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ABSTRACT 
One unique property of an FPGA chip is that any logic 
perturbation inside its Look-Up-Tables (LUTs) is totally 
area/delay-free. Amongst others, this free LUT-internal resource 
perturbation can also be used to trade for critical LUT-external 
logic/wire removals for EDA improvements, an extra flexibility 
ignored before. Using rewiring technique for such logic 
perturbations, we show that significant cut-downs upon already 
excellent results from the state-of-the-art DAOmap mappings and 
the TVPR place-and-route can still be obtained. This logic 
perturbation operation can further reduce the number of LUTs by 
up to 33.7% (avg. 10%) without delay penalty and also reduce 
critical path delay by up to 31.7% (avg. 11%) without disturbing 
placement or sacrificing area in the final routing. For delay 
reduction, under proper rewiring strategy, the CPU time used by 
rewiring is only 5% of the total run time consumed by TVPR’s 
placement and routing. This idea of perturbing logic between the 
free LUT-internal and critical LUT-external circuit resources is 
simple and proved to be powerful. The encouraging results 
suggest a new technique for an optimization domain less explored 
for FPGA design flow. 

Categories and Subject Descriptors 
B7.2 [Integrated Circuits]: Design Aids – Layout, Placement 
and routing. 

General Terms 
Design, Experimentation, Performance 

Keywords 
ATPG, FPGA, Routing, Technology mapping 

1. INTRODUCTION 
 The basic idea of logic perturbations (rewiring) is to replace a 
wire/gate with other wires/gates without changing the logic 
function of the circuit. Applying rewiring for a circuit netlist can 
incrementally refine a circuit’s structure based on its logical and 

physical information to improve on many EDA objectives, 
ranging from circuit area to routability and performance. The 
known rewiring techniques can be classified into three groups: the 
Automatic Test Pattern Generation (ATPG) based rewiring 
method [4] [5] [7] [8] [9] [10] [13] [14], the Set of Pairs of 
Functions to be Distinguished (SPFD) based rewiring method [12] 
[18] [20], and the Graph-Based Alternative Wiring (GBAW) 
method [11] [19].  

In [6], the ATPG-based rewiring method was firstly applied to 
improve FPGA routability. After placement, rewiring is used to 
find alternative wires for all nets, and then lower routing order 
priorities are assigned to nets with more alternative wires. During 
a routing, nets with high priorities are processed first, and nets not 
routable will be replaced by their alternative wires. Experiments 
are carried out on two circuits with AT&T ORCA router. These 
two circuits are not routable in the original ORCA router; 
however, with the aid of rewiring they are routed successfully. 
This is the first known work applying rewiring to help complete 
FPGA routings.  
Another approach is the SPFD-based post-layout logic synthesis 
[12]. In this work, Quartus (Version II 1.0) is used as the 
placement and routing tool. Based on placement information, net 
delays are estimated to find ε-critical paths, which are the paths 
whose delay is larger than (1 - ε)D, where D is the largest path 
delay and ε < 1. Then SPFD-based rewiring is used to process the 
nets on ε-critical paths. After transformations, the routing is 
executed on the new netlist. The application of SPFD rewiring 
brings an average reduction of 5.1% on critical path delay, but the 
approach suffers from its quite slow runtime. As the percentage of 
nets actually transformed is not shown in the paper, it is not clear 
on the effectiveness produced per their rewiring operation.  
In the conventional EDA flow for FPGAs, starting from a given 
netlist, a technology mapping result is generated first; then, a 
place-and-route tool is used to produce the final routing. Most 
mapping algorithms treat the circuit as a pure graph, and improve 
the routability and performance by applying different heuristics on 
depth-optimal graph mapping solutions without considering the 
underlying logic information. Besides the two works mentioned 
above, not much further effort was done for applying logic 
perturbations on FPGA routings, and there has been no work 
investigating how much the room can be if the rewiring technique 
is integrated inside every step of the whole FPGA EDA flow, 
starting from the netlist to the final routing.  
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(a)                                                                                                  (b) 
Figure 1. Logic shifting of (a) (critical) LUT-external to (free) LUT-internal (b) (long) LUT-external to (short) LUT-external

The optimality studies on logic synthesis and technology mapping 
[15] show that by utilizing the logic information, one can improve 
beyond the optimization limit imposed by DAG-based technology 
mapping algorithms. Nonetheless, as a K-input LUT is able to 
implement any K-variable function, any logic perturbation inside a 
LUT is virtually free of any extra area or delay cost on FPGA 
chips. In this paper, we will apply the rewiring logic perturbation 
operations to explore the effectiveness of logic shifting between 
critical and non-critical areas as well as trading (LUT-internal) 
free resource for critical LUT-external logic/wire resources to 
improve from mappings to final routings and to examine the 
existence of their correlations. Figure 1 illustrates how postlayout 
FPGA logic perturbations (logic shifting) can be used to affects 
the performance of a circuit. In Figure 1(a), the target net G1  G4 
is replaced by an internal (the source gate and sink gate are in the 
same LUT) wire; Figure 1(b) shows that a longer net G2  G4 is 
substituted by a shorter net G2  G5. In both cases, routing 
becomes easier, and net delay can be reduced. 
We apply our logic perturbations on the following two parts: 
(1) Technology mapping for area reduction. The input circuit is 

first perturbed to increase the mapping area using a series of 
transformations. This enables the optimization process to 
jump out of the local optimums. Then the circuit is perturbed 
for a smaller mapping area.  

(2) Final routing for delay reduction. Physical layout and logical 
information are considered together to make decisions in 
picking rewiring transformations. Alternative wires are 
selected under a greedy manner that no extra LUT is 
introduced and the original placement is kept. A cost 
function is used to ensure that a transformation will reduce 
the FPGA delay. Our final results show that an efficient 
scheme can obtain a good trade-off for low CPU run time 
and significant improvements. 

A state-of-the-art technology mapping algorithm DAOmap [3] and 
the most powerful academic FPGA place and route tool TVPR [1] 
[2] [17] are experimented for further improvements. With our 
proposed rewiring operations, we can reduce the number of LUTs 
by up to 33.7% (avg. 10%) without delay penalty compared to the 
best results produced by DAOmap. For routing improvement, we 

apply rewiring upon the well-known TVPR tool, which has been 
used by more than 1000 universities and companies since its 
introduction in 1997. Its placement is based on the simulated 
annealing (SA) algorithm, and its routing is based on the 
Pathfinder negotiated congestion algorithm. By iteratively trying 
different routing paths, it can finally produce quite high-quality 
routing results that are hardly improvable by any other known 
place-and-route tool. However, under an effective rewiring 
strategy, it is encouraging that the critical path delay can still be 
further reduced by up to 31.7% (avg. 11%) without disturbing 
placement or sacrificing area in our final routing. Besides, our 
CPU usage is particularly low, compared to [12].  
A  few findings of our experiments can be drawn as follows.  
(1) The largest room for area improvement locates in the 

technology mapping step. With area reductions, delays can 
also be reduced slightly.  

(2) However, a technology mapping with too high logic density 
(more saturated usage on logic pins) may adversely yield a 
routing requiring some extra routing tracks (one extra track 
on four out of fourteen benchmarks). That is, a best mapping 
result does not necessarily imply a best final routing.  

(3) Performing logic perturbation in routing stage is clearly 
more effective for delay improvements due to the more 
accurate timing information that can only be precisely 
known after routing. Nonetheless, routing tracks (W) can 
still be cut (in one out of twelve benchmarks). And mostly, 
delay can be consistently reduced through this rewiring 
operation in routing step without area penalty.  

(4) As proved in our experiments, applying this rewiring 
operation on the whole flow can be a fruitful approach 
without much CPU overhead. 

The remainder of this paper is organized as follows. Section 2 
briefly introduces the ATPG-based rewiring techniques. Section 3 
and Section 4 describe the logic perturbation techniques for 
technology mapping and routing in details. Experimental results 
are shown in Section 5. Section 6 summarizes the contributions of 
our work. 
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Figure 3. The number of LUTs is reduced from 3 to 2 through exchanging External Resource with Free Internal Resource using 
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Figure 2. Rewiring on Boolean network 

2. REWIRING TECHNIQUES 
The basic idea of the ATPG-based rewiring technique is to add a 
redundant wire/gate to make other wires/gates redundant and 
removable. A wire/gate is redundant if its addition or removal 
does not change the logic function of a Boolean network [7]. For 
the example shown in Figure 2, when the redundant wire G3 G7 
is added to the circuit, the wire G1 G5 will become redundant 
thus removable. 

3. REWIRING-BASED TECHNOLOGY 
MAPPING 
Any logic perturbation inside an LUT is completely free and it is 
possible that through perturbation we can trade free internal 
resources for valuable external resources on the FPGA 
architecture. Such an example for technology mapping is shown 
in Figure 3, where the external wires are in bold for better 
illustration. The initial circuit is mapped into three LUTs by 
DAOMap. The result is optimal if the structure of the circuit 
cannot be changed. However, using rewiring technique, we 
identify an alternative wire G3 G9 for the external wire G3 G4. 
Since the alternative wire is internal, we can further reduce the 
area with the free logic transformation inside an LUT. The 
modified circuit can now be mapped with two LUTs only. In this 
work, we propose a rewiring-based area optimization scheme to 
perturb the circuit so that there are different internal/external 
resource relocations in the technology mapping.  
Area minimization with depth constraint in the technology 
mapping problem is known to be NP-hard. In most technology 
mapping algorithms, the initial circuit is kept unchanged and 
techniques like cut enumeration will try different mappings of the 
gates in order to minimize the area. Nevertheless, all useful logic 
information, which allows transformations on the network, is 
ignored throughout. In this work, we try to perturb the input 
circuit with logic transformation and evaluate the effect on the 

final mapping area, and greedily take the transformations which 
can reduce the mapping area.  
Every wire in the input circuit will be used as a target wire. We 
then use rewiring techniques to find alternative wires for the target 
wires. Each target wire and alternative wire pair is considered as a 
transformation. All transformations will be ranked using our area 
efficiency heuristic, which will be explained later in this section. 
We take the transformations one by one and evaluate the 
transformed circuit with a pseudo technology mapping. If the 
mapping area is reduced, the transformation will be taken; 
otherwise, it will be unrolled and the next transformation will be 
tried. The whole process will be terminated after a certain number 
of sorted transformations found futile in reducing mapping area.  
This greedy approach clearly raises the ordering issue of target 
wires. An efficient ordering of the target wires will allow us to 
search for area-reducing transformations more quickly. We use 
the idea of area efficiency (AE) proposed in IMap [16] for making 
efficient ranking. 
The area flow at a node is given by Equation (1). 

                         ∑
∈
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Given a wire wt = (u, v), we define the area flow at wire as the 
difference of the area flows of the source node u and sink node v, 
i.e., af(wt) = af(u) – af(v). To persist a better wire ranking, for 
each transformation (wt, wa), we again compute the different af(wa) 
- af(wt), which is taken as a score to rank all transformations we 
found from the rewiring algorithm. As the target wire wt = (u, v) is 
removed, its area flow af(wt) will be re-distributed to the fanout of 
u and it is desirable to remove a wire with smaller area flow. On 
the other hand, when we add a new wire wa = (p, q) to the network, 
the area flow on the node p will be distributed to the new wire as 
well. This encourages us to add a new wire with higher area flow 
and in consequence, a transformation with a high score should be 
used for area reduction earlier in the optimization process.  
We would like to emphasize that the heuristic ranking plays an 
important role in runtime reduction since we are using a greedy 
approach in searching for useful transformations. Furthermore, 
our optimization process maintains the mapping depth by 
checking the depth constraint at every node. If the transformation 
is going to increase the mapping depth of the circuit, it would not 
be accepted and we will proceed to a next transformation. This 
can prevent the delay performance from worsening in the routing 
phase due to the area optimization. 
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Figure 5. Example of minimum TFI cone 

4. REWIRING-BASED ROUTING  
The main target of a rewiring-based routing is to improve FPGA 
delay performance. By performing logic perturbations on the 
mapped circuit, we can replace long nets with shorter alternative 
nets or internal wires. Thus, a critical path delay is likely to be 
reduced.  
When an alternative wire is added to the mapped circuit, new 
LUTs may be required to maintain the logic equivalence. For 
example, in Figure 4, G3 G7 is added to replace G1 G5. 
However, as G3 is not the output node (root) of L3, a new LUT 
with G3 being the output node will be generated, as suggested by 
[6], which may not be feasible as there might be no available 
space for the added LUT. To apply this type of alternative wires, 
we propose the destination LUT expansion method. The 
alternative wire (u  v) satisfying the following condition will be 
chosen: u is neither a PI nor the root of a LUT. Given that M1 is 
the input set of u’s Transitive Fanin (TFI) cone inside the LUT 
containing u, and M2 is the input set of the LUT containing v, |M1 
+ M2| ≤ K (maximum input pin number of a LUT). For example, 
in Figure 5, the TFI cone of G6 inside the LUT containing G6 only 
covers G4, G5, and G6. Given an alternative wire u  v, if |M1 + 
M2| ≤ K, we can then duplicate the whole logic producing u, with 
the input set M1, inside the LUT containing v. Thus, we do not 
have to introduce an extra LUT. This process is called expansion.  
For example, in Figure 4, G3 G7 is to be added to make G1 G5 
redundant and removable. Considering M1 = {G1, G2}, M2 = {G6, 
f}, K = 4, and |M1 + M2| = K, we can then expand L5 by connecting 
M1 (G1 and G2) to the duplicated logic G3 inside L5. Thus, the 
transformation is completed by updating the mapping of L5 with 
the connection of two new wires without any LUT addition. As 
shown in Figure 5, after technology mapping, some gates may be 
duplicated inside several LUTs, therefore a gate can have more 
than one TFI cone. Obviously, if this gate is the source node u of 
the alternative wire u  v, then choosing this gate’s smallest 
related input set, the minimum TFI cone, might increase the 
chance of successfully expanding all LUTs containing v. For 
example, in Figure 5, G4 is duplicated in L3 and L4. Its TFI cone in 
L3, Cone3, contains G3 and G4 with input set {G2, c, d}. Whereas 
the TFI cone of G4 in L4, Cone4, only contains G4 with input set 
{G3, c}. So the minimum TFI cone of G4 is {G3, c}. When an 

alternative wire starting from G4 is to be added, G3 and c will be 
connected to all LUTs containing its sink node. 
Before performing a transformation, we take two steps to 
determine if the alternative wire can be used: mapping depth 
checking and cost function evaluation. We use Equation (2) [1] [2] 
to evaluate the chosen candidate. This cost function reflects the 
cost contribution from the netlist by exploring its bounding box 
inside the placement.  If it costs more than the target net, it will be 
discarded; otherwise, the transformation will be performed.  
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5. EXPERIMENTAL RESULTS 
As illustrated in Figure 6(b), we conduct experiments on the 
following three flows with rewiring injected differently to find out 
the respective effectiveness margins. (1) DAOmap  Rewiring 

 TVPR  (2) DAOmap  TVPR  Rewiring (3) DAOmap  
Rewiring  TVPR  Rewiring.  
The logic perturbation method is implemented in the C language. 
The experimental platform is a 3.2GHz Linux machine with 1GB 
memory. All the benchmark circuits are mapped into 4-input 
LUTs, and each CLB contains one LUT.  

netlist

technology mapping: DAOmap

placement: VPR

routing: VPR

Final placement and routing results

(a)

netlist

technology mapping: DAOmap

placement: VPR

routing: VPR

Final placement and routing results

(b)

logic perturbation 
(rewiring)

delay 
reduction

LUT minimization

 
(a)                                         (b) 

Figure 6. (a) Original FPGA CAD flow; (b) Performing logic 
perturbation on technology mapping and routing 

5.1 Rewiring for Technology Mapping only 
Table 1 shows the effects of the flow (1) DAOmap  Rewiring 

 TVPR. This approach provides a reduction upon the DAOmap 
mapping results of nearly 10% in LUTs. 
For some benchmark circuits, as some LUTs are removed, fewer 
nets and shorter critical paths can cause direct delay reduction. 
While for some circuits in which no LUT is removed from the 
critical paths, transformations outside may also cause a new 
topology requiring even longer new critical path after placement, 
which is why these circuits get slight delay penalty along with 
area reduction. Another reason for delay increase is that when the 
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number of LUTs in a circuit is reduced a lot, the FPGA 
architecture may become much tighter. As the channel width is 
not raised, the high channel density makes some nets take longer 
routing paths. 
The above analysis reveals that logic perturbation in technology 
mapping is an efficient way to reduce FPGA area by removing 
LUTs, but does not promise delay performance improvement 
because of the lack of accurate layout information at this stage. 

5.2 Rewiring for Routing only 
Table 2 shows the effects of the flow (2) DAOmap  TVPR  
Rewiring. Column 2-4 show that 3.7% of all nets are replaced by 
their alternative wires for routing improvement. Although 
rewiring can find much more alternative wires according to [6], 
only a small part of them are useful in delay reduction. Column 8-
10 are the comparison results of critical path delay. At the same 
time the comparison results of channel width are included in 
Column 5-7. The channel width of C1908 is reduced by one after 
seven transformations. We do not include it in delay comparison 
because the delay of a circuit is very likely increased if the circuit 
is routed with a smaller channel width. The average delay 
reduction is more than 10%. From Column 11–13, the CPU time 
consumed by rewiring is only 5% of the total time for TVPR's 
placement and routing, which is much faster than the SPFD 
approach. Because we have different starting set up from SPFD 
rewiring, we cannot make a direct comparison.  
To the best of our knowledge, this is the first work giving 
quantitative analysis on the power of the ATPG-based rewiring 
techniques when applied in LUT-based FPGA routing. This part 
of work reveals that rewiring is powerful in delay reduction, 
especially under very low CPU overhead and without area penalty. 
Considering its high efficiency in area reduction in technology 
mapping, we believe that rewiring is a strong tool for postlayout 
logic synthesis to improve FPGA performance and routability. 
Most importantly, it is known that any effective delay reduction 
scheme is relying on the accuracy of physical layout information, 
which in not available until a routing is completed. That is why 
the delay performance cannot be improved in rewiring-based 
technology mapping according to the experiments in Section 5.1. 

5.3 Rewiring for both Technology Mapping 
and Routing 
Table 3 reflects the results for applying flow (3) DAOmap  
Rewiring  TVPR  Rewiring. It shows that applying rewiring 
on both stages, though reduces LUTs by 10% too and reduces 
(routing) area by 3% but the delay reduction in only 3.8%, which 
is worse then the flow (2). As most FPGA chips do not down-
scale sizes continuously, LUT reductions do not always bring 
routing area reductions proportionally (e.g. 10 % LUT reduction 
only brings 3.8% routing area reduction). This result also implies 
an anomaly point: it is not necessarily true that a best technology 
mapping always yields a best final routing result. Therefore, we 
need an EDA flow with more stages integrated together and a 
powerful logic perturbation tool to shift optimization resources 
between them for a globally best final solution. 

6. CONCLUSIONS 
Area and delay are the two core issues for FPGA designs. 
However, the area optimization is mainly attributed to the 
technology mapping stage while the delay can only be correctly 
handled in the final routing stage. Optimizing both simultaneously 

has always imposed a tough challenge to us. In this paper, we 
further show that in a conventional EDA flow divided into several 
stages, a best result obtained in a certain stage according to its 
cost function may not necessarily be the best for later stages. In 
today’s commonly adopted FPGA design flows, a technology 
mapping result with a few less LUTs may adversely yield a 
routing with one or more tracks. As a result, it may be useful to 
have a design flow being able to shift optimization resources 
across boundaries between different stages and a universal 
technique applicable to all stages would be worthwhile to develop. 
As rewiring is a both physical- and logical-information sensitive 
transformation technique that can be universally adaptable to 
nearly most EDA stages, it makes a good sense for us to design a 
flow with rewiring integrated into all stages, from netlist to final 
routing, and analyze its impact margins on the various stages.  
As a first known effort of this kind, our experimental results show 
that the rewiring logic perturbation can still bring large 
improvements on area and delay simultaneously, under acceptable 
CPU overhead and no penalty of other objectives. Compared with 
the already excellent DAOmap+TVPR results, we can reduce the 
number of LUTs by up to 33.7% (avg. 10%) and critical path 
delay by up to 31.7% (avg. 11%), which is a result with practical 
significance too. In the future, we would like to improve the speed 
of the rewiring engine and further extend the flow to allow for 
more resource shifting flexibility between different stages. And as 
a longer term goal, to investigate a new flow with all stages 
merged together under the help of rewiring technique. According 
to our current experimental results, this direction seems promising. 
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Table 3. Performing logic perturbation on technology 
mapping and routing to affect FPGA area and delay 

 Channel Width Critical Path Delay 
Circuit RW+TM (TM+RT) 

+RW 
Red. (%) no RW (TM+RT) 

+RW 
Red. (%) 

5xp1 4 4 0 2.49 1.93 22.49 
C1355 6 6 0 3.41 3.41 0 
C2670 6 5 16.67 6.66 5.47 17.87 
C880 6 6 0 3.60 3.60 0 
alu2 6 6 0 5.00 5.00 0 

b9_n2 4 4 0 2.08 2.08 0 
f51m 4 4 0 2.17 2.17 0 

misex3 6 6 0 5.03 5.45 -8.35 
pcler8 4 4 0 1.87 1.87 0 
term1 5 5 0 2.29 2.29 0 

ttt2 5 4 20.00 2.49 2.05 17.67 
x3 5 5 0 3.80 3.98 -4.74 

Average   3.06           3.75 
RW: rewiring             TM: technology mapping              RT: routing                  Red.: reduction 

 
Table 1. Rewiring-based technology mapping’s impact on FPGA area and delay performance (K = 4)

 # CLBs # Slots Routing Area Critical Path Delay (e-08 s) 
   Circuit no RW  TM + RW Red. (%) no RW  TM + RW Red. (%) no RW  TM + RW Red. (%) no RW  TM + RW Red. (%) 

5xp1 36 33 8.33 36 36 0 48685.7 48685.7 0 2.49 1.82 26.90 
C1355 80 78 2.50 100 100 0 192733 192733 0 3.41 3.29 3.52 
C1908 133 122 8.27 144 144 0 274493 317414 -15.64 4.99 5.03 -0.80 
C6288 979 649 33.71 1024 676 33.98 1882590 1053290 44.05 14.22 13.50 5.06 
C880 120 119 0.83 121 121 0 231817 231817 0 4.11 4.26 -3.65 
alu2 158 130 7.59 169 144 14.79 320762 274493 14.42 5.00 5.47 -9.4 

apex6 240 220 8.33 900 900 0 1657100 1397080 15.69 3.97 4.32 -8.82 
Comp 32 30 6.25 36 36 0 37438.3 48685.7 -30.04 3.06 2.75 10.13 
duke2 153 135 11.76 169 144 14.79 320762 317414 1.04 3.77 3.09 18.04 
f51m 42 39 7.14 49 49 0 65304.4 65304.4 0 2.17 2.17 0 
pcler8 38 37 2.63 49 49 0 65304.4 65304.4 0 1.87 2.11 -12.83 
term1 70 59 15.71 81 64 20.99 105786 105802 -0.01 2.29 2.61 -13.97 
ttt2 64 56 12.5 64 64 0 105802 105802 0 2.49 2.05 17.67 
x3 243 224 7.82 900 900 0 1397080 1397080 0 3.80 4.00 -5.26 

Average   9.53   6.04   2.11   1.90 
RW: Rewiring                    TM: technology mapping            Red.: reduction                      

 
Table 2. Rewiring-based routing’s impact on FPGA area and delay performance (K = 4)

 #Nets #Trans. Ratio Channel Width Critical Path Delay (e-08 s) CPU Time (s) 
Circuit   % no RW RT+RW Red. (%) no RW RT+RW Red. (%) VPR Engine Ratio 
5xp1 43 2 4.65 4 4 0 2.49 1.70 31.74 1.31 0.12 0.09 

C1355 121 0 0 6 6 0 3.41 3.41 0 10.03 0.07 0.07 
C1908 166 7 4.22 7 6 14.29 4.99 5.59 - 6.56 0.41 0.06 
C6288 1011 0 0 5 5 0 14.22 14.22 0 139.90 0.98 0.01 
C880 180 6 3.33 6 6 0 4.11 3.48 15.33 13.81 0.19 0.01 
alu2 168 18 10.71 6 6 0 5.00 4.79 4.15 30.65 2.59 0.08 

apex6 375 0 0 5 5 0 3.97 3.97 0 101.65 2.33 0.02 
comp 64 2 3.13 3 3 0 3.06 2.47 19.37 1.30 0.03 0.02 
duke2 175 6 3.43 6 6 0 3.77 3.30 12.57 25.18 1.87 0.07 
f51m 50 1 2.00 4 4 0 2.17 1.93 11.06 1.60 0.20 0.12 
pcler8 65 0 0 4 4 0 1.87 1.87 0 1.34 0.02 0.01 
term1 104 11 10.58 5 5 0 2.29 1.99 12.91 4.74 0.24 0.05 
ttt2 88 7 7.95 4 4 0 2.49 1.81 27.11 3.44 0.14 0.04 
x3 378 6 1.59 5 5 0 3.80 3.68 3.10 71.20 1.62 0.02 

Average   3.69   1.02   10.56   0.05 
Trans.: transformation                      RW: rewiring               RT: routing                    Red.: reduction 
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