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ABSTRACT 
In this paper we discuss new techniques for timing-driven 
placement and adaptive delay computation for hierarchical PLD 
architectures. 

Our algorithm follows the natural recursive k-way partitioning-
based approach to placement on such devices.  Our contributions 
include a specification of the overall TDC (timing-driven 
compilation) algorithm, an analysis of heuristics such as a variant 
of multi-start partitioning, a new method for adaptive delay 
computation, and a discussion of the structure of critical paths and 
sub-graphs on modern PLD designs. 

This algorithm has been implemented in a production quality 
commercial tool, and we report on the results with and without the 
implementation of the new techniques.  The basic result is a 
substantial 38.5% average (36.3% median) improvement in 
register-to-register performance across a range of real designs in 
modern density ranges, at a cost of approximately 3.65X average 
(2.88X median) place-and-route CPU time.  (These improvements 
and costs are relative to the same tool prior to the efforts 
described in this paper.)  A partial implementation of the new 
algorithm shows approximately half the performance gain, with 
approximately half the compile time cost.            

Keywords 
CPLD, FPGA, algorithm, heuristic algorithm, partitioning, 
placement, timing-driven placement, programmable logic. 

1. INTRODUCTION 
We consider the problem of automatic placement of a netlist 
(graph of 4-input LUTs and FFs) into a PLD architecture that is 
fundamentally hierarchical in nature.   This type of architecture 
differs significantly in structure from a flat gate-array or island-
style part.  The goal of the work described is to quickly and easily 
introduce performance-driven compilation into an existing flow 
based on a recursive k-way partitioning placement algorithm for 
such a device.  Though we will describe the work in terms of the 

APEX family of devices from Altera, and in particular the 16400 
LE 20K400, the techniques and results should be interesting for 
any strictly hierarchical device, or for alternative architectures 
which utilize recursive partitioning as a placement technique 

Our work was intended for production software, and thus subject 
to a number of constraints which might not be present in a purely 
research context. 

Firstly, compile time is important.  Though our primary goal is to 
increase design performance with an expected cost in compile 
time, an O(n2) algorithm would represent multiple days of 
compilation time for a 16000 LE part, and would be completely 
infeasible on a 50000 LE part (the largest device currently 
available).   Thus we concentrate only on approaches which can 
be implemented in near-linear time.  For our example 16,000 LE 
part, a 2 hour compile time should be rare, and typical time should 
be an hour or less. 

Secondly, our delay annotation and timing analysis must support 
multiple delay constraints, both global and point-to-point.  This 
means the algorithm must maximize the minimum delay slack 
(constraint minus actual delay) rather than simply the length of the 
longest delay path (because the slowest clock may not be the most 
critical), and must be amenable to more than one constraint. 

Thirdly, the algorithm must incorporate a number of important 
modern architectural features.  Carry and cascade-chain structures 
are of absolute importance.  They modify (or “would modify” if 
they were not present) the critical path of a majority of designs, 
perturb the distribution of critical paths, and affect the 
effectiveness and hence choice of algorithm.  

Lastly, we constrain ourselves to a solution that can be 
implemented in a short amount of person time.   Since  the goals 
of our project were to quickly introduce better performance from 
the tool, this means working within the basic confines of an 
existing recursive k-way partitioning placement.  Though it is 
feasible in general to explore completely different approaches 
(e.g. simulated annealing, quadratic or force-directed placement, 
etc.) these would require a longer-term project in which large 
parts of the code could be re-written. 

The structure of the paper is as follows.  In Section 2 we survey 
some related previous work.  Sections 3 and 4 introduce our 
problem and target architecture and outline a basic placement 
algorithm.  Sections 5 to 8 discuss the distribution and structure of 
critical paths, introduce our overall changes to effect timing-
driven compilation, define our adaptive delay computation, and 
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finally give the complete algorithm.  Section 9 gives empirical 
results demonstrating the efficacy of our techniques, and we 
conclude in Section 10. 

2. RELATED WORK 
Early papers concentrated primarily on gate-array or standard-cell 
like structures, and relatively small devices.  Donath et. al. [5] 
though primarily discussing delay calculation for timing-driven 
compilation use a binomial probability distribution to identify 
possible routes from A to B in a gate-array-like part.  
Sutanthavibul and Shragowitz  [16] compute the k most critical 
paths and iteratively re-place and re-route these paths until timing 
convergence is achieved.  They use a constructive placement 
method, and also use path slack  calculation to score these paths.   
Frankel [7] describes a “limit bumping” algorithm.  Basically this 
is a slack allocation method, whereby slack calculated for a path is 
distributed evenly among its constituent nets.   Bennett et. al. [2] 
follow a largely similar approach, covering more implementation 
details of a complete system.  The primary target device in all 
these cases is a grid or gate-array-like continuous architecture, and 
except the last, all of these works were created for very low-
density designs by today’s standards. 

Swartz and Sechen [17] (TimberWolf) and Ebeling et. al. [6] use 
simulated annealing as a tool for timing-driven placement.  In the 
former, the target is standard-cell devices, in the latter the 
Triptych FPGA architecture.  Nag and Rutenbar [11] also use 
simulated annealing.  They attempt the placement and routing 
problem simultaneously with the goal of achieving better 
performance, but at a much higher computation time. 

More recent work by Betz [3] and by Marquardt, Betz, and Rose 
[10] is the VPR tool.  VPR is a simulated annealing based tool for 
placement into island-style FPGAs.  The tool uses carefully 
crafted and tuned cost functions to achieve high-quality timing 
and placement solutions in reasonable time; these make it the 
current “champion” among academic tools for placement of 
MCNC and other public-domain benchmark circuits.  However, 
published versions of VPR do not handle carry-chains or multiple 
delay constraints, and apply primarily to non-hierarchical, island-
style architectures.   Extensions to this work [9] have addressed 
row-based architectures, but not fully hierarchical devices. 

Senouci et. al. [15] address the issue of  timing-driven placement 
on hierarchical targets.  Though this work is interesting for 
understanding the structure of critical paths and cones, a primary 
operation in their algorithm is to compute predecessor cones of all 
delay destinations.  Since they consider only relatively small 
combinatorial circuits this computation is bounded by  O(n * 
number of primary outputs), which is feasible.  However, typically 
industrial designs have a significant proportion of flip-flops, so 
for sequential circuits this computation is inherently O(n2) in the 
design size and thus too expensive.   An additional path-based 
work by Sawkar and Thomas [14] is also inherently O(n2), and 
does not suit our purposes for reasonable run-time. 

Recently, Ou and Pedram [12] gave a timing-driven placement 
algorithm for gate arrays based on a mixture of partitioning and 
quadratic placement.  One of the heuristic goals in their algorithm 
is to minimize the number of times a net is cut in successive 
partitions. 

3. HIERARCHICAL  ARCHITECTURES 
The problem of placement into a hierarchical device is 
fundamentally different than placement into a flat or “island” style 
device.  Though logic-cell delays can be assumed to be identical, 
island-style interconnect is closely approximated by geometric 
proximity, whereas delay in the hierarchical part is based upon 
hierarchical containment, which follows a step function rather 
than a continuous growth.  Basically if two signals are within the 
same hierarchy level, it doesn’t really matter where within that 
hierarchy they are.  Similarly, geometrically close cells incur 
greater delay to get to other locations outside their hierarchical 
boundary than to distant cells within their hierarchical boundary.  
Depending on the degree of hierarchy in the part (since we 
assume signals are buffered at connection points), high-fanout 
nets may or may not be of major concern.   

Thus, unlike a gate-array or standard-cell like part, a hierarchical 
architecture has a “natural” placement algorithm based on 
recursive partitioning.  We will discuss this in terms of our 
example device, which we describe now. 

3.1 The APEX Programmable Logic Device 
Figure 1 shows a diagram of the APEX 20K400 programmable 
logic device, a commercial product from Altera Corporation. The 
basic logic-element (LE) is a 4-input LUT and DFF pair .  Groups 
of 10 LEs are grouped into a logic-array-block or LAB.  
Interconnect within a LAB is complete, meaning that a connection 
from the output of any LE to the input of another LE in its LAB 
always exists, and any signal entering the input region can reach 
every LAB.  

Groups of 16 LABs form a MegaLab.  Interconnect within a 
MegaLab requires an LE to drive a GH (MegaLab global H) line, 
a horizontal line the width of the MegaLab, which switches into 
the input region of any other LAB in the same MegaLab.  
Adjacent LABs have the ability to interleave their input regions, 
so an LE in LAB i can usually drive LAB i+1 without using a GH 
line.  A 20K400 MegaLab contains 279 GH lines. 

The top-level architecture is a 4 by 26 array of MegaLabs.  
Communication between MegaLabs is accomplished by global H 
(horizontal) and V (vertical) wires, which switch at their 
intersection points.  The H and V lines are segmented by a bi-
directional segmentation buffer at the horizontal and vertical 
centers of the chip.  We will denote the use of a single (half-chip) 
H or V line as H or V and a double or full-chip line through the 
segmentation buffer as HH or VV.  In the APEX architecture, H 
and V lines cannot drive LEs directly; they drive a GH which then 
functions as in the MegaLab case above (so an H delay implies an 
additional GH delay).  Because of segmentation of the H and V 
lines, further hierarchies of  same-row, same-MegaLab-column 
and same-quadrant are implied for both a routability and timing 
purposes.  The 20K400 contains 100 H lines per MegaLab row, 
and 80 V lines per LAB-column (80*16 per MegaLab column). 

We can thus categorize the delay of a point-to-point connection as 
“local” for same-LAB connections, GH+local for same-MegaLab, 
H+GH+local for adjacent horizontal  MegaLabs, V+GH+local for 
same octant of the chip, and V+H+GH+local for same-quadrant of 
the chip.  The maximum (worst-case) delay is an 
HH+VV+GH+local connection. 
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Roughly1, a local consumes 1 unit of delay, a GH 2 units of delay, 
H or V 2 units of delay, and a HH or VV 4 units of delay.  Thus 
the ratio of the shortest (local) to longest (HH+VV+GH+local) 
connection is roughly 1 to 11.  

The LEs within a LAB can be configured with additional circuitry 
to form a carry-chain, which is significantly faster than general-
purpose interconnect for implementing various arithmetic 
functions.  The particular structure is not all that important to the 
software, as long as we can properly estimate delay and place 
arithmetic cells in the appropriately constrained locations.  A 
carry chain wire is considered to be part of the logic and thus, for 
a legal placement, can be considered to have constant delay.  
Multi-LAB carry-chains (greater than 10 cells) form important 
placement problems, because they require the entire carry-chain to 
be placed in relative position.   

Each MegaLab also has a 2K-bit configurable RAM, which is 
accessible in much  the same way as a LAB.  The delay through a 
RAM is also considered to be a fixed value independent of 
placement.  However the choice of which MegaLab contains a 
particular logical RAM and the routing of address and data lines 
to the RAM are part of the placement problem. 

The schematic details of carry-chains, cascade chains, and 
embedded RAM are beyond the scope of this paper (see [1] for 
details). 

                                                                 
1 The use of approximate delays is for easier exposition and 

because the ratios change with different aspect ratios across the 
range of the APEX family.  Since this particular device is an 
example only, the interested reader can  refer to the Altera data-
book [1] or Altera software for exact wire delays on this or 
other specific parts and speed-grades. 

4. BASIC PLACEMENT ALGORITHM 
The natural way to place a netlist in this type of part is to do a 
recursive k-way partition.  Each step will be referred to as a phase 
in the overall algorithm.  Though the effectiveness of this type of 
algorithm is greatly affected by implementation details, the basic 
flow is as follows. 

Phase 1: Partition the netlist into a left and right horizontal halves, 
minimizing the overall cut-size (number of HH wires). 

Phase 2: Bi-partition each half independently, dividing the netlist 
into horizontal quarters (MegaLab columns) to minimize cut-size 
(H lines). 

Phase 3: Partition the entire netlist into a top and bottom half, 
minimizing cut-size (VV wires) while respecting the MegaLab 
columns previously assigned.  The result is 8 octants. 

Phase 4: Partition the top and bottom netlists 13-ways into  rows 
to minimize the number of connections (V wires) while respecting 
the previous vertical partitions. 

Phase 5: Partition MegaLabs into LABs, trying to balance V-line 
usage in individual columns, and the input-region of each LAB. 

This recursive partitioning approach is illustrated in Figure 2. 

In each of these partitioning steps, the implementation details 
must count and balance secondary signals (clock, clear, enable), 
RAMs, and logic cells separately, as the resulting partition must 
be correct for all types of logic.  Because carry-chains and other 
data-path elements have regular output, care must be taken to 
balance their relative placement to balance local congestion.  As 
mentioned earlier, this can be a particularly difficult problem, 
since we often see more arithmetic functions in modern large 
designs. 

A recursive partitioning approach has a number of advantages:  
The complexity of the algorithm is buried in the partitioning 
subroutine, a well understood problem in CAD which can be 
regularly updated independent of multiple architecture families.  
Graph partitioning algorithms are typically fast (linear) time, and 
thus the overall algorithm is also linear.  Further, the partitioner 
can be de-coupled from the architecture-specific details and easily 
updated with new partitioning technology.  The overall algorithm 
is simple and easy to maintain, even in the presence of 
heterogeneous resources and other constraints.  Because the 
production system has to deal with numerous such additions to 
deal with a real architecture, and is regularly modified to deal with 
new architecture families and devices, these latter issues are 
particularly  important. 

As previously mentioned, the primary goal of this work was to 
quickly and easily introduce a timing-driven algorithm within the 
context of the existing place and route flow. 

5. CRITICAL PATHS 
We assume familiarity with a netlist defined as either a directed 
hypergraph (i.e. nodes and nets) or as a directed graph, and with 
the terms fanout and fanin applied to a node.  For this paper, 
nodes consist of primary inputs and outputs, combinatorial 4-
LUTs and registered 4-LUTs (LUT-DFF pair), carry or cascade-
chain elements, and ESB memories. 
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Figure 1.  APEX device, top-level view, showing 
horizontal (H), vertical (V), MegaLab-horizontal 
(GH) and LAB-local (local) routing lines. 
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A delay source in a netlist is either a primary input or the output 
of a registered LUT.  A delay destination is either a primary 
output or the output of a registered LUT.  A path is a directed 
path from a delay source to a delay destination, and its length or 
delay is the sum of the delays on its constituent nodes and edges.  
Typically, since a large proportion of nodes (LUTs) are associated 
with a DFF, there are a quadratic number of  source-destination 
pairs in a nelist.  Both theoretically and empirically there are an 
exponential number of paths in a netlist and they cannot be 
enumerated efficiently.  However, it is not hard to count either the 
number of paths or the number of paths going through a given 
node or wire, or to determine the length of the longest path 
through a node or wire. 

Logic delays are always known for the architecture.  Since 
interconnect delays for the architecture are known for a fixed 
distance and load, a fully placed netlist has a deterministic timing 
analysis.  We assume a partially placed netlist has a known timing 
analysis only if the placement algorithm gives the timing analyzer 
an estimate of unknown interconnect delays for edges not yet 
routed. 

Given an annotation of nodes and edges with their electrical delay 
we can compute, for each node and edge, the maximum delay 
from a source or to a destination, and hence the length of the 
longest path through that node or edge.   Given a target delay 
(constraint) on an A to B path, we define the slack delay for that 
path as the (most stringent) constraint minus the actual delay of 
the path.  For a given node or edge, we define the slack of the 
node or edge to be the minimum slack over all paths which 
contain the node or edge.  All these values are well-defined in a 
synchronous netlist, and computable in linear time with several 
graph traversals.  Asynchronous circuits, either by design or 
arising from false paths, are common in practice but are beyond 
the scope of this discussion. 

A critical path is one which has the minimum slack over all paths.  
In a single-clock system with a single global fmax (register-
register) delay constraint, this is equivalent to the path with the 
maximum delay.  In a multi-clock system with different fmax 

specifications for different clocks, or with specific point-to-point 
path constraints, minimum slack is not equivalent to maximum 
delay.  The goal of a timing-driven compilation is to maximize the 
worst-case (minimum) slack, not to minimize the worst-case 
(maximum) delay.  However, for simplicity we will sometimes 
equate the two in discussion. 

Since our goal is to modify a recursive k-way partitioning based 
algorithm, the obvious approach is to change the un-weighted 
partitioner into a weighted partitioner, and assign greater weight 
to cutting an edge which is on a critical path.  The basic difficulty 
with this approach is in identifying the critical paths before the 
netlist has been placed. 

6. ADAPTIVE DELAY ESTIMATION: 
PHASE LOCAL 
The greatest issue with recursive partitioning as an algorithm for 
timing-driven placement is that the true path delays are not known 
in the early stages of placement.  Thus the algorithm can minimize 
the number of critical nets which are cut early on, yet these nets 
are not actually the true critical nets by the time we are multiple 
levels deep in the placement.  This problem is intrinsic whether or 
not the target architecture is hierarchical, but is exacerbated by 
non-uniform delays in a hierarchical part. 

As an example, consider the two paths shown in Figure 3 during 
an early phase of the placement.  If delay annotation assumes a 
unit-delay model, then the shorter path A will be largely ignored, 
and thus cut as many as 3 times.  In a hierarchical device, this can 
be catastrophic to overall delay.  However, if we consider the cut 
edge or net at its true value (e.g. 11 units) and all non-cuts as a 
local delay (1), the partitioner would successfully balance the 
number of cuts to (say) two in each path.  When the various 
components of the B path are cut in later phases (unless the 
remainder of the path fits in the lowest hierarchy this would be 
required), the initial cuts plus the later cuts will result in a poor 
timing.   In order to identify the correct critical nets for the 
partitioner, we really need to know which nets will later receive 
the less expensive cuts of lower hierarchy boundaries. 

This motivates our concept of phase-local.   The phase local is an 
estimate of possible delays which, using statistical characteristics 
of previously placed netlists, gives the most probable result of 
later placement phases.  This allows the standard algorithm 
outlined above to achieve a higher quality placement without that 
algorithm actually being modified.  An additional feature of this 
technique is that by combining pessimistic and typical estimators 

 
Figure 2.  Illustration of recursive partitioning 
placement for APEX devices. 
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  Figure 3.  Two different length paths, early in placement. 
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one can further increase the efficiency of the overall algorithm.  
As further benefit the estimator is both conceptually 
understandable and easy to implement in software. 

6.1 Phase Local 
Definition:  For a hierarchical architecture with h levels of 
hierarchy define the phase-local for phase i to be a weighted 
average of the probabilistic delays of all stages i+1 to h. 

We have calculated, for a range of benchmark designs, a 
distribution representing for each “local” connection after phase i, 
and the resulting average number of H, V, GH and local wires 
occurring for that connection after complete placement.   Though 
not crucial, it is of practical benefit to calculate this value 
statistically. 

For our example of the APEX 20K400,  

     phase_local(1) = f1(HH+VV+gh+loc, H+VV+gh+loc,   
H+V+gh+loc, …,  gh+loc, loc), 

     phase_local(2) = f2(H+VV+gh+loc, H+V+gh 
V+gh+loc, …,  gh+loc, loc), 

     and so on.  The value phase_local(i) refers to the value of a 
local delay in the i’th partitioning phase. 

We found that a simple linear combination of future cut-delays 
weighted by their empirical probability of occurrence was 
sufficient for the first version of the algorithm, i.e. the function f1 
is prob(HH)*delay(HH) + prob(VV)*delay(VV), …   For f2 the 
HH cuts are now known exactly and do not appear in the 
calculation.  All probabilities adjust accordingly.  We hope to do 
future experimentation whereby we tailor the definition of 
phase_local to individual characteristics of the design.  This is 
because the probabilities of future cuts are also dependent on the 
relative slack distribution of edges, on net-size (fanout), on 
placement constraints (which we currently honour in the 
placement, but don’t take into account for the phase local on other 
nets) and on the degree of pipelining.  Because of pipelining, a 
design with a short unit-delay has a very different slack profile 
and cut probability distribution than one with much longer unit-
delay and many carry-chains.  

6.2 Pessimistic Phase Local 
In the same manner as we statistically (or otherwise) calculate the 
typical or expected phase-local, we can calculate the pessimistic 
phase-local, defined as the weighted average based on the 95th 
percentile wires in the experimental trials (rather than the average, 
or 50th  percentile wires). 

The phase-local value defines the expected delay of an edge, and 
hence determines the expected critical path delay for the netlist as 
a whole.  The pessimistic-phase-local determines the resulting 
delay and netlist delay the edges on this path receive worse than 
average behaviour in future cuts (which will always be true for 
some paths and edges). 

6.3 Choosing which edges to weight 
By judicious choice of delay annotation we can further refine the 
benefits of using the phase local.  The following pseudo-code 
outlines an algorithm which is much more successful than the 

basic approach at marking the “correct” edges.  The critical 
percentage (cpct) is a parameter which will be discussed further in 
Section 7. 

For phase i with delay(x), phase_local(i),  and 
pessimistic_phase_local (i) as defined above: 

1. Delay-annotate the netlist using phase_local for all unknown 
connections, and determine the critical path slack. 

2. Define threshold = critical_slack + cpct * slack_range. 
3. Delay-annotate the netlist using pessimistic_phase_local. 
4. For each wire in the netlist 

if (x.slack < threshold) then  
        mark x as critical. 
5. Weight critical edges and partition. 

The purpose of the two delay annotations is to ensure that we 
mark all potentially critical edges, in addition to those which are 
actually critical in the current predicted path.  Essentially we mark 
all edges which, under a non-optimal future partition, will be 
within cpct of the current estimated critical path.  By doing so, we 
minimize the possiblity that the critical path will change 
unexpectedly as a result of an unidentified edge being cut. 

Using the phase_local alone, we find that we get an average 10% 
or more benefit in overall design performance.  This gain is 
virtually free, since the use of phase_local is a minor addition to 
the algorithm and incurs an insignificant compile-time penalty. 

7. PHASE LOOPS 
Though phase-local allows us to better target the true critical 
edges, we find that an additional heuristic is required to identify 
the changing nature of critical paths during the compilation. 

Before we can discuss modifying the weights put on critical nets, 
we need to discuss critical path and slack distribution in more 
detail. 

7.1 k%-Critical paths and edges 
The most interesting empirical fact about the majority of designs 
which we encounter is that most of the netlist is not critical.  
Though there are specific exceptions (e.g. heavily pipelined 
designs with very short unit-delay), it is typical that the placement 
of the majority of cells is only important to the goal of routabiltiy, 
and does not affect timing.  This is the basic motivation behind a 
recursive-partitioning approach, and for using a hierarchical 
architecture in the first place – if we can keep the critical path 
within hierarchy levels, and have only non-critical nets cross 
boundaries then we have an overall more efficient solution. 

The critical path (or paths) is the path with the least slack  (as 
defined in Section 5).  Define a k% critical path as any path with 
(100-k)% of the worst-case slack, measured over the (max-slack – 
min-slack) range of all paths.  Thus a “90% critical” path has 
slack equal to 10% of the most critical path’s delay. The purpose 
of scaling is so that the algorithm can optimize min-slack rather 
than quitting as soon as all positive slack is achieved in the netlist.   
(Note that this is necessary for benchmarking purposes, but any 
algorithm could be parameterized to quit once user timing 
constraints are met.)  Similarly a k% critical node (edge) is 
defined as a path with slack (100-k)% of the worst-case node 
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(edge) over the same range.  Note that, by definition, all nodes 
(edges) on a k% critical path are k% or more critical. 

Figure 4 shows two idealized slack distributions or profiles.  In 
both cases the y-axis is the number of edges, and the x-axis is 
decreasing path slack.    The situation of Figure 4(a) is the typical 
slack profile, where a relatively few number of edges are close to 
critical, and the majority of edges are in the 40% to 60% critical 
range.  As we partition the netlist, edges are cut (delays 
introduced), and the curve tends to shift to the right.  Our goal is 
to minimize the shifting of the tail as much as possible by cutting 
non-critical edges (in the heavy part of the curve), but not the 
critical edges in the tail.  Some strongly pipelined netlists, such as 
shown in Figure 4(b) can have flat and short delay profiles, with 
upwards of 25% of edges critical.  However, we find that the 
majority of netlists (more than 90% of the designs we have been 
seeing) are the form of Figure 4(a), and can be successfully 
attacked by judicious labeling of the most critical edges or nets. 

7.2 Critical-edge Weighting 
It is reasonable to define a parameter which specifies the 
boundary between critical and non-critical edges, weighting all 
edges with slack less than this value, and not weighting edges 
which have slack above that value.  However the tuning of such a 
parameter is very important to the quality of the solution.  The 
goals of routability and minimizing critical cuts are conflicting, 
and marking too many edges can  cause the design to fail 
placement altogether.  If too many edges are marked as critical, 
then we also increase the chance that a very critical edge is 
missed; if too few than we could end up cutting a potentially 
critical edge.   

After experimentation, we chose to use two basic parameters to 
control the weighting operation:  Define cpct or critical-percent-
threshold as the dividing line between critical and non-critical 
edges in the current phase.  Similarly, define npct as the maximum 
raw percentage of edges which may be weighted in the current 
phase.   In the first version of the algorithm, we settled on 90% for 
cpct and 15% for npct after considerable empirical analysis.  
Some experiments have been done to consider values which 
change dynamically with the structure of the problem, and we 
expect to incorporate at least some aspects of dynamic 
parameterization at a later date. 

Edge-weighting is not a binary consideration.  We find it more 
beneficial to scale the weights within the critical range smoothly, 
so that a cpct-critical edge is virtually unweighted, whereas a 
100% critical edge is heavily weighted.  In the initial version of 
the algorithm we chose a simple linear weighting between 1 and a 
maximum value (1000 for the particular density at hand).   

The exact tuning of parameters such as cpct and npct, and 
constants chosen for weighting ranges are largely architecture and 
density dependent.  Initial guesses at such parameters can achieve 
about half the gain of tuned parameters.  This shows both that the 
general strategy is effective and also that tuning is required for the 
best possible solution. 
 

7.3 Edge-Slack Migration 
To this point we have assumed that the choice of critical edges 
using phase-local and the above parameterization is correct.  In 
addition to the fact that the operation is heuristic, and can choose 
the critical edges poorly, we find that the critical path profile will 

# edges

Max Min slack

# edges

Max Min slack
 

        a) Typical                         b) Pipelined (rare) 
 
     Figure 4.  Idealized slack profile. 
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Figure 5(a).  Initial identification of critical edges. 
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Figure 5(b).  Identification of secondary critical-edge 
set after first partitioning attempt. 
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Figure 5(c).  Result of second partition, meeting the 
original estimated min_slack. 
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often migrate or change, due either to better or worse than 
predicted partitions, or simply due to the idiosyncrasies  of 
particular netlists.  

To solve this problem, we perform the operation of each phase 
several times (depending on the phase, and the results achieved).  
In-between successive attempts at a phase we re-analyze the 
distribution of critical paths, modify weights, introduce new 
(previously unweighted) edges into the critical set, and repeat the 
partitioning step to attempt a better result.  This is quite different 
from simple multi-start partitioning, because we modify the 
problem, rather than simply partitioning multiple times with 
different initial partitions.   

Figure 5(a) shows the tail end of the slack profile at the beginning 
of the current phase on an example netlist.    The edges above cpct 
critical are identified as critical, and weighted as previously 
discussed.   The critical set shown is from the cpct threshold down 
to min-slack.  Our goal is to cut as few as possible of the edges in 
this range. 

After partitioning we perform a new timing analysis and analyze 
the results, as shown in Figure 5(b).   Without changing the actual 
phase-local, note that we can only do worse than the original min-
slack (by cutting a critical edge).  Thus the paths which do contain 
critical cuts are now beyond the min-slack predicted by 
phase_local.  We then introduce new weighted edges into the 
critical set based on the previous threshold and re-partition.  
Previously weighted edges remain. 

Figure 5(c) shows the final result.  By weighting the new critical 
edges and repartitioning, we have no cut-edges in the critical set, 
and have achieved the best possible minimum slack for this phase. 

8. OVERALL ALGORITHM 
The basic algorithm follows the recursive partitioning phases as 
outlined in Section 4.  The timing-driven aspects lie in the 
addition of edge weights to the partitioner as discussed in the 
previous sections. 

The resulting algorithm for a generic phase is thus as follows: 

1. Compute phase_local, and delay annotate the netlist as 
shown in the algorithm of Section 6. 

2. Compute a timing analysis and resulting edge-slacks. 
3. Apply scaled weights to at most npct critical edges with slack 

less that cpct, as discussed in Section 7. 
4. Perform the weighted partition. 
5. Adjust the critical edge set and weights for phase_loops, as 

discussed in Section 7. 
6. Repeat steps 1 to 5 for the parameterized number of 

phase_loops allocated to this phase, then choose the best 
result and continue to the next phase. 

Not discussed in this paper are error-recovery steps.  If a given 
step fails to find an acceptable solution, we will choose to return 
to a previous phase for a more (or less) aggressive solution. 

The enforcement of carry-chain cliquing and user assignments are 
maintained through legality constraints passed on to the 
partitioner which forbid certain moves.  Similarly, we count and 

balance secondary signals, carry chains and cliques as an intrinsic 
part of  the move cost function. 

8.1 Netlist Partitioning 
Since all of the above discussion involves breaking down the 
timing problem into a series of weighted graph partitioning 
problems, it is important to discuss some of the implementation 
details of our partitioning subsystem. 

Our partitioner currently uses a Sanchis K-way partitioning 
algorithm [13].  We chose this algorithm because it is simple to 
implement and is reasonably fast. We made a number of 
improvements and additions to the published algorithm, most 
notably to support a wide variety of constraints. We also support 
arbitrary edge weights between an output pin / input pin pair on a 
net. This is because timing algorithms (and ours in particular) 
want to optimize point-to-point delays rather than the delay of the 
entire net.  

To improve partitioning quality, we have generalized the loose-
net removal ideas of Cong et. al. [4] for use in a k-way partitioner.  
We found that loose net removal was particularly good at 
minimizing the cutweight (that is, the sum of the weights on all 
cut edges), and it also gives us a useful reduction in the average 
cutsize.  We found, however, that a number of implementation 
details were necessary to deal with compile-time issues.  

In order to deal with legality issues (secondary signals, carry 
chains, compound cells or cliques, etc.) which cause move-gains 
to be non-linear, we have implemented a multi-heap version of the 
Sanchis move pool which allows us to more efficiently search for 
best moves in the presence of competing metrics. 

8.2 Tuning for Less Aggressive TDC 
Since our overall algorithm is a combination of many different 
additions – phase_local, loose nets, looping, etc, we find that it is 
inherently tunable.  That is, we can trade off improved 
performance against compile time.  With modifications to reduce 
the number of loops and turn loose-net code off in later stages 
when it is less effective, we are able to produce a median result 
which splits the difference between full and no TDC effort.  This 
allows users who are easily achieving their timing requirements 
with the less aggressive software to minimize their compile time. 

9. EMPIRICAL RESULTS 
To illustrate the effects of our timing-driven improvements, we 
compiled 20 industry designs through the software.  These 
designs contain between 60% and 100% of the number of LEs in 
the example device (16,640 4-input LUTs).   All designs contain 
carry-chains, and about half use embedded memory features of the 
device. 

As mentioned in the previous section, there are three different 
settings which we compare:  “Off” means the basic algorithm of 
Section 4 is used.  “Full algorithm” means the complete 
implementation of the techniques described in this paper were 
applied, and “less aggressive” refers to the partial implementation 
described in the previous section. 
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We report the percentage change2 in fmax, and total compile time.  
Fitter time represents the time spent specifically in the place-and-
route tool.  Total time represents the “user experience” – 
including time spent in netlist extraction, synthesis and the final 
timing analysis.  Fmax for this benchmarking exercise, is defined 
as speed at which the slowest clock in the device will operate for 
the design.   

Although the software is capable of placing pins in more 
advantageous positions for both performance and routability, it is 
usually the case that user pin-assignments are fixed beforehand by 
board layout.  To model this, we pre-process each design with a 
random assignment of pins. 

Table 1 shows the overall results.  On average, the full 
implementation of our algorithm shows a 38.5% improvement in 

                                                                 
2 Raw or absolute fmax is a function of process generation,  

speed-grade, and designer objectives.    Since this is a research 
rather than marketing communication we chose also not to 
display raw compile times.   Typical compile times on our desk-
top machines for this particular device range from as little as 15 
minutes to upwards of several hours, depending completely on 
the difficulty of the particular design chosen.  Thus a 3X 
slowdown in the overall compilation time is a very acceptable 
price for the performance gains we report.   

fmax at a cost of 265% place and route time, or 3.65X the “no 
TDC” compile time.  Since outliers typically tend to dominate the 
average, a more descriptive metric of the tradeoff is the median, 
which shows 36.3% better fmax at a cost of 2.87X run-time.  In 
terms of total compile time the typical or median user sees a 
1.89X compile time penalty. 

With the less-aggressive setting we see roughly half the 
performance gain (22.9% average, 14.6% median), and 
comparably half the compile-time penalty.  Since this is a tuned 
option, that behaviour is by design rather than coincidence. 

We note that in one case (3 for less aggressive) the timing-driven 
algorithm achieved worse results than the “no TDC” version.  We 
expect outliers to disappear once the algorithm has been tuned for 
special cases.   Similarly, there are several cases where the TDC 
algorithm reports better compile time.  We attribute this primarily 
to more aggressive partitioning in the TDC flow achieving a more 
routable placement and shortening routing time. 

Though the work reported on here contrasts the “no TDC” case to 
the “with TDC” case, we should point out a preliminary version of 
TDC in the previous version of the software achieved roughly 5-
10% speedup for 2X compile time cost.  Relative to that algorithm 
our TDC is about 30% better for 2X compile time (i.e. there was a 
release of the production Quartus software in-between the start 
and finish of the TDC project as a whole.) 

10. CONCLUSIONS 
In this paper we have presented a discussion of timing-driven 
compilation for hierarchical programmable logic devices, and 
given an algorithm to effect timing-driven compilation. Though 
we used the example of an APEX 20K device as motivation, the 
work and results are applicable both to hierarchical architectures 
in general, or to recursive partitioning approaches on any 
architecture. 

As components of the algorithm, we gave a new method 
(phase_local) for estimating critical path delay for partitioning 
steps which have not yet occurred, and for adapting the selection 
of critical paths (phase_loops) across multiple phase attempts, 
which underlies the flow.  Together, these allow us to better target 
the true critical nets and achieve a higher-quality solution.  We 
also discussed various implementation details that improve the 
underlying graph partitioning algorithm. 

The benefits of the complete algorithm are clear and significant:  
we report a 38.5% average (36.3% median) improvement in 
register to register performance with acceptable (3.7X average, 
2.9X median) compile time penalty.  A less aggressive tuning of 
the algorithm gives half the performance gain, with half the 
compile-time cost. 

The algorithm herein represents the only published placement 
method for hierarchical FPGA or PLD devices at current density 
ranges and containing modern device features.  Though we report 
on designs for a 16,600 LE part, the software successfully 
operates on designs reaching 50,000 LEs with feasible compile 
time. 

The work presented in this paper was implemented for the 
February 2000 (Ver. 00.02) release of Altera’s Quartus software.  
In Quartus the parameterizations discussed here are referred to as 

Table 1.  Fmax (performance) and compile time results for 
full and partial TDC algorithm 

 LESS AGGRESSIVE FULL ALGORITHM 

design ∆∆∆∆ fmax ∆∆∆∆ ftime ∆∆∆∆ ttime ∆∆∆∆ fmax ∆∆∆∆ ftime ∆∆∆∆ ttime 

des01 24.1% -7.6% -6.8% 39.8% 12.7% 10.3% 

des02 29.9% 33.3% 11.0% 54.7% 406.7% 82.2% 

des03 -5.3% 69.9% 67.4% 26.9% -0.5% -1.0% 

des04 -0.3% 0.0% 7.1% 40.4% 60.0% 60.7% 

des05 2.8% 42.9% 20.0% 6.1% 71.4% 50.0% 

des06 23.9% 95.7% 66.2% 32.8% 178.3% 123.1% 

des07 0.3% 520.0% 471.4% 1.1% 100.0% 96.4% 

des08 4.8% -92.0% -80.6% 32.5% 68.8% 60.7% 

des09 -34.8% 0.0% -1.8% -34.6% 63.6% 8.9% 

des10 15.6% 88.9% 66.0% 24.9% 816.7% 586.0% 

des11 137.8% 233.3% 95.1% 173.3% 666.7% 285.4% 

des12 6.6% 945.5% 678.3% 50.2% 197.0% 139.1% 

des13 8.7% 416.1% 320.0% 12.1% 741.9% 575.0% 

des14 46.2% 361.2% 218.4% 56.5% 197.4% 114.7% 

des15 78.5% 62.5% 13.7% 70.4% 368.8% 84.9% 

des16 30.2% 72.0% 51.2% 48.7% 144.0% 93.0% 

des17 9.1% 138.1% 8.4% 11.3% 209.5% 24.2% 

des18 13.5% 20.0% 12.5% 20.9% 52.0% 32.5% 

des19 41.0% 37.5% 33.9% 61.4% 266.7% 230.4% 

des20 25.1% 162.5% 152.6% 41.0% 684.1% 632.6% 

average 22.9% 160.0% 110.2% 38.5% 265.3% 164.5% 

median 14.6% 70.9% 42.5% 36.3% 187.6% 89.0% 
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TDC effort “off”, “normal” and “extra-effort” compiler settings.   
Interested readers can independently verify or experiment with the 
production software, but should be aware that the code is under 
constant improvement and the performance vs. cost 
parameterizations and the algorithms themselves may be modified 
significantly in later versions. 
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