
Optimizing Yield in Global Routing

Dirk Müller
Research Institute for Discrete Mathematics

University of Bonn
Lennéstr. 2, 53113 Bonn, Germany

mueller@or.uni-bonn.de

ABSTRACT
We present the first efficient approach to global routing that
takes spacing-dependent costs into account and provably
finds a near-optimum solution including these costs. We
show that this algorithm can be used to optimize manufac-
turing yield. The core routine is a parallelized fully poly-
nomial approximation scheme, scaling very well with the
number of processors. We present results showing that our
algorithm reduces the expected number of defects in wiring
by more than 10 percent on state-of-the-art industrial chips.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Placement and
Routing ; G.2.2 [Discrete Mathematics]: Graph Theory—
Graph Algorithms, Network Problems

General Terms
Algorithms

Keywords
Multi-commodity flows, Steiner tree packing, VLSI routing,
yield optimization

1. INTRODUCTION
Because of the huge size of VLSI routing instances, a

global routing step is usually performed before detailed rout-
ing, defining an area for each net to which the search space
will be restricted. In its simplest form, the global routing
problem amounts to packing Steiner trees in capacitated
undirected graphs. Traditionally, the main objective was
netlength minimization. However, with the decrease of fea-
ture sizes, effects depending on wire spacing become more
and more important: First, manufacturing yield improves
with a better spreading of wires, and second, coupling capac-
itance becomes increasingly important for power consump-
tion and signal propagation delay. On the other hand, spac-
ing usually can be increased only at the expense of netlength,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

which also has a negative effect on yield, power and tim-
ing. Recent papers on global routing (Xu et al. [13], Jing
et al. [7], Ho et al. [5]) propose heuristics partially adressing
this tradeoff, but there is no approach yet that gives any
performance guarantee (see [6] for a survey).

Deciding if a global routing instance has a feasible solution
or not is NP-complete even when restricted to two-terminal
nets which have to be routed in planar grid graphs with
unit capacities [9]. Raghavan and Thompson [10] proposed
to solve an LP relaxation first and then apply randomized
rounding to obtain an integral solution whose maximum vi-
olation of the packing constraints can be bounded. How-
ever, given today’s huge instance sizes, even solving the LP
relaxation exactly is far too slow in practice. Therefore ap-
proximation algorithms are interesting. Shahrokhi and Mat-
ula [11] proposed the first fully polynomial approximation
scheme for multicommodity flows, which then was applied
to global routing by Carden, Li and Cheng [2]. Garg and
Könemann [4] presented a simpler and more efficient ap-
proximation scheme, modified and applied to global routing
by Albrecht [1].

Recently, Vygen [12] proposed the first global routing al-
gorithm taking spacing-dependent costs into account, guar-
anteeing to find a solution with almost optimum total cost.
However, this is a purely theoretical work that does not con-
sider manufacturing yield, and the algorithm cannot be par-
allelized efficiently. In this paper, we describe an enhanced
and parallelized version of the algorithm that efficiently op-
timizes manufacturing yield and scales very well with the
number of processors. We also present results on a number
of state-of-the-art VLSI designs from industry, showing that
the expected number of defects in wiring can be reduced by
more than 10 percent on average.

This work is organized as follows. In section 2, a for-
mal description of the global routing problem with spacing-
dependent costs is given. Section 3 presents a parallelized
fully polynomial approximation scheme for efficiently solv-
ing a fractional linear programming relaxation of this prob-
lem. Section 4 briefly describes the randomized rounding
step applied to obtain an integral solution. Section 5 intro-
duces the defect model that we assume for measuring defect
sensitivities and shows how yield can be optimized with our
algorithm. In section 6, we present results on several current
industry designs which demonstrate the yield optimization
capabilities of our algorithm and show that indeed our algo-
rithm is parallelized very efficiently. We conclude the paper
with some discussion and outlook on future work.

480

2. THE GLOBAL ROUTING PROBLEM
This work neither assumes a routing grid, nor is it limited

to Manhattan routing, so also diagonal wiring is possible.
We construct a global routing graph by partitioning the chip
area into regions (forming the vertices of the graph) and
joining adjacent regions by an edge. Each edge is assigned a
capacity value that indicates how many wires of unit width
can join the two regions such that all design rules are met.

In the following, let G be the global routing graph, with
edge capacities u : E(G) → R+. Let N be the set of nets to
be routed. For each pair (e,N) ∈ E(G) × N we are given
a constant we,N which denotes the width of a wire of net
N using edge e. This allows for choosing wire types not
only depending on the net, but also plane- or even region-
dependent. We also have a cost interval [cmin

e,N , c
max
e,N] for each

(e,N) ∈ E(G) ×N , assuming that the maximum cost cmax
e,N

is attained at minimum spacing to neighbouring wires and
reduces linearly if extra spacing is assigned, until a speci-
fied amount of spacing se,N corresponding to costs cmin

e,N is
reached.

Now, for each net N ∈ N we construct a global routing
net as follows. First, for each pin we determine the set
of vertices of G corresponding to regions intersected by its
shapes. Then, iteratively, we merge each pair of sets with
nonempty intersection until no such pair exists any more.
Each of the resulting sets is called a global routing pin of N .

The task now is to find a connected subgraph YN of G
for each N ∈ N , intersecting all of its global routing pins,
and extra space assignments such that edge capacities are
respected and total cost is minimized. It is possible to re-
strict the set YN of feasible subgraphs YN of G for net N ,
e. g. to Steiner trees or, for timing critical nets, to Elmore-
delay-optimal Steiner trees. However, this is not important
for our approach. Note that YN does not need to be spec-
ified explicitely, but can be given implicitely by an oracle
function returning a cost optimal element from this set.

Additionally, cost bounds can be assigned to subsets of
N , so we are given a family M of subsets of N with bounds
U : M → R+ and weights σ(M,N) ∈ R+ for N ∈ M ∈ M.
We require that N ∈ M.

Let ∆e,N := cmax
e,N − cmin

e,N . We can formulate the global
routing problem more formally now: the task is to find an
YN ∈ YN and numbers 0 ≤ ye,N ≤ 1 for each N ∈ N and
e ∈ E(YN) (denoting the fraction of possible extra space
se,N to be assigned to net N on edge e), such thatX

N∈N :e∈E(YN)

(we,N + ye,Nse,N) ≤ u(e) (1)

for each edge e ∈ E(G),X
N∈M

σ(M,N)
X

e∈E(YN)

(cmax
e,N − ye,N∆e,N) ≤ U(M) (2)

for M ∈ M, and such thatX
N∈N

σ(N ,N)
X

e∈E(YN)

(cmax
e,N − ye,N∆e,N) (3)

is minimum.

3. FRACTIONAL GLOBAL ROUTING
Since it is hard to optimize the integral version of the

global routing problem, we start with a fractional linear pro-
gramming relaxation.

3.1 LP Formulation
We first observe that it is sufficient to find a feasible so-

lution as we can impose an arbitrary upper bound U(N) on
(3) and perform binary search to find the optimum value of
U(N), in each step solving a linear program that maximizes
the minimum slack in (1) and (2), followed by randomized
rounding (cf. section 4).

Our experiments show that binary search is not needed in
practice since good lower bounds on (3) can be computed
and the algorithm comes close to these bounds within a few
percent on all of our test cases, so it suffices to solve one
linear program. In either case it is worthwile to change the
objective from minimizing (3) to maximizing the minimum
slack in (1) and (2) because this can considerably improve
running time of detailed routing and in many cases increas-
ing slacks in the cost bounding inequalities is desirable.

So we approximately solve the following linear program:

minλ subject toX
Y ∈YN

xN,Y = 1 for N ∈ N

X
N∈M

σ(M,N)

 X
Y ∈YN

X
e∈E(Y)

xN,Y c
max
e,N −

X
e∈E(G)

ye,N∆e,N

!
≤ λU(M)

for M ∈ M (4)X
N∈N

 X
Y ∈YN :
e∈E(Y)

xN,Y we,N + ye,Nse,N

!
≤ λu(e)

for e ∈ E(G)

ye,N ≤
X

Y ∈YN :
e∈E(Y)

xN,Y for e ∈ E(G), N ∈ N

ye,N ≥ 0 for e ∈ E(G), N ∈ N
xN,Y ≥ 0 for N ∈ N , Y ∈ YN

The corresponding dual LP is:

max
X

N∈N
zN subject to

X
e∈E(G)

u(e)ωe +
X

M∈M
U(M)µM = 1

zN ≤
X

e∈E(Y)

cmax
e,N

X
M∈M:
N∈M

σ(M,N)µM + we,Nωe

− χe,N

!
for N ∈ N , Y ∈ YN

χe,N ≥ ∆e,N

X
M∈M:
N∈M

σ(M,N)µM − se,Nωe (5)

for e ∈ E(G), N ∈ N
χe,N ≥ 0 for e ∈ E(G), N ∈ N
ωe ≥ 0 for e ∈ E(G)

µM ≥ 0 for M ∈ M

The dual LP enables us to compute a lower bound on the
optimum LP value:

481

Lemma 1. Let ωe ∈ R+ for e ∈ E(G) and µM ∈ R+ for
M ∈ M, and let us define edge costs

ψe,N := min
δ∈{0,1}

„`
cmax
e,N − δ∆e,N

´
γN +

`
we,N + δse,N

´
ωe

«
,

(6)

where γN :=
P

M∈M:N∈M σ(M,N)µM . ThenP
N∈N minY ∈YN

P
e∈E(Y) ψe,NP

e∈E(G) u(e)ωe +
P

M∈M U(M)µM

is a lower bound on the optimum LP value.

Proof. Set χe,N := max
˘
0,∆e,NγN − se,Nωe

¯
, and

zN := min
Y ∈YN

X
e∈E(Y)

ψe,N

= min
Y ∈YN

X
e∈E(Y)

„
cmax
e,N γN + we,Nωe − χe,N

«
.

Then we get a feasible solution (z, µ, ω, χ) of (5) after divid-
ing all variables by

P
e∈E(G) u(e)ωe +

P
M∈M U(M)µM .

3.2 Parallel Fractional Global Routing Algo-
rithm

Now we are ready to present the approximation scheme
for approximately solving (4) and (5). It is a primal-dual
algorithm that takes four parameters 0 < ε, ε1, ε2 < 1 and
t ∈ N, which control the approximation guarantee and run-
ning time of the algorithm, and a parameter Π ∈ N specify-
ing the number of processors to be used in parallel. Further-
more, we assume to have a lower bound LN on

P
e∈E(Y) c

min
e,N

of any Steiner tree Y ∈ YN (N ∈ N). The quality of this
lower bound is important for obtaining good running times
in practice. Often a nontrivial lower bound can be computed
in constant time using distances between the terminals.

We have implemented a shared memory multithreaded
version of the algorithm, but also implementations using
processes distributed on different machines should be quite
efficient because the need for communication between pro-
cesses is very low.

Parallel Fractional Global Routing Algorithm
Input: An instance of the Global Routing Problem, t ∈

N, ε, ε1, ε2 ∈ R+, and Π ∈ N.

Output: A feasible solution to (4).

� Set αe := 0 and ωe = 1
u(e)

for e ∈ E(G).

Set βM := 0 and µM = 1
U(M)

for M ∈ M.

Set xN,Y := 0 for N ∈ N and Y ∈ YN .
Set ye,N := 0 for e ∈ E(G) and N ∈ N .
Set YN := ∅ for N ∈ N .
ResetVariableUpdates.

� For p := 1 to t do:
Create a partition N1∪̇ . . . ∪̇NΠ = N .
For π ∈ {1, . . . ,Π} do in parallel:

RouteNets(π).
CollectVariableUpdates.
ResetVariableUpdates.

� Set xN,Y := 1
t
xN,Y for N ∈ N and Y ∈ YN .

Set ye,N := 1
t
ye,N for e ∈ E(G) and N ∈ N .

Procedure RouteNets(π):
For N ∈ Nπ do:

Let ψe,N be defined as in (6).
If YN = ∅ or

P
e∈E(YN) ψe,N > (1 + ε1)zN then:

Let YN ∈ YN with
P

e∈E(YN) ψe,N ≤
(1 + ε2) minY ∈YN

P
e∈E(Y) ψe,N .

Set zN :=
P

e∈E(YN) ψe,N .

UpdateVariables(N , π).

Procedure UpdateVariables(N , π):
Set xN,YN := xN,YN + 1.
For e ∈ E(YN) do:

If ∆e,NγN < se,Nωe then δ := 0 else δ := 1.
Set ye,N := ye,N + δ.
Set απ

e := απ
e +we,N + δse,N .

For M ∈ M with N ∈M do:
Set βπ

M := βπ
M + σ(M,N)

`
cmax
e,N − δ∆e,N

´
.

Procedure CollectVariableUpdates:
For each e ∈ E(G) do:

For π := 1 to Π do:
Set αe := αe + απ

e .

Set ωe := 1
u(e)

e
ε αe

u(e) .

For each M ∈ M do:
For π := 1 to Π do:

Set βM := βM + βπ
M .

Set µold
M := µM .

Set µM := 1
U(M)

e
ε

βM
U(M) .

For each N ∈ N do:
For each M ∈ M with N ∈M do:
zN := zN + (1 + ε2)LNσ(M,N)

`
µM − µold

M

´
.

Procedure ResetVariableUpdates:
For π := 1 to Π do:

For each e ∈ E(G) do:
Set απ

e := 0.
For each M ∈ M do:

Set βπ
M := 0.

Let us call one iteration of the outer loop (step � of the
algorithm) a phase. While the previous algorithms ([1, 12])
work sequentially, routing the nets in a certain predeter-
mined order and updating the dual variables after each com-
pletion of a net, our algorithm does not need an ordering of
the nets. It turns out that for the analysis of the algo-
rithm it is not important if updating the µ, ω and z vari-
ables is done immediately or delayed until the end of the
current phase. Delaying updates drastically reduces inter-
dependence between threads since changes of variables that
are accessed by more than one thread occur only at the end
of a phase. This makes it possible to implement the algo-
rithm using almost no locking and scaling very well with the
number of processors used.

Besides that, aggregating and delaying the updates of the
z variables until the end of the current phase eliminates the
innermost loop of the algorithm in [12] which easily domi-
nated running time. Therefore not only parallelization be-
comes more efficient, but also total CPU time is reduced.

The following theorem shows that the presented algorithm
is a fully polynomial approximation scheme for solving the
fractional global routing problem:

482

Theorem 2. Given an approximation parameter ε0, one

can find ε, ε1, ε2 ∈ R+ and t ∈ O
“

log(|E(G)|+|M|)
ε20

”
such that

with parameters ε, ε1, ε2 and t the presented algorithm finds
a (1 + ε0)-optimal feasible solution to (4).

Proof. Our algorithm makes use of the α and β vari-
ables to record each thread’s contribution to dual variable
updates. At the end of a phase, the contributions from each
thread are summed up in order to compute new values for
the ω, µ and z dual variables. With some modifications, the
analysis of the algorithm in [12] can be made to work also
for our algorithm with delayed updates of dual variables:
Clearly, estimating the increase of the µ and ω variables in
inequalities (9) and (10) of [12] does not need to be done net
by net. If all nets are considered at once, nothing changes
except that the bound on the increase has to be expressed in
terms of dual variable values at the beginning of the current
phase. This, however, does not hurt in the continuation of
the proof.

Table 1 shows that our parallel algorithm scales very well
with the number of processors: We did experiments with
two large 130 nm chips (with 2.5 million and 2.8 million nets,
respectively) on an IBM S85 machine with 96 GB memory
and 18 CPU’s running at 600 MHz. This machine is slower
than a current Opteron machine by a factor of 3.5 to 4,
so much better running times can be obtained on current
machines. We routed the chips using 1, 4, 8 and 16 threads
in parallel. The corresponding speedups in some cases are
even slightly higher than the number of processors. This is
probably due to caching effects.

3.3 Future cost
Finding near-optimum Steiner trees in the RouteNets pro-

cedure is the core routine in our algorithm that consumes
most running time. Since all edge weights are nonnegative,
we can apply the algorithm of Dijkstra for two-terminal nets.
For nets with more than two terminals, we first find geomet-
rically optimum Steiner trees and then perform a series of
path searches connecting the terminals and Steiner points
to each other, also applying Dijkstra’s algorithm. Alterna-
tively, we can use the algorithm of Dreyfus and Wagner [3]
to find optimum Steiner trees directly (note that this algo-
rithm in fact is a generalization of bidirectional search).

In either case, an important factor speeding up the algo-
rithm is the use of a future cost estimate, which is a lower
bound of the distance of vertices to a given set of target
vertices. Suppose we look for a path from s to t in an undi-
rected graph G with vertex set V , edge set E and edge
lengths c : E → R+. Let l(v) be a lower bound on the

Chip # Threads Runtime (hh:mm) Speedup

Ulrich 1 24:31
(2.8M nets, 4 05:35 4.39
130 nm) 8 02:49 8.70

16 01:28 16.72

Hermann 1 07:30
(2.5M nets, 4 01:52 4.02
130 nm) 8 00:57 7.89

16 00:30 15.00

Table 1: Parallelization Speedup (on an IBM S85 at
600 MHz)

distance from v to t for any v ∈ V , satisfying the natural
condition l(v) ≤ c(e)+ l(w) for each edge e = {v, w} ∈ E. If
we create G′ from G by replacing each edge with two oppo-
sitely directed edges connecting the same vertices and define
c′((v, w)) := c({v, w})−l(v)+l(w) for each edge (v, w) in G′,
then a shortest path from s to t in (G, c) is also a shortest
path in (G′, c′) and vice versa. If l is close to the exact dis-
tance, finding a shortest path in (G′, c′) can be done much
faster than in (G, c). With exact future cost estimates, only
vertices actually lying on a shortest path are labelled (the
cost of a shortest path in (G′, c′) is zero then).

For yield optimization, the cmin values are proportional to
edge lengths (cf. section 5), therefore we can compute future
cost based on L1-distances.

3.4 Balancing geometrical and congestion
parts of edge costs

The edge costs ψe,N for net N using edge e defined in
(6) consist of a term

`
cmax
e,N − δ∆e,N

´
γN (δ ∈ {0, 1}) which

for reasonable cost measures is approximately proportional
to the geometrical length of the edge, and a second part`
we,N + δse,N

´
ωe that captures congestion costs. Of course,

future cost can consider only the first part (with δ = 1).
Typically (depending on the size of the regions that form

the vertices of the global routing graph) edge capacities are
not much larger than 100 to 200 units. On the other hand,
often a net N has large minM:N∈M∈M |M |. Therefore, since
ωe := 1

u(e)
(e ∈ E(G)) and µM := 1

U(M)
(M ∈ M) after ini-

tialization, edge costs are dominated by the congestion part
in the first phases, even in regions with very low capacity
utilization. This means that future cost becomes very poor
and leads to high running times.

Fortunately, we can balance the geometrical and conges-
tion parts of the edge costs without actually changing the
routing instance: It suffices to duplicate the capacitance con-
straint (2) for the group N of all nets a certain number of
times in the primal LP (4). This does not change the linear
program, and is equivalent to a multiplication of the dual
variable µN . In this way, the geometrical edge cost parts get
higher weight without adding complexity to the algorithm,
resulting in better future cost and running times. In our im-
plementation, we choose µN such that, taking the average
over all edges, geometrical and congestion parts of the edge
costs are equal after initialization in step �.

4. RANDOMIZED ROUNDING
To obtain an integral solution, we use randomized round-

ing as in [12]. Let (x, y, λ) be a fractional solution to the

primal LP. To obtain an integral solution (x̂, ŷ, λ̂), we do
the following. First, we choose Y ∈ YN as YN with prob-
ability xN,Y (independently for all N ∈ N). Then we set
x̂N,YN := 1 and x̂N,Y := 0 for Y ∈ YN \ {YN}. Now, set
ŷe,N :=

ye,NP
Y ∈YN |e∈E(Y) xN,Y

if e ∈ E(YN), and ŷe,N := 0

otherwise. Finally, we choose λ̂ minimum possible such that
(x̂, ŷ, λ̂) is a feasible solution to (4). We have:

Theorem 3. Let Λ ≤ U(M)
σ(M,N)

P
e∈E(Y) cmax

e,N
for N ∈ M ∈

M and Y ∈ YN , and Λ ≤ u(e)
we,N +se,N

for N ∈ N . Moreover,

suppose that |M| + |E(G)| < eλΛ. Then λ̂ ≤ λ

„
1 + (e− 1)q

ln(|M|+|E(G)|
λΛ

«
with probability at least 1

2
. �

483

In our experiments, only very few upper bounds are violated
after randomized rounding, and only a few ripup and reroute
steps are needed to correct them.

5. YIELD OPTIMIZATION
Critical area analysis as in [8] was used to evaluate the

yield optimization results of the algorithm presented in this
paper. Only the chip-level routing was considered, but not
the internal structure of custom macros and library cells.

In this approach, we are given a defect size distribution
provided by manufacturing. In our case, the distribution is

f(r) :=


0, r < r0

c
r3 , r ≥ r0

for some r0 ∈ R+ smaller than the smallest possible particle
that can cause a fault, and c such that

R∞
0
f(r)dr = 1.

Then the critical area w. r. t. short-defects on plane z is

Cz
short := κz

short

Z
x

Z
y

Z ∞

tshort(x,y,z)

f(r) dr dy dx, (7)

where tshort(x, y, z) is the smallest size of a particle that
causes a short-defect at location (x, y, z), and κz

short is a
weighting factor provided by manufacturing that encodes
the relative probability of short defects on plane z. Similarly,

Cz
open := κz

open

Z
x

Z
y

Z ∞

topen(x,y,z)

f(r) dr dy dx, (8)

where topen(x, y, z) is the smallest size of a particle that
causes an open-defect at location (x, y, z), and κz

open is pro-
vided by manufacturing.

For simple situations like a straight wire without neigh-
bours or straight wires running in parallel, these values can
be computed analytically. For yield optimization, we can
compute spacing-dependent costs as follows: For a wire of
width w in plane z surrounded by neighbouring wires at dis-
tance d on both sides, we define the contribution of this wire
to critical area by integrating (7) and (8) over the Voronoi
region of this wire, i. e. the set of points in plane z where this
wire is the closest object. Ignoring wire ends and assuming
r0 < min{w

2
, d

2
}, we thus get a contribution of

ρ(w, d) := 2c

Z d+w
2

0

Z ∞

x+ w
2

1

r3
dr dx

= 2c

Z d+w
2

0

2

(2x+ w)2
dx

= 2c

„
1

w
− 1

d+ 2w

«

to open critical area for a unit-length piece of wire if κz
open =

1. Similarly, for κz
short = 1 the contribution to short critical

area is

τ (w, d) := 2c

„
1

d
− 1

w + 2d

«
.

Fig. 1 shows ρ(w, d), τ (w, d) and ρ(w, d)+τ (w,d) for w =
0.5 tracks and d from 0.5 to 5 tracks. Apparently, if short
critical area is not weighted considerably higher than open
critical area, not much can be gained in the sum of both by
having more than one track of extra space.

Let le be the length of edge e. The maximum cost cmax
e,N for

a wire of net N using edge e is attained with two neighbours

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
ri

tic
al

 a
re

a

Distance d to neighbouring wires

ρ(0.5,d)
τ(0.5,d)

ρ(0.5,d) + τ(0.5,d)

Figure 1: Critical area contribution of a unit-length
piece of wire of width 0.5 tracks

running in parallel at minimum distance dmin
e,N , so we set

cmax
e,N := le

“
κz(e)

openρ(we,N , d
min
e,N) + κ

z(e)
shortτ (we,N , d

min
e,N)

”
and (with dmax

e,N := dmin
e,N + se,N)

cmin
e,N := le

“
κz(e)

openρ(we,N , d
max
e,N) + κ

z(e)
shortτ (we,N , d

max
e,N)

”
,

where z(e) is the plane in which edge e lies.
Note that our model requires costs to be linear in the

amount of extra spacing. This of course is a simplification.
Moreover, it may not always be possible to realize the global
routing solution in detailed routing such that all wires which
have been assigned extra spacing are put next to each other.

To compute the expected number of faults within chip-
level wiring of a complete VLSI chip, we use a Monte Carlo
dot-throwing approach as in [8] to determine the planewise
critical area values, sum up these values and finally multiply
the result by chip area.

6. RESULTS
We have run the algorithm presented in this paper on

a number of current VLSI designs from industry. Table
2 shows our testbed, consisting of three 90nm designs, six
130nm designs, and one 180nm design. All designs use hori-
zontal and vertical wiring only and have 6–8 routing planes.

In tables 3 and 4, we compare objective values after global
routing for different optimization objectives on two of the

Image Size # Nets
Chip Technology (in 1000 channels) (in 1000)

Edgar 90 nm 40 x 40 772
Hannelore 90 nm 36 x 33 140
Paul 90 nm 24 x 24 68
Monika 130 nm 35 x 35 1502
Garry 130 nm 26 x 26 827
Heidi 130 nm 23 x 23 777
Lotti 130 nm 14 x 14 132
Ingo 130 nm 19 x 19 58
Bill 130 nm 26 x 26 11
Joachim 180 nm 14 x 14 288

Table 2: Our testbed

484

Relative objective values w. r. t.

Netlength Yield(κ1) Yield(κ2)

Netlength optimization 1.000 1.137 1.141

Yield(κ1) optimization 1.109 1.000 1.265

Yield(κ2) optimization 1.052 1.091 1.000

Table 3: Comparison of objective values on Monika

Relative objective values w. r. t.

Netlength Yield(κ1) Yield(κ2)

Netlength optimization 1.000 1.200 1.420

Yield(κ1) optimization 1.038 1.000 1.386

Yield(κ2) optimization 1.028 1.146 1.000

Table 4: Comparison of objective values on Edgar

chips. The first objective is netlength (and via) minimiza-
tion, where we set the cmin and cmax values to geometrical
edge lengths (via edges have been set to a length of 12 rout-
ing tracks in our experiments). The other two objectives are
yield optimization (i. e. critical area minimization), but with
two different vectors κ1 and κ2 of defect weights that have
been provided to us by manufacturing. We chose se,N := 1
for all e ∈ E(G) and N ∈ N and computed cmin and cmax

as described in section 5. The tables show relative objective
values, i. e. objective values divided by the value obtained
when optimizing the corresponding objective, so the diago-
nal values are all 1. These results show that critical area can
increase considerably if optimizing only netlength or if not
optimizing with correct weights for open and short defects.

While this already demonstrates the huge potential of
yield optimization in global routing, our main focus is on
quality of results after detailed routing. We compare our re-
sults after detailed routing to those obtained by using an
implementation of Albrecht’s global routing approach [1]
which focuses on netlength and congestion only and is a
two-dimensional approach, which means that all horizon-
tal and vertical planes, respectively, are merged to a single
plane, resulting in a smaller global routing graph. The two-
dimensional global routing step is followed by a heuristic
plane assignment step which tries to assign nets to routing
planes which are good from a yield perspective. We sum-
marize the results of this implementation in the “2D-GR”
columns in tables 5 to 8.

In our approach, we have to see the different plane char-
acteristics, so we have a three-dimensional global routing
graph. This costs running time in global routing, but on
the other hand can save time in detailed routing since search
space can be restricted also in z dimension. The results ob-
tained when using our global routing algorithm are shown in
the “3D-GR” columns. All yield optimization experiments
have been done with the κ1 weights from above.

The results in tables 5 to 8 have been produced on an
Opteron machine with 2.6GHz and 64 GB memory, using
a single processor. Table 5 compares global routing run-
ning times of the different approaches. Compared to Al-
brecht’s approach, our algorithm needs considerably more
CPU time due to the larger global routing graph. However,
Albrecht’s approach cannot be parallelized efficiently, but
our runtimes can be cut down drastically by parallelization,
as was demonstrated in table 1. Using eight processors on
a current machine, all chips in our testbed could be routed

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.

Edgar 4,057 6,452 (+59.0%) 30,983 (+663.7%)
Hannelore 1,924 3,743 (+94.5%) 4,540 (+136.0%)
Paul 489 2,337 (+377.9%) 1,719 (+251.5%)
Monika 3,342 8,226 (+146.1%) 19,234 (+475.5%)
Garry 2,555 4,366 (+70.9%) 15,665 (+513.1%)
Heidi 2,162 2,900 (+34.1%) 8,831 (+308.5%)
Lotti 801 1,547 (+93.1%) 2,290 (+185.9%)
Ingo 569 2,124 (+273.3%) 2,471 (+334.3%)
Bill 1,298 835 (–35.7%) 2,279 (+75.6%)
Joachim 560 1,880 (+235.7%) 2,856 (+410.0%)

Total 17,757 34,410 (+93.8%) 90,868 (+411.7%)

Table 5: Global router CPU time (seconds on
Opteron, 2.6 GHz)

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.

Edgar 211.656 212.022 (+0.2%) 214.162 (+1.2%)
Hannelore 30.110 30.239 (+0.4%) 31.006 (+3.0%)
Paul 9.888 9.903 (+0.2%) 9.999 (+1.1%)
Monika 263.936 264.123 (+0.1%) 273.793 (+3.7%)
Garry 221.950 221.989 (+0.0%) 227.186 (+2.4%)
Heidi 150.775 150.863 (+0.1%) 153.837 (+2.0%)
Lotti 18.208 18.230 (+0.1%) 18.679 (+2.6%)
Ingo 13.199 13.285 (+0.7%) 13.482 (+2.1%)
Bill 23.312 23.356 (+0.2%) 23.542 (+1.0%)
Joachim 62.250 62.432 (+0.3%) 63.721 (+2.4%)

Total 1,005.284 1,006.442 (+0.1%) 1,029.407 (+2.4%)

Table 6: Wire length ([m], after detailed routing)

in less than two hours, both with netlength and with yield
optimization.

Table 5 also shows that our algorithm is considerably
slower if yield is optimized instead of netlength. There are
two reasons for this: First, our experiments show faster con-
vergence for netlength optimization than for yield optimiza-
tion. In the first case, good results are obtained already
after 10 to 20 phases, while for yield optimization typically
40 to 50 phases are needed (however, this is still much bet-
ter than what can be guaranteed theoretically, cf. [12]). The
second reason is that due to the differences between defect
sensitivities on different routing planes, future cost quality
degrades significantly: Future cost must always be a lower
bound, but not all nets can be routed on the best possi-
ble plane, of course. Also in detailed routing, future cost
is essential for obtaining good running times. Future cost
computation in our detailed router does not take into ac-

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.

Edgar 6,151,607 6,114,859 (–0.6%) 8,302,895 (+35.0%)
Hannelore 795,855 804,856(+1.1%) 1,096,198 (+37.7%)
Paul 474,376 449,112 (–5.3%) 606,733 (+27.9%)
Monika 9,335,637 8,916,882 (–4.5%) 12,409,600 (+32.9%)
Garry 6,018,048 5,740,090 (–4.6%) 8,555,230 (+42.2%)
Heidi 5,030,429 4,790,479 (–4.8%) 6,821,014 (+35.6%)
Lotti 669,582 649,336 (–3.0%) 797,861 (+19.2%)
Ingo 441,647 429,608 (–2.7%) 586,823 (+32.9%)
Bill 103,812 101,471 (–2.3%) 185,742 (+78.9%)
Joachim 1,924,130 1,937,133(+0.7%) 2,026,975 (+5.3%)

Total 30,945,123 29,933,826 (–3.3%) 41,389,071 (+33.7%)

Table 7: Number of vias (after detailed routing)

485

Chip 2D-GR 3D-GR, Netl. Opt. 3D-GR, Yield Opt.

Edgar 0.09780 0.10493 (+7.3%) 0.08586 (–12.2%)
Hannelore 0.01396 0.01543 (+10.6%) 0.01027 (–26.4%)
Paul 0.00502 0.00568 (+13.2%) 0.00402 (–19.9%)
Monika 0.08744 0.09505 (+8.7%) 0.08055 (–7.9%)
Garry 0.07224 0.08017 (+11.0%) 0.06714 (–7.1%)
Heidi 0.05351 0.05804 (+8.5%) 0.04965 (–7.2%)
Lotti 0.00658 0.00688 (+4.5%) 0.00575 (–12.6%)
Ingo 0.00457 0.00505 (+10.4%) 0.00392 (–14.2%)
Bill 0.00707 0.00833 (+17.8%) 0.00376 (–46.8%)
Joachim 0.00432 0.00440 (+1.9%) 0.00431 (–0.1%)

Total 0.35251 0.38396 (+8.9%) 0.31523 (–10.6%)

Table 8: Expected number of faults per chip (after
detailed routing)

count detours prescribed by global routing, so path search
takes more time if global routing has been done with the
objective of optimizing yield because many nets are routed
with some detours to obtain better spreading.

This is also reflected in table 6, and table 7 shows that also
the number of vias goes up significantly when optimizing
yield. This seems contrary to the fact that vias generally
are considered harmful for manufacturing yield, but it turns
out that with the open and short defect weights used in our
experiments, it is worthwhile to spend extra vias in order
to put more wiring on higher planes. Table 8 shows the
estimated number of faults per chip in the wiring (including
vias) after detailed routing. Note that the results in the first
column are better than in the second one because of the
heuristic plane assignment step. The third column shows
that our approach, which provably finds a near-optimum
solution, can again drastically improve results compared to
the first column, in average by more than 10 percent.

Note that exactly the same detailed router with the same
parameters was used for all our experiments. By adapting
the detaild router optimally one can certainly improve the
yield even further.

7. CONCLUSION
We have presented an enhanced global routing approach

and have shown how to use it for yield optimization. We
have run it on several state-of-the-art VLSI routing instances
from industry and showed that our algorithm reduces the
expected number of faults significantly, in average by more
than 10 percent. We can use it to considerably improve
yield. Our algorithm is parallelized very efficiently and can
route even the largest chips in our testbed within less than
two hours.

Our algorithm can also be used to optimize power con-
sumption and to limit capacitance on critical paths in order
to avoid timing violations after routing. Further experi-
ments have to be done to demonstrate these capabilities on
VLSI routing instances.

Moreover, we did not consider at all yield optimization
in detailed routing in this paper. Certainly detailed routing
offers further potential for significant yield improvements.

8. ACKNOWLEDGEMENT
First of all, I would like to thank Jens Vygen for many

helpful discussions and suggestions. I also want to thank
the anonymous referees for their very useful comments.

9. REFERENCES
[1] C. Albrecht, “Global routing by new approximation

algorithms for multicommodity flow”, in IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, vol. 20, pp. 622–632, 2001.

[2] R. C. Carden IV, J. Li and C.-K. Cheng, “A global
router with a theoretical bound on the optimum
solution”, in IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, vol. 15,
pp. 208–216, 1996.

[3] S. E. Dreyfus and R. A. Wagner, “The Steiner
problem in graphs”, in Networks, vol. 1, pp. 195–207,
1972.

[4] N. Garg and J. Könemann, “Faster and simpler
algorithms for multicommodity flow and other
fractional packing problems”, in Proceedings of the
39th Annual IEEE Symposium on Foundations of
Computer Science, pp. 300–309, 1998.

[5] T.-Y. Ho, Y.-W. Chang, S.-J. Chen and D.-T. Lee, “A
fast crosstalk- and performance-driven multilevel
routing system”, in Proceedings of the IEEE
international Conference on Computer-Aided Design,
Nov. 2003.

[6] J. Hu and S. S. Sapatnekar, “A survey on multi-net
global routing for integrated circuits”, in Integration,
the VLSI Journal, vol. 31, pp. 1–49, 2001.

[7] T. Jing, X. Hong, H. Bao, Y. Cai, J. Xu, C. Cheng
and J. Gu, “Utaco: A unified timing and congestion
optimizing algorithm for standard cell global routing”,
in Proceedings of the Asia and South Pacific Design
Automation Conference, pp. 834–839, 2003.

[8] W. Maly, “Modeling of lithography related yield losses
for CAD of VLSI circuits”, IEEE Transactions on
Computer-Aided Design, vol. CAD-4, pp. 166-177,
July 1985.

[9] P. Raghavan, “Randomized rounding and discrete
ham-sandwich theorems: provably good algorithms for
routing and packing problems”, Ph.D. thesis, Report
No. UCB/CSD 87/312, University of California,
Berkeley, 1986.

[10] P. Raghavan and C. D. Thompson, “Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs”, in Combinatorica, vol. 7,
pp. 365–374, 1987.

[11] F. Shahrokhi and D. W. Matula, “The maximum
concurrent flow problem”, in Journal of the ACM,
vol. 37, pp. 318–334, 1990.

[12] J. Vygen, “Near Optimum Global Routing with
Coupling, Delay Bounds, and Power Consumption”, in
Integer Programming and Combinatorial
Optimization; Proceedings of the 10th International
IPCO Conference; LNCS 3064 (G. Nemhauser, D.
Bienstock, eds.), pp. 308-324, Springer, Berlin 2004,

[13] J. Xu, X. Hong, T. Jing, Y. Cai and J. Gu, “A novel
timing-driven global routing algorithm considering
coupling effects for high performance circuit design”,
in Proceedings of the Asia and South Pacific Design
Automation Conference, pp. 847–850, 2003.

486

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

