
Exact Combinatorial Optimization Methods for Physical
Design of Regular Logic Bricks

Brian Taylor and Larry Pileggi
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

{briant, pileggi}@ece.cmu.edu

ABSTRACT

As minimum feature sizes continue to scale down, increas-
ing difficulties with subwavelength lithography have spurred
research into more regular layout styles, such as Restrictive
Design Rules (RDRs) [11] and regular logic fabrics [10]. In
this paper we show that the simplicity and discreteness of
regular fabrics give rise to powerful exact combinatorial op-
timization methods for the brick layout problem (the regular
fabric equivalent of the cell layout problem). These methods
are either inapplicable or intractable for less regular layout
styles, such as the DRC-based approach of standard cell lay-
out. Results from our prototype tool demonstrate that these
optimization methods are quite practical for bricks of typical
size found in large-scale designs.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles—
Regular Fabrics; B.7.2 [Integrated Circuits]: Placement
and Routing.

General Terms

Algorithms, Design.

Keywords

Regularity, Manufacturability, DFM, Combinatorial opti-
mization, Exact methods, Boolean satisfiability.

1. INTRODUCTION
In modern processes, the critical dimension features printed

on a chip (e.g., 50 nm for one particular “65 nm” process)
are significantly smaller than the illumination wavelength
(193 nm for the same process) used to print those features.
As a consequence, resolution — the ability to faithfully re-
produce the patterns drawn on the mask onto the silicon
wafer — is impaired, and Resolution Enhancement Tech-
niques (RETs) such as Optical Proximity Correction (OPC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
C o py rig h t 2 0 0 7 AC M 9 7 8 -1 -5 9 5 9 3 -6 2 7 -1 /0 7 /2 0 0 6 ...$5 .0 0 .

and Phase Shift Mask (PSM) are employed to bring resolu-
tion up to acceptable levels [15]. However, these techniques
cannot correct irregular layouts containing arbitrary pat-
terns; for example, OPC often requires space to add serifs,
and PSM cannot correct patterns that contain phase con-
flicts. The intractability of faithful reproduction of irregular,
arbitrary layouts has prompted research into more regular,
lithography-friendly design styles [12, 10, 11]. While the
benefits for manufacturability of layout regularity have been
clearly demonstrated [9], the algorithmic implications of the
paradigm shift to more regular layout styles have yet to be
explored. In this work, we demonstrate that design regular-
ity — which has been necessitated by deep subwavelength
lithography challenges — can be exploited for significant
improvement at the algorithmic level.

We begin with a discussion of the design methodology
assumed in this paper, which was proposed in [10]. In this
methodology, the RTL of a design is analyzed and a small set
of logic-level netlists (each with a granularity of roughly two
to five NAND2 gates) which efficiently ‘cover’ the design is
extracted. Each of these netlists is then mapped to a regular
logic fabric; the resulting layouts of the logic-level netlists
are referred to as bricks. By “logic fabric,” we refer to the
physical structures — diffusion, polysilicon, metal, vias, etc.
— with which logic circuits are implemented; hence, regular
logic fabrics are logic fabrics which are characterized by their
regularity. The regular fabric assumed in this paper, which
follows that proposed in [10], has the following properties:

• All routing layers (poly and up) are unidirectional.
Poly and metal 1 are vertical routing layers, while
metal 2 is a horizontal layer.

• Each routing layer has an associated fixed pitch. More-
over, the pitch of each vertical layer is an integral mul-
tiple of some vertical quantum, and the pitch of each
horizontal layer is an integral multiple of some horizon-
tal quantum. This, together with the unidirectionality
of all layers, implies that brick routing is done on a
coarse grid (see Figure 1).

• All PMOS transistors lie in a single row near the top
of the brick, and all NMOS transistors lie in a single
row near the bottom of the brick (this is akin to the
‘single-row’ layout style of standard cells).

These restrictions result in the highly regular layout struc-
ture illustrated in Figure 1. It has been shown [9] that de-
signs implemented using such a fabric can offer performance

344

19.2

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

and area equal to that of standard cell-based designs at the
65nm node. It is expected that regular designs will be able
to exceed standard cell-based designs in performance and
area (and of course yield) at 45nm and below, provided that
CAD tools are created to exploit the simplicity and discrete-
ness inherent in regular designs.

Figure 1: Regular logic fabric.

In this paper, we describe one such CAD tool. Namely, we
address the problem of generating brick layouts for the logic-
level netlists extracted from the RTL for a given design. The
key idea here is that we exploit the discrete structure of the
regular fabric to obtain exact combinatorial optimization-
based layout algorithms which are either inapplicable to or
prohibitively expensive for less regular layout styles. Brick
layout generation is done in two steps — transistor place-
ment followed by routing — and in each step, the regular-
ity of the logic fabric is leveraged by the layout algorithm.
In the transistor placement step, the ‘single-row’ diffusion
style lends itself to highly effective routability metrics, and
to an efficient branch and bound algorithm that is optimal
with respect to area and strongly Pareto optimal with re-
spect to the routability metrics. Similarly, the discreteness
of the coarse routing grid makes feasible a formulation of
the brick routing step as a decision problem in the class NP
[5]. In turn, this formulation leads to a routing methodology
based on Boolean Satisfiability (SAT) that can make strong
guarantees of completeness and optimality that virtually no
other routing method can make.

The remainder of this paper is organized as follows. In
Section 2, we describe our transistor placement algorithm.
In Section 3, we formulate the brick routing problem as a
decision problem in the class NP, and give a brief overview
of an efficient reduction from that decision problem to SAT.
In Section 4, we give some promising results based on a
prototype layout tool. Finally, in Section 5 we offer some
concluding remarks.

2. TRANSISTOR PLACEMENT
Because of the ‘single-row’ diffusion style of our regular

fabric, the transistor placement problem simplifies to the
problem of finding a good ordering of the PMOS and NMOS
transistors within their respective rows. The choice of or-
dering is very important for two reasons. First, if two tran-
sistors that are adjacent in the ordering have a diffusion net
in common, then the net may be shared in diffusion between
the two transistors, resulting in a brick width reduction of

one poly pitch (see Figure 2). Thus, a good ordering will
minimize brick width by allowing for as much diffusion shar-
ing between adjacent transistors as possible. The second
reason the choice of ordering is important is that some or-
derings will result in transistor placements that are much
easier to route than others. Therefore, a good ordering al-
gorithm should consider the routability of the corresponding
placement in addition to the width.

Figure 2: Diffusion sharing between two adjacent

transistors.

The problem of finding a good transistor ordering in the
‘single-row’ diffusion style is referred to as the transistor
chaining problem, and has been solved in many different
ways [14, 1, 7] since it was first proposed in [14]. In this
work, we adapt and extend the branch and bound approach
of Hwang et al [7]. We chose branch and bound as our
optimization strategy because unlike many other transis-
tor chaining algorithms, it allows the exact minimization
of width as well as a wide variety of other objectives, such
as routability metrics. It is even possible to integrate com-
plex DFM (Design For Manufacturability) considerations,
such as STI (Shallow Trench Isolation) stress effects, using
such an approach, assuming the availability of good process-
dependent models.

In order to ensure that our transistor placements have
good routing characteristics as well as minimum width, we
have extended Hwang’s branch and bound method to ex-
actly minimize two routing metrics: channel density and
estimated wirelength. While the motivation for using wire-
length as a routing metric should be obvious, the choice
of channel density as a metric warrants further discussion.
Given the single-row layout style of our regular fabric, the
brick routing problem somewhat resembles the classic chan-
nel routing problem (see Figure 3). In the channel routing
model, all terminals are clustered at the top and bottom of
the routing channel, whereas for the brick routing problem,
the terminals are clustered near the top and bottom of the
channel. The similarity between the brick routing problem
and the channel routing problem suggests that channel den-
sity is an effective routing metric for bricks; this was in fact
confirmed experimentally by comparison with a transistor
placement method that minimized only width and estimated
wirelength.

Figure 3: A brick routing instance and its associated

channel routing problem.

Our transistor placement methodology is as follows. First,
we run Hwang’s branch and bound algorithm to find the max
number N of abutments possible in any solution. Then, we

345

run another pass of branch and bound, except that in this
pass, we examine all branches of the search tree that lead
to orderings with N abutments (rather than just the first
such branch). For each of these orderings, we calculate
the associated channel density and estimated wirelength,
and we choose the ordering of minimal channel density D
whose estimated wirelength is minimum among all order-
ings of channel density D. Thus, we exactly minimize brick
width, then channel density, then estimated wirelength, in
that order. The transistor placements produced by our al-
gorithm are therefore optimal with respect to brick width
(and hence area, since brick height is assumed fixed), and
strongly Pareto optimal with respect to channel density and
estimated wirelength.

3. ROUTING
For a given transistor placement, there are several ques-

tions one may ask: Does this placement have a routing? If
so, does it have a routing with wirelength at most W? Does
it have a routing that uses at most V vias? Does it have
a routing that avoids a certain set of undesirable, hard-to-
print patterns?

If the answer to any of the above questions is “yes,” then
there is a short, easily verifiable proof that the answer is
yes: namely, a routing solution that has the desired prop-
erties. Thus, all of the above routing problems — brick
routing, minimum wirelengh brick routing, minimum via
brick routing, and pattern-prohibited brick routing — are
decision problems in the complexity class NP [5], and there-
fore have polynomial reductions to the Boolean Satisfiabil-
ity (SAT) problem. In other words, for each instance of any
of the aforementioned routing problems, we can generate a
boolean formula corresponding to an instance of the SAT
problem such that the formula is satisfiable if and only if
the instance of the associated routing problem has a solu-
tion. Moreover, any solution for the SAT instance can be
efficiently “decoded” to obtain a solution for the instance of
the associated routing problem.

The choice of SAT as our brick routing engine thus allows
us to make strong guarantees that, to our knowledge, vir-
tually no other routing method can make. Unlike heuristic
approaches such as maze routing, our brick router always
finds a routing solution, if one exists. In fact, not only can a
SAT-based brick router always find a solution if there is one,
it can even find an optimal solution, under many different
notions of optimality; for example, it is possible to find a
routing solution that uses the fewest possible vias. Finally,
a SAT-based routing approach facilitates the prohibition of
patterns which are deemed undesirable from a lithography
point of view.

Although virtually any routing problem can be recast as a
boolean satisfiability problem, the general hardness of solv-
ing SAT makes satisfiability-based methods effective only
for routing problems that can be reduced to small, highly
structured instances of SAT. This is where design regularity
comes in: the discreteness of the coarse grid routing struc-
ture, which arises from regularity constraints, gives rise to
an efficient reduction to boolean satisfiability, which we de-
scribe in the remainder of this section.

3.1 Reduction to Boolean Satisfiability
The Boolean Satisfiability (SAT) problem is defined in

the following way: given a boolen expression F expressed in

“product-of-sums” form, also known as Conjunctive Normal
Form (CNF), is there an assignment to the variables in the
support of F that causes F to evaluate to 1? SAT is NP-
Complete [2], which means that any decision problem in the
class NP can be efficiently reduced to (i.e., expressed as an
instance of) Boolean Satisfiability. Despite the suspected
hardness of solving SAT in general, SAT solvers have made
amazing progress in the last decade, and consequently re-
duction to SAT is becoming an increasingly popular way to
solve design and verification problems in VLSI design.

The general technique for reducing a decision problem in
NP to SAT is as follows. First, define a set of boolean
variables X = {x1, x2, . . . , xn} that efficiently “encodes”
the solution space of the original problem. For example,
in the brick routing problem, we define a boolean variable
x for each wire segment s of the routing grid such that
x = 1 if and only if s is filled in. Once a suitable set of
boolean variables has been defined, specify a set of rules
R = {R1, R2, . . . , Rm} about the properties a solution must
have in order to be valid; each such rule Ri is enforced
by a set of clauses φi. In the brick routing problem, one
such rule might be, “no two distinct nets should ever be
shorted together.” If we define boolean formula F to be
the conjunction of all enforcer clause sets φi — that is,
F (x1, x2, . . . , xn) = φ1φ2 · · ·φm — then any satisfying as-
signment to F (i.e., any assignment to x1, x2, . . . , xn which
results in F = 1) must satisfy each rule in R, and hence
corresponds to a valid solution to our original problem. The
reduction from brick routing to SAT described in this work
is just one example of this general technique; similar reduc-
tions from physical design problems to SAT can be found
in [3]. In fact, the cell layout problem was formulated using
SAT in [8]; however, their layout style is much too simplis-
tic for our purposes (e.g., doglegs are not allowed in routes),
and would result in much larger layout areas than those pro-
duced by our methods.

As the preceding discussion shows, the reduction from
the brick routing problem to boolean satisfiability has three
components: the set X of boolean variables that encodes the
routing solution space, the set R of rules which ensure that
any satisfying assignment corresponds to a valid routing so-
lution, and the enforcer clause sets φi corresponding to each
rule Ri. Due to space constraints, we cannot fully specify
X , R, and the φi’s here; see [13] for the full details of the re-
duction. Instead, we will list some of the boolean variables,
and we will describe an example rule and its correspond-
ing enforcer clauses. We note that a subset of our rules
is logically equivalent to (and based upon) the “routabil-
ity checking” work of [6]. Our reduction to SAT produces
Θ(rc lg N) clauses, where r is the number of rows of the
routing grid, c the number of columns, and N the number
of nets. Thus, our reduction is quasilinear in N and the size
rc of the routing grid.

3.1.1 Variables

We begin by describing two subclasses of the boolean vari-
ables in X . The first of these are the segment variables, de-
noted xij . Variable xij indicates whether the wire segment
of layer x, row i, and column j is filled in. The second kind
of variables are the net ID variables. Denoted ~xij , these
are bit vectors indicating the integer ID of the net passing
through the wire segment of layer x, row i, and column j.
We refer to the kth bit of ~xij using the notation xijk. Note

346

that the bit vector ~xij has length b, where b is the number
of bits needed to encode a net ID (b = ⌈lg N⌉, where N is
the number of nets).

3.1.2 An Example Rule

The routing rules serve many different purposes. Some
serve to ensure that any satisfying assignment corresponds
to a completely routed solution; others exist to ensure that
the routing obeys design rules; still others prevent patterns
that are undesirable from the perspective of DFM, as de-
scribed in Section 3.3. It is even possible to define rules that
limit the number of wire segments used; such rules can be
used to exactly minimize quantities such as total wirelength
or via count, as described in Section 3.2.

As an example of a rule that helps ensure routing correct-
ness, consider the statement, “no two distinct nets should
ever be shorted together.” This is logically equivalent to
the statement, “for every pair of adjacent segments xi1j1

and xi2j2 , if both xi1j1 and xi2j2 are filled in, then they
must not have different net IDs.” Symbolically, for every
pair of adjacent segments xi1j1 and xi2j2 , we have

(xi1j1 ∧ xi2j2) ⇒ (~xi1j1 = ~xi2j2)

This can easily be transformed into a propositional formula
in “product-of-sums” form, also known as Conjunctive Nor-
mal Form (CNF):

b−1∧

k=0

(xi1j1+xi2j2+xi1j1k+xi2j2k)(xi1j1+xi2j2+xi1j1k+xi2j2k)

If for every pair of adjacent segments xi1j1 and xi2j2 we
generate the above logic, we get the enforcer clause set φ
corresponding to our example rule.

3.2 Wirelength Minimization
Suppose that in addition to rules that ensure routing cor-

rectness, we enforce a rule of the form, “no more than W
wire segments may be filled in.” The resulting CNF for-
mula F will then have the property that any satisfying as-
signment to F will correspond to a routing of total wire-
length at most W . Given a lower bound Wℓ and an upper
bound Wu on wirelength, we can binary search on W to
find the exact minimum Wmin for which there is a rout-
ing. This is done in the following way: we first try to
find a routing with wirelength W at most Wu; if one ex-
ists, then we try to find a routing with W = Wℓ; if none
exists, we then try W = (Wu + Wℓ)/2, and then we try ei-
ther W = (Wu + Wℓ)/4 or W = 3(Wu + Wℓ)/4 depending
on whether there exists a routing with W = (Wu + Wℓ)/2,
and so on. Clearly this process can be used to find a routing
with the minimum possible wirelength using no more than
⌈log2(Wu − Wℓ + 1)⌉ SAT solves. Similarly, one can use k
processors to search in parallel for Wmin, and this search
will take roughly Tavg⌈logk+1(Wu −Wℓ +1)⌉ seconds, where
Tavg is the average SAT solve time in seconds.

The rule “no more than W wire segments may be filled in”
is logically equivalent to the expression

∑
i wi ≤ W , where

summation is done over all segment variables wi that corre-
spond to wire segments. In order to convert this expression
into CNF logic, we describe a circuit that first sums the wire
segments wi and then compares the sum to W . Once a cir-
cuit with this functionality is known, it is trivial to emulate
the circuit using CNF logic. An arbitrary combinational cir-
cuit that computes f(x1, . . . , xn) and whose output is Z can

be emulated by converting the expression Z ⊕ f(x1, . . . , xn)
to CNF form; the resulting CNF formula can only be satis-
fied by an assignment that sets Z equal to f(x1, . . . , xn).

It is quite easy to generate CNF logic to check whether
a bit vector is at most some constant W (see pp. 17–18 of
[13]), so here we will only describe how to efficiently con-
struct a circuit (shown in Figure 4) that adds the n boolean
variables corresponding to wire segments.

Figure 4: The n-bit divide-and-conquer addition cir-

cuit C(n).

The addition circuit consists of three stages. In the first
stage, we form ⌈n/3⌉ 2-bit sums; let MSBi and LSBi denote
the MSB and the LSB of the ith sum. In the second stage,
we recursively add all the MSBs and all the LSBs; let these
sums be denoted by M and L, respectively. The final output
sum is equal to

⌈n/3⌉∑

i=1

(2·MSBi+LSBi) = 2

⌈n/3⌉∑

i=1

MSBi+

⌈n/3⌉∑

i=1

LSBi = 2M+L,

so in the final stage, we add 2M to L.
The reason we use this circuit topology is that it is area-

efficient ; the less hardware we have to emulate, the smaller
our resulting CNF formula will be. Both the number of
variables and the number of clauses needed to implement
this circuit are directly proportional to the number of 1-bit
adders in the circuit. Looking at Figure 4, we can write
the following recurrence relation for the number of adders
A(n) used by a divide-and-conquer circuit that adds n 1-bit
numbers:

A(n) = ⌈n/3⌉ + 2A(⌈n/3⌉) + ⌈lg(⌈n/3⌉ + 1)⌉

Solving this recurrence, we get A(n) = Θ(n − nlog3 2) ≈
Θ(n−n0.631); thus, the number of 1-bit adders needed (and
hence, the number of clauses needed) to compute the sum
is linear in the number of bits added. Moreover, the sub-
tractive sublinear nlog3 2 term makes this topology asymp-

347

totically superior to more näıve adder circuits, such as the
binary tree adder.

3.3 DFM-Aware Pattern Prohibition
From a DFM (Design for Manufacturability) perspective,

one of the most attractive features of our SAT-based rout-
ing methodology is the ability to explicitly prohibit patterns
which are difficult to print using subwavelength lithography.
As discussed in Section 1, Resolution Enhancement Tech-
niques (RETs) cannot correct any arbitrary pattern; thus,
it is necessary to avoid those patterns that are difficult or
impossible to correct. An example of a pattern in the metal
2 (M2) layer that cannot be corrected by OPC is shown in
Figure 5. When two horizontally adjacent M2 segments at
minimum separation distance are flanked above and below
by unbroken M2 strips, it becomes impossible to apply the
“hammerhead” OPC serifs to the M2 segments required to
prevent line-end pullback.

Figure 5: An M2 pattern that cannot be corrected

by OPC.

Importantly, our SAT formulation of the routing problem
can easily and efficiently prohibit such patterns explicitly.
In our abstraction of the routing grid, the pattern of Figure
5 corresponds to the grid segment pattern shown in Fig-
ure 6. If M2ij is the segment variable indicating whether
the segment in row i and column j of the M2 layer is filled
in, then we want to avoid the case where M230 = M231 =
M232 = M233 = M220 = M223 = M210 = M211 = M212 =
M213 = 1 and M221 = M222 = 0. In other words, we want
the following clause to be satisfied:

M230 +M231 +M232 +M233 +M220 +M223 +M210 +M211 +
M212 + M213 + M221 + M222

Thus, in order to prohibit a particular pattern, we need
just one clause for each position where that pattern could
occur. Clearly, the number of possible positions for a given
pattern is bounded by the size rc of the grid (where r is
the number of rows and c the number of columns), so the
number of clauses needed to prohibit any particular pattern
is linear in the size of the grid.

4. EXPERIMENTAL RESULTS
We have developed a prototype brick layout tool that im-

plements the transistor placement and routing algorithms
described in this paper. Table 1 contains results from using
this tool to lay out five benchmark bricks of various size.
From left to right, the columns contain benchmark names,

Figure 6: The grid segment pattern corresponding

to the unwanted M2 pattern of Figure 5.

transistor counts, number of variables/clauses in the SAT
routing formula, runtime in seconds of the entire flow when
no wirelength minimization is done, and runtime in seconds
when exact via minimization is done. We emphasize that
the runtimes are for the entire layout flow, not just for rout-
ing. Experiments were run on an Intel P4 2.8 GHz machine
running GNU/Linux. We used minisat2 as our SAT solver
[4]. We would like to have compared our prototype tool
against commercial cell layout tools, but unfortunately we
are unaware of any available tools that allow the specifica-
tion of the regularity constraints (fixed pitch, one direction
per layer, and so on) that define our regular fabric, or that
allow for the explicit prohibition of certain patterns.

name xtors # vars # clauses no min via min
ex1 8 3259 19613 .62 .64
ex2 10 4791 26873 .87 1.7
ex3 12 6905 44903 1.4 2.9
ex4 16 8809 57770 2.3 6.0
ex5 18 11667 83075 6.5 9.2

Table 1: Results from five benchmark bricks.

As discussed in Section 1, in the design methodology as-
sumed in this paper, a design is mapped to a small set of
logic-level netlists; each of these netlists (whose layouts we
refer to as ‘bricks’) has a granularity of roughly two to five
NAND2 gates (that is, its transistor count is limited to
roughly 20). The reason for this size limitation on bricks
is as follows. Since the entire design is implemented using
a small number of bricks (typically between 20 and 30), it
is important that the individual bricks not be too large, or
else the design will suffer from poor area utilization. Thus,
the benchmark bricks of Table 1 range in size from small to
large, with the largest being near the upper bound imposed
by utilization considerations.

As is clear from the runtimes, the brick layout methods
proposed in this paper are quite practical — no benchmark
took more than a minute. It should be noted that SAT solv-
ing runtimes have notoriously large variance, so the above
numbers are best interpreted as an order-of-magnitude es-
timate for benchmarks of similar size. The time reported
for via minimization is not the time taken by the entire bi-
nary search, but rather the time for the final SAT solve with
the via bound equal to the minimum possible. However, it
can be shown that with a few processors searching in parallel
for the minimum number of vias possible, the expected total
runtime is a small factor larger than the average SAT solve
time Tavg (for example, with k = 3 processors the expected
runtime is less than 4Tavg). Thus, the expected total via
minimization time should only be a few times larger than
the reported number, which itself should be regarded as an
order-of-magnitude estimate.

348

We have observed that via minimization is far more time-
efficient than wirelength minimization; exact via minimiza-
tion generally takes seconds, whereas exact wirelength min-
imization can take minutes or even hours. However, exact
via minimization usually produces layouts of minimum or
near-minimum wirelength, as shown in Figure 7. Thus, it
suffices for practical purposes to do via minimization rather
than the far more time-consuming wirelength minimization.
This is in fact yet another benefit of design regularity! More
precisely, this is a benefit of unidirectionality: since all rout-
ing layers are unidirectional, and since metal 2 is the only
horizontal routing layer, a given route must use unneces-
sary vias to meander. Minimizing the number of allowed
vias therefore prevents routes from meandering, and thus
indirectly minimizes total wirelength.

Figure 7: Left: no WL minimization. Right: via-

minimized layout.

5. CONCLUSIONS AND FUTURE WORK
As our experimental results show, design regularity —

which has heretofore been championed for purely manufac-
turability-related reasons — is actually desirable from an
algorithmic point of view as well. The problems of brick-
level transistor placement and routing, under the constraints
of design regularity, take on a discrete character that is
amenable to exact methods of combinatorial optimization
such as branch and bound and SAT. Moreover, as we de-
scend deeper into the subwavelength regime, design regu-
larity becomes more important, while the heuristic meth-
ods driving combinational optimization engines such as SAT
grow ever more powerful. Thus, the approach of solving
physical design problems under strict regularity constraints
via exact algorithms such as SAT will only grow more at-
tractive in time. It will be interesting to see if other, perhaps
more large-scale physical design problems under regularity
constraints can be solved using similar techniques in the fu-
ture.

This work was supported in part by the Semiconductor
Research Corporation via a student fellowship. We would
like to thank Padmini Gopalakrishnan and Slava Rovner for
many helpful discussions related to this work.

6. REFERENCES

[1] R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and
S. Wimer. Depth-First Search and Dynamic
Programming Algorithms for Efficient CMOS Cell
Generation. IEEE Transactions on Computer-Aided
Design, 8(7):737–743, 1989.

[2] S. A. Cook. The Complexity of Theorem Proving
Procedures. Annual ACM Symposium on Theory of
Computing, pages 151–158, 1971.

[3] S. Devadas. Optimal Layout Via Boolean
Satisfiability. ICCAD-89, pages 294–297, 1989.

[4] N. Eén and N. Sörensen. An Extensible SAT-solver. In
Proceedings of the Sixth International Conference on
Theory and Applications of Satisfiability Testing (SAT
2003), pages 502–518, 2003.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[6] W. N. N. Hung, X. Song, T. Kam, L. Cheng, and
G. Yang. Routability Checking for Three-Dimensional
Architectures. IEEE Transactions on VLSI Systems,
pages 1371–1374, 2004.

[7] C.-Y. Hwang, Y.-C. Hsieh, Y.-L. Lin, and Y.-C. Hsu.
An Optimal Transistor Chaining Algorithm for
CMOS Cell Layout. ICCAD-89, pages 344–347, 1989.

[8] T. Iizuka, M. Ikeda, and K. Asada. High-Speed
Layout Synthesis for Minimum-Width CMOS Logic
Cells via Boolean Satisfiability. Proceedings of the
Asia and South Pacific Design Automation
Conference, pages 149–154, 2004.

[9] T. Jhaveri, L. Pileggi, V. Rovner, and A. Strojwas.
Maximization of Layout
Printability/Manufacturability by Extreme Layout
Regularity. In Proceedings of SPIE, Vol. 6156, 2006.

[10] V. Kheterpal, V. V. Rovner, T. G. Hersan,
D. Motiani, Y. Takegawa, A. J. Strojwas, and
L. Pileggi. Design Methodology for IC
Manufacturability Based on Regular Logic Bricks. In
Proceedings of the 42nd Conference on Design
Automation, pages 353–358, 2005.

[11] M. Lavin, F.-L. Heng, and G. Northrop. Backend CAD
Flows for “Restrictive Design Rules”. Proceedings of
the 2004 IEEE/ACM International Conference on
Computer-Aided Design, pages 739–746, 2004.

[12] Y. Ran and M. Marek-Sadowska. The Magic of a
Via-Configurable Regular Fabric. International
Conference on Computer Design, pages 338–343, 2004.

[13] B. Taylor. Automated Layout of Regular Fabric
Bricks. Master’s thesis, Carnegie Mellon University,
2005.

[14] T. Uehara and W. VanCleemput. Optimal Layout of
CMOS Functional Arrays. IEEE Transactions on
Computers, C30:305–314, 1981.

[15] B. Wong, A. Mittal, Y. Cao, and C. Starr.
Nano-CMOS Circuit and Physical Design. John Wiley
and Sons, 2005.

349

