we get an average 10%
or more benefit in overall design performance. This gain is
virtually free, since the use of phase_local is a minor addition to
the algorithm and incurs an insignificant compile-time penalty.

7. PHASE LOOPS
Though phase-local allows us to better target the true critical
edges, we find that an additional heuristic is required to identify
the changing nature of critical paths during the compilation.

Before we can discuss modifying the weights put on critical nets,
we need to discuss critical path and slack distribution in more
detail.

7.1 k%-Critical paths and edges
The most interesting empirical fact about the majority of designs
which we encounter is that most of the netlist is not critical.
Though there are specific exceptions (e.g. heavily pipelined
designs with very short unit-delay), it is typical that the placement
of the majority of cells is only important to the goal of routabiltiy,
and does not affect timing. This is the basic motivation behind a
recursive-partitioning approach, and for using a hierarchical
architecture in the first place – if we can keep the critical path
within hierarchy levels, and have only non-critical nets cross
boundaries then we have an overall more efficient solution.

The critical path (or paths) is the path with the least slack (as
defined in Section 5). Define a k% critical path as any path with
(100-k)% of the worst-case slack, measured over the (max-slack –
min-slack) range of all paths. Thus a “90% critical” path has
slack equal to 10% of the most critical path’s delay. The purpose
of scaling is so that the algorithm can optimize min-slack rather
than quitting as soon as all positive slack is achieved in the netlist.
(Note that this is necessary for benchmarking purposes, but any
algorithm could be parameterized to quit once user timing
constraints are met.) Similarly a k% critical node (edge) is
defined as a path with slack (100-k)% of the worst-case node

7

(edge) over the same range. Note that, by definition, all nodes
(edges) on a k% critical path are k% or more critical.

Figure 4 shows two idealized slack distributions or profiles. In
both cases the y-axis is the number of edges, and the x-axis is
decreasing path slack. The situation of Figure 4(a) is the typical
slack profile, where a relatively few number of edges are close to
critical, and the majority of edges are in the 40% to 60% critical
range. As we partition the netlist, edges are cut (delays
introduced), and the curve tends to shift to the right. Our goal is
to minimize the shifting of the tail as much as possible by cutting
non-critical edges (in the heavy part of the curve), but not the
critical edges in the tail. Some strongly pipelined netlists, such as
shown in Figure 4(b) can have flat and short delay profiles, with
upwards of 25% of edges critical. However, we find that the
majority of netlists (more than 90% of the designs we have been
seeing) are the form of Figure 4(a), and can be successfully
attacked by judicious labeling of the most critical edges or nets.

7.2 Critical-edge Weighting
It is reasonable to define a parameter which specifies the
boundary between critical and non-critical edges, weighting all
edges with slack less than this value, and not weighting edges
which have slack above that value. However the tuning of such a
parameter is very important to the quality of the solution. The
goals of routability and minimizing critical cuts are conflicting,
and marking too many edges can cause the design to fail
placement altogether. If too many edges are marked as critical,
then we also increase the chance that a very critical edge is
missed; if too few than we could end up cutting a potentially
critical edge.

After experimentation, we chose to use two basic parameters to
control the weighting operation: Define cpct or critical-percent-
threshold as the dividing line between critical and non-critical
edges in the current phase. Similarly, define npct as the maximum
raw percentage of edges which may be weighted in the current
phase. In the first version of the algorithm, we settled on 90% for
cpct and 15% for npct after considerable empirical analysis.
Some experiments have been done to consider values which
change dynamically with the structure of the problem, and we
expect to incorporate at least some aspects of dynamic
parameterization at a later date.

Edge-weighting is not a binary consideration. We find it more
beneficial to scale the weights within the critical range smoothly,
so that a cpct-critical edge is virtually unweighted, whereas a
100% critical edge is heavily weighted. In the initial version of
the algorithm we chose a simple linear weighting between 1 and a
maximum value (1000 for the particular density at hand).

The exact tuning of parameters such as cpct and npct, and
constants chosen for weighting ranges are largely architecture and
density dependent. Initial guesses at such parameters can achieve
about half the gain of tuned parameters. This shows both that the
general strategy is effective and also that tuning is required for the
best possible solution.

7.3 Edge-Slack Migration
To this point we have assumed that the choice of critical edges
using phase-local and the above parameterization is correct. In
addition to the fact that the operation is heuristic, and can choose
the critical edges poorly, we find that the critical path profile will

edges

Max Min slack

edges

Max Min slack

 a) Typical b) Pipelined (rare)

 Figure 4. Idealized slack profile.

0

50

10 0

15 0

D ec rea s in g s la ck (1 ns in te rva l)

C ritica l

m in -s lac k

Figure 5(a). Initial identification of critical edges.

0

50

10 0

15 0

20 0

25 0

D ecrea s in g s la ck (1 ns in te rva l)

N ew
C ritica l

P rev io u sly
C ritica l

Figure 5(b). Identification of secondary critical-edge
set after first partitioning attempt.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

D e c re a s in g S la c k (1 n s in te rv a l)

C r it ic a l

Figure 5(c). Result of second partition, meeting the
original estimated min_slack.

8

often migrate or change, due either to better or worse than
predicted partitions, or simply due to the idiosyncrasies of
particular netlists.

To solve this problem, we perform the operation of each phase
several times (depending on the phase, and the results achieved).
In-between successive attempts at a phase we re-analyze the
distribution of critical paths, modify weights, introduce new
(previously unweighted) edges into the critical set, and repeat the
partitioning step to attempt a better result. This is quite different
from simple multi-start partitioning, because we modify the
problem, rather than simply partitioning multiple times with
different initial partitions.

Figure 5(a) shows the tail end of the slack profile at the beginning
of the current phase on an example netlist. The edges above cpct
critical are identified as critical, and weighted as previously
discussed. The critical set shown is from the cpct threshold down
to min-slack. Our goal is to cut as few as possible of the edges in
this range.

After partitioning we perform a new timing analysis and analyze
the results, as shown in Figure 5(b). Without changing the actual
phase-local, note that we can only do worse than the original min-
slack (by cutting a critical edge). Thus the paths which do contain
critical cuts are now beyond the min-slack predicted by
phase_local. We then introduce new weighted edges into the
critical set based on the previous threshold and re-partition.
Previously weighted edges remain.

Figure 5(c) shows the final result. By weighting the new critical
edges and repartitioning, we have no cut-edges in the critical set,
and have achieved the best possible minimum slack for this phase.

8. OVERALL ALGORITHM
The basic algorithm follows the recursive partitioning phases as
outlined in Section 4. The timing-driven aspects lie in the
addition of edge weights to the partitioner as discussed in the
previous sections.

The resulting algorithm for a generic phase is thus as follows:

1. Compute phase_local, and delay annotate the netlist as
shown in the algorithm of Section 6.

2. Compute a timing analysis and resulting edge-slacks.
3. Apply scaled weights to at most npct critical edges with slack

less that cpct, as discussed in Section 7.
4. Perform the weighted partition.
5. Adjust the critical edge set and weights for phase_loops, as

discussed in Section 7.
6. Repeat steps 1 to 5 for the parameterized number of

phase_loops allocated to this phase, then choose the best
result and continue to the next phase.

Not discussed in this paper are error-recovery steps. If a given
step fails to find an acceptable solution, we will choose to return
to a previous phase for a more (or less) aggressive solution.

The enforcement of carry-chain cliquing and user assignments are
maintained through legality constraints passed on to the
partitioner which forbid certain moves. Similarly, we count and

balance secondary signals, carry chains and cliques as an intrinsic
part of the move cost function.

8.1 Netlist Partitioning
Since all of the above discussion involves breaking down the
timing problem into a series of weighted graph partitioning
problems, it is important to discuss some of the implementation
details of our partitioning subsystem.

Our partitioner currently uses a Sanchis K-way partitioning
algorithm [13]. We chose this algorithm because it is simple to
implement and is reasonably fast. We made a number of
improvements and additions to the published algorithm, most
notably to support a wide variety of constraints. We also support
arbitrary edge weights between an output pin / input pin pair on a
net. This is because timing algorithms (and ours in particular)
want to optimize point-to-point delays rather than the delay of the
entire net.

To improve partitioning quality, we have generalized the loose-
net removal ideas of Cong et. al. [4] for use in a k-way partitioner.
We found that loose net removal was particularly good at
minimizing the cutweight (that is, the sum of the weights on all
cut edges), and it also gives us a useful reduction in the average
cutsize. We found, however, that a number of implementation
details were necessary to deal with compile-time issues.

In order to deal with legality issues (secondary signals, carry
chains, compound cells or cliques, etc.) which cause move-gains
to be non-linear, we have implemented a multi-heap version of the
Sanchis move pool which allows us to more efficiently search for
best moves in the presence of competing metrics.

8.2 Tuning for Less Aggressive TDC
Since our overall algorithm is a combination of many different
additions – phase_local, loose nets, looping, etc, we find that it is
inherently tunable. That is, we can trade off improved
performance against compile time. With modifications to reduce
the number of loops and turn loose-net code off in later stages
when it is less effective, we are able to produce a median result
which splits the difference between full and no TDC effort. This
allows users who are easily achieving their timing requirements
with the less aggressive software to minimize their compile time.

9. EMPIRICAL RESULTS
To illustrate the effects of our timing-driven improvements, we
compiled 20 industry designs through the software. These
designs contain between 60% and 100% of the number of LEs in
the example device (16,640 4-input LUTs). All designs contain
carry-chains, and about half use embedded memory features of the
device.

As mentioned in the previous section, there are three different
settings which we compare: “Off” means the basic algorithm of
Section 4 is used. “Full algorithm” means the complete
implementation of the techniques described in this paper were
applied, and “less aggressive” refers to the partial implementation
described in the previous section.

9

We report the percentage change2 in fmax, and total compile time.
Fitter time represents the time spent specifically in the place-and-
route tool. Total time represents the “user experience” –
including time spent in netlist extraction, synthesis and the final
timing analysis. Fmax for this benchmarking exercise, is defined
as speed at which the slowest clock in the device will operate for
the design.

Although the software is capable of placing pins in more
advantageous positions for both performance and routability, it is
usually the case that user pin-assignments are fixed beforehand by
board layout. To model this, we pre-process each design with a
random assignment of pins.

Table 1 shows the overall results. On average, the full
implementation of our algorithm shows a 38.5% improvement in

2 Raw or absolute fmax is a function of process generation,

speed-grade, and designer objectives. Since this is a research
rather than marketing communication we chose also not to
display raw compile times. Typical compile times on our desk-
top machines for this particular device range from as little as 15
minutes to upwards of several hours, depending completely on
the difficulty of the particular design chosen. Thus a 3X
slowdown in the overall compilation time is a very acceptable
price for the performance gains we report.

fmax at a cost of 265% place and route time, or 3.65X the “no
TDC” compile time. Since outliers typically tend to dominate the
average, a more descriptive metric of the tradeoff is the median,
which shows 36.3% better fmax at a cost of 2.87X run-time. In
terms of total compile time the typical or median user sees a
1.89X compile time penalty.

With the less-aggressive setting we see roughly half the
performance gain (22.9% average, 14.6% median), and
comparably half the compile-time penalty. Since this is a tuned
option, that behaviour is by design rather than coincidence.

We note that in one case (3 for less aggressive) the timing-driven
algorithm achieved worse results than the “no TDC” version. We
expect outliers to disappear once the algorithm has been tuned for
special cases. Similarly, there are several cases where the TDC
algorithm reports better compile time. We attribute this primarily
to more aggressive partitioning in the TDC flow achieving a more
routable placement and shortening routing time.

Though the work reported on here contrasts the “no TDC” case to
the “with TDC” case, we should point out a preliminary version of
TDC in the previous version of the software achieved roughly 5-
10% speedup for 2X compile time cost. Relative to that algorithm
our TDC is about 30% better for 2X compile time (i.e. there was a
release of the production Quartus software in-between the start
and finish of the TDC project as a whole.)

10. CONCLUSIONS
In this paper we have presented a discussion of timing-driven
compilation for hierarchical programmable logic devices, and
given an algorithm to effect timing-driven compilation. Though
we used the example of an APEX 20K device as motivation, the
work and results are applicable both to hierarchical architectures
in general, or to recursive partitioning approaches on any
architecture.

As components of the algorithm, we gave a new method
(phase_local) for estimating critical path delay for partitioning
steps which have not yet occurred, and for adapting the selection
of critical paths (phase_loops) across multiple phase attempts,
which underlies the flow. Together, these allow us to better target
the true critical nets and achieve a higher-quality solution. We
also discussed various implementation details that improve the
underlying graph partitioning algorithm.

The benefits of the complete algorithm are clear and significant:
we report a 38.5% average (36.3% median) improvement in
register to register performance with acceptable (3.7X average,
2.9X median) compile time penalty. A less aggressive tuning of
the algorithm gives half the performance gain, with half the
compile-time cost.

The algorithm herein represents the only published placement
method for hierarchical FPGA or PLD devices at current density
ranges and containing modern device features. Though we report
on designs for a 16,600 LE part, the software successfully
operates on designs reaching 50,000 LEs with feasible compile
time.

The work presented in this paper was implemented for the
February 2000 (Ver. 00.02) release of Altera’s Quartus software.
In Quartus the parameterizations discussed here are referred to as

Table 1. Fmax (performance) and compile time results for
full and partial TDC algorithm

 LESS AGGRESSIVE FULL ALGORITHM

design ∆∆∆∆ fmax ∆∆∆∆ ftime ∆∆∆∆ ttime ∆∆∆∆ fmax ∆∆∆∆ ftime ∆∆∆∆ ttime

des01 24.1% -7.6% -6.8% 39.8% 12.7% 10.3%

des02 29.9% 33.3% 11.0% 54.7% 406.7% 82.2%

des03 -5.3% 69.9% 67.4% 26.9% -0.5% -1.0%

des04 -0.3% 0.0% 7.1% 40.4% 60.0% 60.7%

des05 2.8% 42.9% 20.0% 6.1% 71.4% 50.0%

des06 23.9% 95.7% 66.2% 32.8% 178.3% 123.1%

des07 0.3% 520.0% 471.4% 1.1% 100.0% 96.4%

des08 4.8% -92.0% -80.6% 32.5% 68.8% 60.7%

des09 -34.8% 0.0% -1.8% -34.6% 63.6% 8.9%

des10 15.6% 88.9% 66.0% 24.9% 816.7% 586.0%

des11 137.8% 233.3% 95.1% 173.3% 666.7% 285.4%

des12 6.6% 945.5% 678.3% 50.2% 197.0% 139.1%

des13 8.7% 416.1% 320.0% 12.1% 741.9% 575.0%

des14 46.2% 361.2% 218.4% 56.5% 197.4% 114.7%

des15 78.5% 62.5% 13.7% 70.4% 368.8% 84.9%

des16 30.2% 72.0% 51.2% 48.7% 144.0% 93.0%

des17 9.1% 138.1% 8.4% 11.3% 209.5% 24.2%

des18 13.5% 20.0% 12.5% 20.9% 52.0% 32.5%

des19 41.0% 37.5% 33.9% 61.4% 266.7% 230.4%

des20 25.1% 162.5% 152.6% 41.0% 684.1% 632.6%

average 22.9% 160.0% 110.2% 38.5% 265.3% 164.5%

median 14.6% 70.9% 42.5% 36.3% 187.6% 89.0%

10

TDC effort “off”, “normal” and “extra-effort” compiler settings.
Interested readers can independently verify or experiment with the
production software, but should be aware that the code is under
constant improvement and the performance vs. cost
parameterizations and the algorithms themselves may be modified
significantly in later versions.

11. ACKNOWLEDGMENTS
The original algorithm for partitioning-based placement that we
modified is due to John Tse and others at Altera. David Karchmer
and Dan Stellenberg provided many new hooks for timing
analysis and delay estimation which were required for this work.
Thanks to David Karchmer, Jay Schleicher, David Mendel and
Mario Khalaf for contributing their ideas and discussion.

12. REFERENCES
[1] Altera Corp. Device Data Book, 1999.
[2] D.W. Bennett, E.F. Dellinger, W.A. Manaker, Jr, C.M.

Stern, W.R.Troxel and J.T. Young, “Frequency-Driven
Layout and Method for Field-Programmable Gate Arrays”,
US Patent #5,659,484, Aug. 19, 1997.

[3] V. Betz, “Architecture and CAD for Speed and Area
Optimization of FPGAs”, Ph.D. Dissertation, University of
Toronto, 1998.

[4] J. Cong, H.P. Li, S.K. Li, T.Shibuya and D. Xu, “Large
Scale Circuit Partitioning with Loose/Stable Net Removal
and Signal Flow Based Clustering”, Proc. IEEE Int’l Conf.
On Computer-Aided Design (ICCAD), pp. 441-446, Nov ,
1997.

[5] W.E. Donath, R.J. Norman, B.K. Agrawal, S.E. Bello, S.Y.
Han, J.M. Kurtzberg, P. Lowy and R.I. McMillan,
“Timing Driven Placement Using Complete Path Delays”,
in Proc. 27th ACM/IEEE Design Automation Conference,
pp. 84-89, 1990.

[6] C. Ebeling, L. McMurchie, S. Hauck and S. Burns,
“Placement and Routing Tools for the Triptych FPGA”,
IEEE Trans. On VLSI, Vol. 3, No. 4, Dec 1995.

[7] J. Frankle, “Iterative and Adaptive Slack Allocation for
Performance-Driven Layout and FPGA Routing”, in Proc.
29th ACM/IEEE Design Automation Conference, pp 536-
542, 1992.

[8] M. Hutton, “A Method for Adaptive Critical Path Delay
Estimation During Timing-Driven Placement for
Hierarchical Programmable Logic Devices”, US Patent
Pending.

[9] P. Leventis, “Placement algorithms and routing
architecture for long-line based FPGAs”, Bachelor thesis,
University of Toronto, 1999.

[10] A. Marquardt, V. Betz and J. Rose, “Timing-Driven
Placement for FPGAs”, in Proc. ACM/SIGDA FPGA
Conference, FPGA00, pp 203-213, 2000.

[11] S.K. Nag and R.A. Rutenbar, “Performance-Driven
Simultaneous Placement and Routing for FPGAs”. IEEE
Trans. On CAD for Integrated Circuits and Systems, Vol.
17, No. 6, pp. 499-518, June 1998.

[12] S-L Ou and M. Pedram, “Timing-driven Placement Based
on Partitioning with Dynamic Cut-net Control”, in Proc.
37th ACM/IEEE Design Automation Conference, pp 472-
476, 2000.

[13] L. Sanchis, “Multiple-way network partitoining”, IEEE
Trans. On Computers, Vol. 38, No. 1, Jan 1989.

[14] P. Sawkar and D. Thomas, “Multi-Way Partitioning for
Minimum Delay For Look-Up Table Based FPGAs”, in
Proc. 32nd ACM/IEEE Design Automation Conference, pp.
201-205, 1995.

[15] S.A. Senouci, A. Amoura, H. Krupnova and G. Saucier,
“Timing-Driven Floorplanning on Programmable
Hierarchical Targets”, in Proc. ACM/SIGDA FPGA
Conference, FPGA98, pp 85-92, 1998.

[16] S. Sutanthavibul and E. Shragowitz, “Dynamic Prediction
of Critical Paths and Nets for Constructive Timing-Driven
Placement”, in Proc. 28th ACM/IEEE Design Automation
Conference, pp. 632-635, 1991

[17] W. Swartz and C. Sechen, “Timing-Driven Placement for
Large Standard Cell Circuits”, in Proc. 32nd ACM/IEEE
Design Automation Conference, pp. 211-215, 1995.

11

