
How Much Can Logic Perturbation Help from Netlist to
Final Routing for FPGAs

Catherine L. Zhou Wai-Chung Tang Wing-Hang Lo Yu-Liang Wu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{lzhou, wctang, whlo, ylw}@cse.cuhk.edu.hk

ABSTRACT
One unique property of an FPGA chip is that any logic
perturbation inside its Look-Up-Tables (LUTs) is totally
area/delay-free. Amongst others, this free LUT-internal resource
perturbation can also be used to trade for critical LUT-external
logic/wire removals for EDA improvements, an extra flexibility
ignored before. Using rewiring technique for such logic
perturbations, we show that significant cut-downs upon already
excellent results from the state-of-the-art DAOmap mappings and
the TVPR place-and-route can still be obtained. This logic
perturbation operation can further reduce the number of LUTs by
up to 33.7% (avg. 10%) without delay penalty and also reduce
critical path delay by up to 31.7% (avg. 11%) without disturbing
placement or sacrificing area in the final routing. For delay
reduction, under proper rewiring strategy, the CPU time used by
rewiring is only 5% of the total run time consumed by TVPR’s
placement and routing. This idea of perturbing logic between the
free LUT-internal and critical LUT-external circuit resources is
simple and proved to be powerful. The encouraging results
suggest a new technique for an optimization domain less explored
for FPGA design flow.

Categories and Subject Descriptors
B7.2 [Integrated Circuits]: Design Aids – Layout, Placement
and routing.

General Terms
Design, Experimentation, Performance

Keywords
ATPG, FPGA, Routing, Technology mapping

1. INTRODUCTION
 The basic idea of logic perturbations (rewiring) is to replace a
wire/gate with other wires/gates without changing the logic
function of the circuit. Applying rewiring for a circuit netlist can
incrementally refine a circuit’s structure based on its logical and

physical information to improve on many EDA objectives,
ranging from circuit area to routability and performance. The
known rewiring techniques can be classified into three groups: the
Automatic Test Pattern Generation (ATPG) based rewiring
method [4] [5] [7] [8] [9] [10] [13] [14], the Set of Pairs of
Functions to be Distinguished (SPFD) based rewiring method [12]
[18] [20], and the Graph-Based Alternative Wiring (GBAW)
method [11] [19].

In [6], the ATPG-based rewiring method was firstly applied to
improve FPGA routability. After placement, rewiring is used to
find alternative wires for all nets, and then lower routing order
priorities are assigned to nets with more alternative wires. During
a routing, nets with high priorities are processed first, and nets not
routable will be replaced by their alternative wires. Experiments
are carried out on two circuits with AT&T ORCA router. These
two circuits are not routable in the original ORCA router;
however, with the aid of rewiring they are routed successfully.
This is the first known work applying rewiring to help complete
FPGA routings.
Another approach is the SPFD-based post-layout logic synthesis
[12]. In this work, Quartus (Version II 1.0) is used as the
placement and routing tool. Based on placement information, net
delays are estimated to find ε-critical paths, which are the paths
whose delay is larger than (1 - ε)D, where D is the largest path
delay and ε < 1. Then SPFD-based rewiring is used to process the
nets on ε-critical paths. After transformations, the routing is
executed on the new netlist. The application of SPFD rewiring
brings an average reduction of 5.1% on critical path delay, but the
approach suffers from its quite slow runtime. As the percentage of
nets actually transformed is not shown in the paper, it is not clear
on the effectiveness produced per their rewiring operation.
In the conventional EDA flow for FPGAs, starting from a given
netlist, a technology mapping result is generated first; then, a
place-and-route tool is used to produce the final routing. Most
mapping algorithms treat the circuit as a pure graph, and improve
the routability and performance by applying different heuristics on
depth-optimal graph mapping solutions without considering the
underlying logic information. Besides the two works mentioned
above, not much further effort was done for applying logic
perturbations on FPGA routings, and there has been no work
investigating how much the room can be if the rewiring technique
is integrated inside every step of the whole FPGA EDA flow,
starting from the netlist to the final routing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2007, June 4–8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

922

49.3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

(a) (b)
Figure 1. Logic shifting of (a) (critical) LUT-external to (free) LUT-internal (b) (long) LUT-external to (short) LUT-external

The optimality studies on logic synthesis and technology mapping
[15] show that by utilizing the logic information, one can improve
beyond the optimization limit imposed by DAG-based technology
mapping algorithms. Nonetheless, as a K-input LUT is able to
implement any K-variable function, any logic perturbation inside a
LUT is virtually free of any extra area or delay cost on FPGA
chips. In this paper, we will apply the rewiring logic perturbation
operations to explore the effectiveness of logic shifting between
critical and non-critical areas as well as trading (LUT-internal)
free resource for critical LUT-external logic/wire resources to
improve from mappings to final routings and to examine the
existence of their correlations. Figure 1 illustrates how postlayout
FPGA logic perturbations (logic shifting) can be used to affects
the performance of a circuit. In Figure 1(a), the target net G1 G4
is replaced by an internal (the source gate and sink gate are in the
same LUT) wire; Figure 1(b) shows that a longer net G2 G4 is
substituted by a shorter net G2 G5. In both cases, routing
becomes easier, and net delay can be reduced.
We apply our logic perturbations on the following two parts:
(1) Technology mapping for area reduction. The input circuit is

first perturbed to increase the mapping area using a series of
transformations. This enables the optimization process to
jump out of the local optimums. Then the circuit is perturbed
for a smaller mapping area.

(2) Final routing for delay reduction. Physical layout and logical
information are considered together to make decisions in
picking rewiring transformations. Alternative wires are
selected under a greedy manner that no extra LUT is
introduced and the original placement is kept. A cost
function is used to ensure that a transformation will reduce
the FPGA delay. Our final results show that an efficient
scheme can obtain a good trade-off for low CPU run time
and significant improvements.

A state-of-the-art technology mapping algorithm DAOmap [3] and
the most powerful academic FPGA place and route tool TVPR [1]
[2] [17] are experimented for further improvements. With our
proposed rewiring operations, we can reduce the number of LUTs
by up to 33.7% (avg. 10%) without delay penalty compared to the
best results produced by DAOmap. For routing improvement, we

apply rewiring upon the well-known TVPR tool, which has been
used by more than 1000 universities and companies since its
introduction in 1997. Its placement is based on the simulated
annealing (SA) algorithm, and its routing is based on the
Pathfinder negotiated congestion algorithm. By iteratively trying
different routing paths, it can finally produce quite high-quality
routing results that are hardly improvable by any other known
place-and-route tool. However, under an effective rewiring
strategy, it is encouraging that the critical path delay can still be
further reduced by up to 31.7% (avg. 11%) without disturbing
placement or sacrificing area in our final routing. Besides, our
CPU usage is particularly low, compared to [12].
A few findings of our experiments can be drawn as follows.
(1) The largest room for area improvement locates in the

technology mapping step. With area reductions, delays can
also be reduced slightly.

(2) However, a technology mapping with too high logic density
(more saturated usage on logic pins) may adversely yield a
routing requiring some extra routing tracks (one extra track
on four out of fourteen benchmarks). That is, a best mapping
result does not necessarily imply a best final routing.

(3) Performing logic perturbation in routing stage is clearly
more effective for delay improvements due to the more
accurate timing information that can only be precisely
known after routing. Nonetheless, routing tracks (W) can
still be cut (in one out of twelve benchmarks). And mostly,
delay can be consistently reduced through this rewiring
operation in routing step without area penalty.

(4) As proved in our experiments, applying this rewiring
operation on the whole flow can be a fruitful approach
without much CPU overhead.

The remainder of this paper is organized as follows. Section 2
briefly introduces the ATPG-based rewiring techniques. Section 3
and Section 4 describe the logic perturbation techniques for
technology mapping and routing in details. Experimental results
are shown in Section 5. Section 6 summarizes the contributions of
our work.

923

Figure 3. The number of LUTs is reduced from 3 to 2 through exchanging External Resource with Free Internal Resource using

Rewiring (K = 3)

G1

G2

a
b

c
d

e

f

o2

o1

G3

G4

G5 G6 G7

G8

G9

g

Figure 2. Rewiring on Boolean network

2. REWIRING TECHNIQUES
The basic idea of the ATPG-based rewiring technique is to add a
redundant wire/gate to make other wires/gates redundant and
removable. A wire/gate is redundant if its addition or removal
does not change the logic function of a Boolean network [7]. For
the example shown in Figure 2, when the redundant wire G3 G7
is added to the circuit, the wire G1 G5 will become redundant
thus removable.

3. REWIRING-BASED TECHNOLOGY
MAPPING
Any logic perturbation inside an LUT is completely free and it is
possible that through perturbation we can trade free internal
resources for valuable external resources on the FPGA
architecture. Such an example for technology mapping is shown
in Figure 3, where the external wires are in bold for better
illustration. The initial circuit is mapped into three LUTs by
DAOMap. The result is optimal if the structure of the circuit
cannot be changed. However, using rewiring technique, we
identify an alternative wire G3 G9 for the external wire G3 G4.
Since the alternative wire is internal, we can further reduce the
area with the free logic transformation inside an LUT. The
modified circuit can now be mapped with two LUTs only. In this
work, we propose a rewiring-based area optimization scheme to
perturb the circuit so that there are different internal/external
resource relocations in the technology mapping.
Area minimization with depth constraint in the technology
mapping problem is known to be NP-hard. In most technology
mapping algorithms, the initial circuit is kept unchanged and
techniques like cut enumeration will try different mappings of the
gates in order to minimize the area. Nevertheless, all useful logic
information, which allows transformations on the network, is
ignored throughout. In this work, we try to perturb the input
circuit with logic transformation and evaluate the effect on the

final mapping area, and greedily take the transformations which
can reduce the mapping area.
Every wire in the input circuit will be used as a target wire. We
then use rewiring techniques to find alternative wires for the target
wires. Each target wire and alternative wire pair is considered as a
transformation. All transformations will be ranked using our area
efficiency heuristic, which will be explained later in this section.
We take the transformations one by one and evaluate the
transformed circuit with a pseudo technology mapping. If the
mapping area is reduced, the transformation will be taken;
otherwise, it will be unrolled and the next transformation will be
tried. The whole process will be terminated after a certain number
of sorted transformations found futile in reducing mapping area.
This greedy approach clearly raises the ordering issue of target
wires. An efficient ordering of the target wires will allow us to
search for area-reducing transformations more quickly. We use
the idea of area efficiency (AE) proposed in IMap [16] for making
efficient ranking.
The area flow at a node is given by Equation (1).

 ∑
∈

+=
)(

)()(
vinputu

v uafAvaf (1)

Given a wire wt = (u, v), we define the area flow at wire as the
difference of the area flows of the source node u and sink node v,
i.e., af(wt) = af(u) – af(v). To persist a better wire ranking, for
each transformation (wt, wa), we again compute the different af(wa)
- af(wt), which is taken as a score to rank all transformations we
found from the rewiring algorithm. As the target wire wt = (u, v) is
removed, its area flow af(wt) will be re-distributed to the fanout of
u and it is desirable to remove a wire with smaller area flow. On
the other hand, when we add a new wire wa = (p, q) to the network,
the area flow on the node p will be distributed to the new wire as
well. This encourages us to add a new wire with higher area flow
and in consequence, a transformation with a high score should be
used for area reduction earlier in the optimization process.
We would like to emphasize that the heuristic ranking plays an
important role in runtime reduction since we are using a greedy
approach in searching for useful transformations. Furthermore,
our optimization process maintains the mapping depth by
checking the depth constraint at every node. If the transformation
is going to increase the mapping depth of the circuit, it would not
be accepted and we will proceed to a next transformation. This
can prevent the delay performance from worsening in the routing
phase due to the area optimization.

924

G1

G2

a
b

c
d

e

f

o2

o1

G3

G4

G5 G6 G7

G8

G9

g

L1

L2

L4

L3

L5

L6

G1

G2

a
b

c
d

e

f

o2

o1

G3

G4

G5 G6 G7

G8

G9

g

L1

L2

L4

L3

L5

L6

G3

L7L7

Figure 4. Destination LUT expansion (K = 4)

G1 G2 G3

G4 G5 G6

a
b

c
d

L1
L2

L3

L4

x
y

z

Figure 5. Example of minimum TFI cone

4. REWIRING-BASED ROUTING
The main target of a rewiring-based routing is to improve FPGA
delay performance. By performing logic perturbations on the
mapped circuit, we can replace long nets with shorter alternative
nets or internal wires. Thus, a critical path delay is likely to be
reduced.
When an alternative wire is added to the mapped circuit, new
LUTs may be required to maintain the logic equivalence. For
example, in Figure 4, G3 G7 is added to replace G1 G5.
However, as G3 is not the output node (root) of L3, a new LUT
with G3 being the output node will be generated, as suggested by
[6], which may not be feasible as there might be no available
space for the added LUT. To apply this type of alternative wires,
we propose the destination LUT expansion method. The
alternative wire (u v) satisfying the following condition will be
chosen: u is neither a PI nor the root of a LUT. Given that M1 is
the input set of u’s Transitive Fanin (TFI) cone inside the LUT
containing u, and M2 is the input set of the LUT containing v, |M1
+ M2| ≤ K (maximum input pin number of a LUT). For example,
in Figure 5, the TFI cone of G6 inside the LUT containing G6 only
covers G4, G5, and G6. Given an alternative wire u v, if |M1 +
M2| ≤ K, we can then duplicate the whole logic producing u, with
the input set M1, inside the LUT containing v. Thus, we do not
have to introduce an extra LUT. This process is called expansion.
For example, in Figure 4, G3 G7 is to be added to make G1 G5
redundant and removable. Considering M1 = {G1, G2}, M2 = {G6,
f}, K = 4, and |M1 + M2| = K, we can then expand L5 by connecting
M1 (G1 and G2) to the duplicated logic G3 inside L5. Thus, the
transformation is completed by updating the mapping of L5 with
the connection of two new wires without any LUT addition. As
shown in Figure 5, after technology mapping, some gates may be
duplicated inside several LUTs, therefore a gate can have more
than one TFI cone. Obviously, if this gate is the source node u of
the alternative wire u v, then choosing this gate’s smallest
related input set, the minimum TFI cone, might increase the
chance of successfully expanding all LUTs containing v. For
example, in Figure 5, G4 is duplicated in L3 and L4. Its TFI cone in
L3, Cone3, contains G3 and G4 with input set {G2, c, d}. Whereas
the TFI cone of G4 in L4, Cone4, only contains G4 with input set
{G3, c}. So the minimum TFI cone of G4 is {G3, c}. When an

alternative wire starting from G4 is to be added, G3 and c will be
connected to all LUTs containing its sink node.
Before performing a transformation, we take two steps to
determine if the alternative wire can be used: mapping depth
checking and cost function evaluation. We use Equation (2) [1] [2]
to evaluate the chosen candidate. This cost function reflects the
cost contribution from the netlist by exploring its bounding box
inside the placement. If it costs more than the target net, it will be
discarded; otherwise, the transformation will be performed.

∑
=

+=
netsN

i yav

y

xav

x

iC
ibb

iC
ibbiqCost

1 ,,

]
)(
)(

)(
)()[(ββ

 (2)

5. EXPERIMENTAL RESULTS
As illustrated in Figure 6(b), we conduct experiments on the
following three flows with rewiring injected differently to find out
the respective effectiveness margins. (1) DAOmap Rewiring

 TVPR (2) DAOmap TVPR Rewiring (3) DAOmap
Rewiring TVPR Rewiring.
The logic perturbation method is implemented in the C language.
The experimental platform is a 3.2GHz Linux machine with 1GB
memory. All the benchmark circuits are mapped into 4-input
LUTs, and each CLB contains one LUT.

netlist

technology mapping: DAOmap

placement: VPR

routing: VPR

Final placement and routing results

(a)

netlist

technology mapping: DAOmap

placement: VPR

routing: VPR

Final placement and routing results

(b)

logic perturbation
(rewiring)

delay
reduction

LUT minimization

(a) (b)

Figure 6. (a) Original FPGA CAD flow; (b) Performing logic
perturbation on technology mapping and routing

5.1 Rewiring for Technology Mapping only
Table 1 shows the effects of the flow (1) DAOmap Rewiring

 TVPR. This approach provides a reduction upon the DAOmap
mapping results of nearly 10% in LUTs.
For some benchmark circuits, as some LUTs are removed, fewer
nets and shorter critical paths can cause direct delay reduction.
While for some circuits in which no LUT is removed from the
critical paths, transformations outside may also cause a new
topology requiring even longer new critical path after placement,
which is why these circuits get slight delay penalty along with
area reduction. Another reason for delay increase is that when the

925

number of LUTs in a circuit is reduced a lot, the FPGA
architecture may become much tighter. As the channel width is
not raised, the high channel density makes some nets take longer
routing paths.
The above analysis reveals that logic perturbation in technology
mapping is an efficient way to reduce FPGA area by removing
LUTs, but does not promise delay performance improvement
because of the lack of accurate layout information at this stage.

5.2 Rewiring for Routing only
Table 2 shows the effects of the flow (2) DAOmap TVPR
Rewiring. Column 2-4 show that 3.7% of all nets are replaced by
their alternative wires for routing improvement. Although
rewiring can find much more alternative wires according to [6],
only a small part of them are useful in delay reduction. Column 8-
10 are the comparison results of critical path delay. At the same
time the comparison results of channel width are included in
Column 5-7. The channel width of C1908 is reduced by one after
seven transformations. We do not include it in delay comparison
because the delay of a circuit is very likely increased if the circuit
is routed with a smaller channel width. The average delay
reduction is more than 10%. From Column 11–13, the CPU time
consumed by rewiring is only 5% of the total time for TVPR's
placement and routing, which is much faster than the SPFD
approach. Because we have different starting set up from SPFD
rewiring, we cannot make a direct comparison.
To the best of our knowledge, this is the first work giving
quantitative analysis on the power of the ATPG-based rewiring
techniques when applied in LUT-based FPGA routing. This part
of work reveals that rewiring is powerful in delay reduction,
especially under very low CPU overhead and without area penalty.
Considering its high efficiency in area reduction in technology
mapping, we believe that rewiring is a strong tool for postlayout
logic synthesis to improve FPGA performance and routability.
Most importantly, it is known that any effective delay reduction
scheme is relying on the accuracy of physical layout information,
which in not available until a routing is completed. That is why
the delay performance cannot be improved in rewiring-based
technology mapping according to the experiments in Section 5.1.

5.3 Rewiring for both Technology Mapping
and Routing
Table 3 reflects the results for applying flow (3) DAOmap
Rewiring TVPR Rewiring. It shows that applying rewiring
on both stages, though reduces LUTs by 10% too and reduces
(routing) area by 3% but the delay reduction in only 3.8%, which
is worse then the flow (2). As most FPGA chips do not down-
scale sizes continuously, LUT reductions do not always bring
routing area reductions proportionally (e.g. 10 % LUT reduction
only brings 3.8% routing area reduction). This result also implies
an anomaly point: it is not necessarily true that a best technology
mapping always yields a best final routing result. Therefore, we
need an EDA flow with more stages integrated together and a
powerful logic perturbation tool to shift optimization resources
between them for a globally best final solution.

6. CONCLUSIONS
Area and delay are the two core issues for FPGA designs.
However, the area optimization is mainly attributed to the
technology mapping stage while the delay can only be correctly
handled in the final routing stage. Optimizing both simultaneously

has always imposed a tough challenge to us. In this paper, we
further show that in a conventional EDA flow divided into several
stages, a best result obtained in a certain stage according to its
cost function may not necessarily be the best for later stages. In
today’s commonly adopted FPGA design flows, a technology
mapping result with a few less LUTs may adversely yield a
routing with one or more tracks. As a result, it may be useful to
have a design flow being able to shift optimization resources
across boundaries between different stages and a universal
technique applicable to all stages would be worthwhile to develop.
As rewiring is a both physical- and logical-information sensitive
transformation technique that can be universally adaptable to
nearly most EDA stages, it makes a good sense for us to design a
flow with rewiring integrated into all stages, from netlist to final
routing, and analyze its impact margins on the various stages.
As a first known effort of this kind, our experimental results show
that the rewiring logic perturbation can still bring large
improvements on area and delay simultaneously, under acceptable
CPU overhead and no penalty of other objectives. Compared with
the already excellent DAOmap+TVPR results, we can reduce the
number of LUTs by up to 33.7% (avg. 10%) and critical path
delay by up to 31.7% (avg. 11%), which is a result with practical
significance too. In the future, we would like to improve the speed
of the rewiring engine and further extend the flow to allow for
more resource shifting flexibility between different stages. And as
a longer term goal, to investigate a new flow with all stages
merged together under the help of rewiring technique. According
to our current experimental results, this direction seems promising.

7. ACKNOWLEDGEMENT
This work was partially supported by Hong Kong RGC Grant Ref.
No. 2150500, RGC CUHK Direct Grant 2050351, and NSFC
90607001.

8. REFERENCES
[1] V. Betz and J. Rose, “VPR: a New Packing, Placement and Routing

Tool for FPGA Research,” in Proc. Int’l Workshop on Field
Programmable Logic and Applications, London, UK, Sept. 1997,
pp. 213-222.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for
Deep-submicron FPGAs. Boston, USA: Kluwer Academic, 1999.

[3] D. Chan and J. Cong, “DAOmap: a Depth-optimal Area
Optimization Mapping Algorithm for FPGA Designs,” in Proc.
Int’l Conf. on Computer-aided Design, 2004, pp. 752-759.

[4] C. W. Chang and M. Marek-Sadowska, “Single-Pass Redundancy
Addition and Removal,” in Proc. IEEE/ACM International
Conference on Computer-aided Design'01, San Jose, CA, USA,
Nov. 2001, pp. 606-609.

[5] C. W. Chang and M. Marek-Sadowska, “Who Are the Alternative
Wires in Your Neighborhood?” in Proc. ACM Greak Lakes
Symposium on VLSI'01, West Lafayette, USA, Mar. 2001, pp. 103-
108.

[6] S. C. Chang and K. T. Cheng, “Postlayout Logic Restructuring
Using Alternative Wires,” IEEE Trans. Computer-Aided Design,
vol. 16, pp. 587-596, June 1997.

[7] S. C. Chang, L. P. v. Ginneken, and M. Marek- Sadowska, “Fast
Boolean Optimization by Rewiring,” in Proc. IEEE/ACM
International Conference on Computer-aided Design'96, San Jose,
CA, USA, Nov. 1996, pp. 262-269.

[8] S. C. Chang, L. P. v. Ginneken, and M. Marek- Sadowska, “Circuit
Optimization by Rewiring,” IEEE Trans. Computers, vol. 48, pp.
962.970, Sept. 1999.

[9] S. C. Chang, M. Marek-Sadowska, and K. T. Cheng, “Perturb and
Simplify: Multi-Level Boolean Network Optimizer,” IEEE Trans.
Computer-Aided Design, vol. 15, pp. 1494-1504, Nov. 1996.

926

[10] K. T. Cheng and L. A. Entrena, “Multi-Level Logic Optimization
by Redundancy Addition and Removal,” in Proc. IEEE European
Design Automation Conference'93, Paris, France, Feb. 1993, pp.
373-377.

[11] C. C. Cheung, Y. L. Wu, and D. I. Cheng, “Further Improve Circuit
Partitioning Using GBAW Logic Perturbation Techniques,” in Proc.
IEEE Conference and Exhibition on Design, Automation and Test
in Europe'01, Munich, German, Mar. 2001, pp. 233-239.

[12] J. Cong, J. Y. Lin, and W. N. Long, “A New Enhanced SPFD
Rewiring Algorithm,” in Proc. IEEE/ACM International
Conference on Computer-aided Design'02, San Jose, CA. USA,
Nov. 2002, pp. 672-678.

[13] L. A. Entrena and K. T. Cheng, “Combinational and Sequential
Logic Optimization by Redundancy Addition and Removal,” IEEE
Trans. Computer-Aided Design, vol. 14, pp. 909-916, July 1995.

[14] M. A. Iyer and M. Abramovici, “FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm,” IEEE Trans.
VLSI Syst., vol. 4, pp. 295-301, June 1996.

[15] A. Ling, D. P. Singh, and S. D. Brown, “FPGA Technology
Mapping: a study of optimality,” in 42nd ACM/IEEE Design
Automation Conference, 2005, pp. 427-432.

[16] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for
Area Minimization in LUT-based FPGA Technology Mapping,”
IEEE Trans. Computer-aided Design, vol. 25, pp. 2331- 2340, Nov.
2006.

[17] A. Marquardt, V. Betz, and J. Rose, “Timing-driven Placement for
FPGAs,”, in Proc. Int’l Symp. on Field Programmable Gate Arrays,
Monterey, CA, USA, Feb. 2000, pp. 203-213.

[18] S. Sinha and R. K. Brayton, “Implementation and Use of SPFDs in
Optimizing Boolean Networks,” in Proc. IEEE/ACM International

Conference on Computer-aided Design'98, San Jose, CA, USA,
Nov. 1998, pp. 103-110.

[19] Y. L. Wu, W. N. Long, and H. B. Fan, “A Fast Graph-Based
Alternative Wiring Scheme for Boolean Networks,” in Proc. IEEE
International Conference on VLSI Design'00, Calcutta, India, Jan.
2000, pp. 268-273.

[20] S. Yamashita, H. Sawada, and A. Nagoya, “A New Method to
Express Functional Permissibilities for LUT based FPGAs and Its
Applications,” in Proc. IEEE/ACM International Conference on
Computer-aided Design'96, San Jose, CA, USA, Nov. 1996, pp.
254-261.

Table 3. Performing logic perturbation on technology
mapping and routing to affect FPGA area and delay

 Channel Width Critical Path Delay
Circuit RW+TM (TM+RT)

+RW
Red. (%) no RW (TM+RT)

+RW
Red. (%)

5xp1 4 4 0 2.49 1.93 22.49
C1355 6 6 0 3.41 3.41 0
C2670 6 5 16.67 6.66 5.47 17.87
C880 6 6 0 3.60 3.60 0
alu2 6 6 0 5.00 5.00 0

b9_n2 4 4 0 2.08 2.08 0
f51m 4 4 0 2.17 2.17 0

misex3 6 6 0 5.03 5.45 -8.35
pcler8 4 4 0 1.87 1.87 0
term1 5 5 0 2.29 2.29 0

ttt2 5 4 20.00 2.49 2.05 17.67
x3 5 5 0 3.80 3.98 -4.74

Average 3.06 3.75
RW: rewiring TM: technology mapping RT: routing Red.: reduction

Table 1. Rewiring-based technology mapping’s impact on FPGA area and delay performance (K = 4)

 # CLBs # Slots Routing Area Critical Path Delay (e-08 s)
 Circuit no RW TM + RW Red. (%) no RW TM + RW Red. (%) no RW TM + RW Red. (%) no RW TM + RW Red. (%)

5xp1 36 33 8.33 36 36 0 48685.7 48685.7 0 2.49 1.82 26.90
C1355 80 78 2.50 100 100 0 192733 192733 0 3.41 3.29 3.52
C1908 133 122 8.27 144 144 0 274493 317414 -15.64 4.99 5.03 -0.80
C6288 979 649 33.71 1024 676 33.98 1882590 1053290 44.05 14.22 13.50 5.06
C880 120 119 0.83 121 121 0 231817 231817 0 4.11 4.26 -3.65
alu2 158 130 7.59 169 144 14.79 320762 274493 14.42 5.00 5.47 -9.4

apex6 240 220 8.33 900 900 0 1657100 1397080 15.69 3.97 4.32 -8.82
Comp 32 30 6.25 36 36 0 37438.3 48685.7 -30.04 3.06 2.75 10.13
duke2 153 135 11.76 169 144 14.79 320762 317414 1.04 3.77 3.09 18.04
f51m 42 39 7.14 49 49 0 65304.4 65304.4 0 2.17 2.17 0
pcler8 38 37 2.63 49 49 0 65304.4 65304.4 0 1.87 2.11 -12.83
term1 70 59 15.71 81 64 20.99 105786 105802 -0.01 2.29 2.61 -13.97
ttt2 64 56 12.5 64 64 0 105802 105802 0 2.49 2.05 17.67
x3 243 224 7.82 900 900 0 1397080 1397080 0 3.80 4.00 -5.26

Average 9.53 6.04 2.11 1.90
RW: Rewiring TM: technology mapping Red.: reduction

Table 2. Rewiring-based routing’s impact on FPGA area and delay performance (K = 4)

 #Nets #Trans. Ratio Channel Width Critical Path Delay (e-08 s) CPU Time (s)
Circuit % no RW RT+RW Red. (%) no RW RT+RW Red. (%) VPR Engine Ratio
5xp1 43 2 4.65 4 4 0 2.49 1.70 31.74 1.31 0.12 0.09

C1355 121 0 0 6 6 0 3.41 3.41 0 10.03 0.07 0.07
C1908 166 7 4.22 7 6 14.29 4.99 5.59 - 6.56 0.41 0.06
C6288 1011 0 0 5 5 0 14.22 14.22 0 139.90 0.98 0.01
C880 180 6 3.33 6 6 0 4.11 3.48 15.33 13.81 0.19 0.01
alu2 168 18 10.71 6 6 0 5.00 4.79 4.15 30.65 2.59 0.08

apex6 375 0 0 5 5 0 3.97 3.97 0 101.65 2.33 0.02
comp 64 2 3.13 3 3 0 3.06 2.47 19.37 1.30 0.03 0.02
duke2 175 6 3.43 6 6 0 3.77 3.30 12.57 25.18 1.87 0.07
f51m 50 1 2.00 4 4 0 2.17 1.93 11.06 1.60 0.20 0.12
pcler8 65 0 0 4 4 0 1.87 1.87 0 1.34 0.02 0.01
term1 104 11 10.58 5 5 0 2.29 1.99 12.91 4.74 0.24 0.05
ttt2 88 7 7.95 4 4 0 2.49 1.81 27.11 3.44 0.14 0.04
x3 378 6 1.59 5 5 0 3.80 3.68 3.10 71.20 1.62 0.02

Average 3.69 1.02 10.56 0.05
Trans.: transformation RW: rewiring RT: routing Red.: reduction

927

