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ABSTRACT
Pattern-based synthesis has drawn wide interest from researchers
who tried to utilize the regularity in applications for design opti-
mizations. In this paper we present a general pattern-basedbe-
havior synthesis framework which can efficiently extract similar
structures in programs. Our approach is very scalable in benefit of
advanced pruning techniques that include locality sensitive hashing
and characteristic vectors. The similarity of structures is captured
by a mismatch-tolerant metric: graph edit distance. The edit dis-
tance between two graphs is the minimum number of vertex/edge
insertion, deletion, substitution operations to transform one graph
into the other. Graph edit distance can naturally handle various pro-
gram variations such as bit-width, structure, and port variations. In
addition, we apply our pattern-based synthesis system to FPGA re-
source optimization with the observation that multiplexors are par-
ticularly expensive on FPGA platforms. Considering knowledge of
discovered patterns, the resource binding step can intelligently gen-
erate the data-path to reduce interconnect costs. Experiments show
our approach can, on average, reduce the total area by about 20%
with 7% latency overhead on the Xilinx Virtex-4 FPGAs, compared
to the traditional behavior synthesis flow.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids—automatic synthesis

General Terms
Algorithm, Design, Experimentation

Keywords
Behavior Synthesis, pattern, FPGA

1. INTRODUCTION
Pattern-based synthesis has drawn wide interest from researchers

who tried to extract and utilize the regularity in applications for de-
sign optimizations. The common tasks of pattern-based synthesis
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consist of pattern matching and pattern recognition. Pattern match-
ing is a technique for checking the presence of a given pattern. Rep-
resentative works in pattern matching include graph-parsing in cog-
nitive studies [32, 26], symbolic equivalence checking [3], AST-
based matching [20, 28] and graph isomorphism algorithms [2].
Pattern recognition [30] was initially studied in the machine learn-
ing domain for taking action based on the category of the data,
i.e., extracting patterns from the raw data. Of all the pattern recog-
nition techniques, structural pattern recognition is a methodology
which attempts to describe objects in terms of their parts and con-
nections. Structural pattern recognition is mainly based on graph
matching, where each object is represented by a labeled graph. Re-
cently, graph matching has found many applications in data mining,
biochemistry and VLSI CAD domains.
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Figure 1: A sample design with different scheduling and
binding solutions (different shades represent different function
units).

In circuit designs, the intelligent use of regularity usually pro-
duces high quality results. Actually, this is one key reasonwhy the
deliberate manual design can excel the design synthesized by au-
tomated tools. In this paper we attempt to optimize the resource
usage of FPGA designs using pattern-based synthesis techniques.
Multiplexors, the data routing logics, are particularly expensive for
FPGA platforms, e.g., the area, delay and power data of a 32-to-1
multiplexor are almost equivalent to an 18-bit multiplier in modern



FPGA designs, as shown in [8]. Figure 1 shows how to effectively
reduce the number of multiplexers by taking advantage of thereg-
ularity in the original specifications. Figure 1(a) is a typical list
scheduling result for the given data flow graph with resourcecon-
straint |FUi | ≤ 2. With the scheduling solution in (a), a possible
resource binding solution is shown in (b) where nodes 2 and 3 are
bound to the same function unit. For this small example, it iseasy
to see that nodes {2,3,4} and nodes {5,6,7} have the same struc-
ture, which leads to optimized scheduling and binding solutions in
(c) and (d). For large designs, the complex interaction among oper-
ations make it almost impossible for scheduling and resource bind-
ing processes to generate regular data-path without the knowledge
of patterns in the original design.

It is not surprising that pattern recognition has been exploited in
every level of the large circuit design from layout designs to high-
level synthesis [21, 29, 7, 13, 6, 25, 24]. Previous works on pattern
matching in behavior synthesis have different limitations, such as
pattern size, pattern representation (tree or string), handling pro-
gram variations, scalability and mismatch-tolerance. In this paper
we propose a general and efficient pattern recognition and synthesis
framework which benefits from the advanced subgraph enumera-
tion/pruning/matching techniques, targeting computation-intensive
applications. Each pattern is represented by a labeled directed
acyclic graph (DAG) to capture the data flows inside a basic block
in the original program. However a pattern can have instances in
multiple basic blocks. In particular, the contributions ofour ap-
proach include:

(i) Efficient subgraph enumeration and pruning techniques for
pattern recognition. A systematic subgraph enumeration
methodology is proposed based on the property of DAG to
avoid redundant subgraph generation. Characteristic vec-
tors (signatures of patterns) and locality-sensitive hashing are
used to prune subgraphs before they are matched with pat-
terns. A hybrid search strategy combines the advantages of
both breath-first search and depth-first search to find large
and useful pattern instances. Experiments show that our ap-
proach can find thousands of patterns (with the largest one
containing 40 nodes), all in one minute.

(ii) A graph similarity metric called edit distance [27] to handle
variations. The edit distance between two graphs is the min-
imum number of vertex/edge insertion, deletion, substitu-
tion operations to transform one graph into the other. Graph
edit distance can naturally handle various program variations
such as bit-width variations, structure variations and ports
variations. In addition, several interesting theoretic results
are presented to bound the edit distance calculation for prun-
ing.

(iii) A pattern-based behavior synthesis flow targeting FPGA for
resource reduction. With the knowledge of patterns, our ap-
proach minimizes the resource cost through pattern selection,
pattern-adaptive scheduling and binding on the basis of the
target FPGA platform.

The remainder of the paper is organized as follows. Section 2
discusses related work; Section 3 gives the preliminaries and prob-
lem formulation of our pattern-based synthesis problem; Section 4
presents our pattern recognition algorithm; Section 5 presents our
overall pattern-based behavior synthesis flow; Section 6 reports ex-
perimental results and is followed by conclusions in Section 7.

2. RELATED WORK
Past literature on pattern recognition can be roughly divided into

several categories: cognitive approach [32, 26], symbolicequiva-
lence checking [3], and graph-matching based approaches [20, 28,
2]. Cognitive approaches [32, 26] present the pattern as grammar
rules, and the parsing process is similar to the automated theorem
proof techniques in AI field. The symbolic approach in [3] deploys
formal verification techniques to discover subprograms which are
semantically equivalent, therefore it can handle more syntactic vari-
ations than other approaches. However, both cognitive approaches
and symbolic approaches suffer from the scalability problem and
are generally not applicable in practice. Graph-matching based ap-
proaches, including tree-based and graph-based approaches [20,
28, 2] are usually efficient and scalable, but require careful consid-
erations for handling program variations.

Graph-matching based pattern recognition has been widely ap-
plied to data mining, and a number of efficient and scalable algo-
rithms have been developed to find frequent patterns in graphs [17,
23, 33, 19]. AGM [19] uses a level-wise scheme to enumerate the
recurring subgraphs. The pattern candidates with sizek+1 are con-
structed by joining two frequent graphs with sizek, and a frequency
count of the current pattern candidate is done by subgraph isomor-
phism checking. FSG [23] extended the AGM algorithm to handle
connected subgraphs, and they both belong to the first category us-
ing a breath-first search strategy. Algorithms in the secondcategory
use depth-first search to find frequent subgraphs like gSpan [33]
and FFSM [17]. Both approaches calculate the canonical label of a
graph to avoid redundant subgraph enumeration and graph isomor-
phism test: gSpan uses a canonical representation of a depth-first
traversal of a graph and FFSM uses the adjacent matrix of a graph.
The canonical labeling problem is NP-hard in general, and differ-
ent heuristics have been proposed to incrementally construct the
canonical label. All these works can guarantee the completeness of
finding frequent subgraphs in terms of graph isomorphism. Instead
of these approaches, our work focuses on DAGs. Furthermore,we
restrict the graphs to be convex and connected for FPGA resource
reduction, and propose efficient subgraph enumeration techniques
specifically for DAGs. Our approach can also handle mismatches
in the pattern matching step using the edit distance metric.

Regularity extraction has been exploited in the behavior synthe-
sis domain in works [29, 7, 10, 35, 4, 5, 13, 6, 25]. In [29] a string-
matching based approach is proposed to cluster similar structures
and replace the instances of a pattern with a common implemen-
tation. Graphs are represented by a string called K-formula, and
this linearizion process is the major drawback since the selection
order of nodes can dramatically affect the matching result.The
work in [13] tries to improve the quality of logical synthesis by
considering patterns at the behavior synthesis step, and the pattern
library is given by users. Other interesting works include schedul-
ing and binding algorithms with patterns [6, 25], which bothas-
sume that patterns are given in advance. Pattern-based synthesis
techniques can also be found in custom instruction set generation
like [7, 10, 35, 4, 5]. In [10], patterns are restricted to have only
one output. Atasu et al. developed an exhaustive binary-tree search
algorithm [4]; however, the connectedness of the subgraph is not
considered. The work in [5] proposed a polynomial time algorithm
with respect to the input/output port number. Despite the limit of
the size on input/output ports, the enumeration process is not purely
incremental since the subgraphs grow with an arbitrary size. An-
other approach in [35] constructs subgraphs by combining single
input cones, which shares the same problem with [5]. Also, most
of the works avoid the duplicate enumeration using hash tables;
therefore the performance is dependent on the number of patterns



and implementation of the hash tables. Our proposed algorithm
can discover connected and convex patterns from the original spec-
ification in a complete, efficient and incremental way; moreover,
duplication checking in our approach is independent to number of
patterns which results in dramatic performance improvement and
storage space reduction.

There is extensive literature on general binding algorithms in
high-level synthesis like [31, 18, 22, 8, 11]. For example, the
weighted bipartite matching approach [18] tries to minimize the
multiplexers following a step-by-step method, and it is later en-
hanced by the co-family based approach in [8]. In [11], a dis-
tributed register architecture is proposed to reduce the interconnect
cost by using abundant embedded memory blocks on FPGAs. The
common problem in these approaches is that regularity is notcon-
sidered and maintained before the binding step. In contrast, our
pattern-based approach discovers and preserves the regularity in
the whole design flow.

3. PRELIMINARIES AND PROBLEM
FORMULATION

This section presents the preliminaries and the problem formu-
lation of our pattern-based behavior synthesis flow.

3.1 Preliminaries

DEFINITION 1. A data flow graph (DFG)is a directed acyclic
graph G(Vo, Ed), where the vertices in Vo represent the operation
nodes, and the edges in Ed represent the data dependencies (or data
transfers) between operations. A directed edge e(vi , v j) denotes
that operation vi produces one of the input operands for operation
v j .

For computation-intensive designs, we typically use data flow
graphs to capture the computation kernels. However, our approach
is not limited to pure data flow applications only; designs with mod-
erate control flows can be handled in the sense that the designs are
treated as a collection of data flow graphs by treating each basic
block inside the original program as a DFG.

DEFINITION 2. A labeled graph G is a five-element tuple G=
{V,E,ΣV ,ΣE, l} where V is a set of vertices and E is a set of edges.
ΣV andΣE denote the sets of vertex labels and edge labels respec-
tively. The label function l defines a mapping from vertices and
edges to labels.

The labeled graph provides a proper representation to capture
the structure and properties of the data flow graphs. In this paper
labeled graphs are used to describe patterns, and naturallywe can
easily derive a labeled graph of a DFG by choosing the label ofa
node to be the type of the respective operation (addition, multipli-
cation, etc.).

DEFINITION 3. Theediting distance d(G1,G2) [27] of two la-
beled graphs G1 and G2 is the minimal sequence of edit opera-
tions(relabel of node, insert a node/edge or delete a node/edge)
that transform G1 to G2.

Unlike the aforementioned exact matching approaches, we ex-
ploit the concept ofediting distanceto describe the similarity of
graphs. Please notice that each edit operation can be associated
with a cost, and editing distance is redefined to be the minimal to-
tal cost of edit operation sequences. Editing distance provides great
flexibility for handling variations in the practical designs. Figure 2
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Figure 2: Design variations and corresponding datapaths. (a)
structural variation, (b) bit-width variation, (c) port va riation.

shows three kinds of common variations for data-path generation.
Structural variation occurs when two DFGs have a small distortion
in the structures, such as the operation mismatches in Figure 2(a).
In (a), the cost of combining the functionality of a comparator and
a subtractor in hardware is marginal, which leads to the optimized
data-path on the right. Similarly, bit-width variation andport vari-
ation can be perfectly captured using the editing distance metrics
in (b) and (c). Furthermore, these decisions are made at runtime
which is more flexible than making an arbitrary decision by pre-
processing. For instance, we can merge all adders/subtracters to
unified addsub operations. However, addition operations are com-
mutative while subtraction operations are not. Conservatively, if
we set the addsub operations to non-commutative, potentially many
patterns can not be found due to the restrictions. With the concept
of edit distance, we can dynamically merge them without losing
any pattern.

With respect to editing distance, pattern and pattern instances are
defined as the following:

DEFINITION 4. Given a set of DFGs{Gi |i = 1,2, ..N}, a edit-
ing distance threshold ldist and a frequency threshold lcount, a la-
beled graphP is called apattern if ∃ setS = {SGj}: (1) |S| ≥
lcount; (2) ∀SGj ∈ S,∃Gi such that SGj is a subgraph of Gi ; (3)
∀SGj ∈ S, d(SGj ,P) ≤ ldist. Respectively, each subgraph in set
S is called apattern instanceof the patternP; set S is called a
pattern group.

3.2 Problem Formulation
Using the definitions in Section 3.1, we can formulate our

pattern-based synthesis problem. Our proposed approach can be
partitioned into two main problems: pattern recognition (PR) and
pattern-based synthesis for FPGA resource reduction (PBS-RR).

PROBLEM 1. Pattern recognition problem (PR). Given a be-
havior specification in a set of DFGs, find all the patterns as well
as all the pattern instances with respect to user-defined edit dis-
tance limit and frequency limit.

PROBLEM 2. Pattern-based synthesis problem for FPGA re-
source reduction (PBS-RR). Given all the patterns (or part of all
patterns) of a behavior description and platform information of the
target FPGA, generate the hardware implementation satisfying cer-
tain design constraints and minimize the resource usage of the total
design.



4. PATTERN RECOGNITION (PR)
In this section we describe our pattern recognition algorithm for

discovering all feasible patterns inside DFGs. Our approach is effi-
cient and scalable by considering the property of DAGs and using
advanced pruning techniques. First, we will introduce someimpor-
tant techniques to solve thePR problem. Next, the overall pattern
recognition framework is introduced and two different searching
strategies are discussed.

4.1 Techniques

4.1.1 Subgraph Enumeration
Subgraph enumeration plays an important role in the pattern

recognition algorithm. A good enumeration algorithm should guar-
antee completeness while avoiding redundant enumerations. For
the purpose of multiplexor reduction, the subgraphs enumerated in
our approach are limited to:

• connected: patterns with disjoint operations will not help
to reduce the multiplexors since there are no interconnects
among them.

• convex: a subgraphG′ of graphG is convex if there is no
path inG from nodeu ∈ G′ to nodev ∈ G′ which contains
a nodew /∈ G′. The requirement for convexity comes from
the consideration of better performance estimation. Usually
all pattern instances are scheduled in a uniform way. If a
pattern is non-convex, the scheduler can not estimate the la-
tency inside a pattern which may result in very large latency
overhead. In addition, non-convex patterns usually introduce
more ports which result in more multiplexors in final designs.

Specifically for pattern recognition, the subgraph enumeration
process should be incremental, i.e., sizek+1 subgraphs should be
enumerated only after all the sizek subgraphs are enumerated. The
rational behind this requirement is that the pattern pruning process
can safely throw away infrequent sizek subgraphs before expand-
ing them to sizek+1 subgraphs. However, if the enumeration pro-
cess is not incremental, we can not make early decisions to prune
useless subgraphs.

Next, a new subgraph enumeration approach is designed for
DAGs which can enumerate convex connected subgraphs in a com-
plete, efficient and incremental way. Before details are discussed,
several definitions need to be introduced.

DEFINITION 5. In a connected DAGG, a bridge nodebv is a
node inG whose removal disconnects the graph.

DEFINITION 6. In a DAG G, PIs are nodes without any input
edge andPOsare nodes without any output edge. Abridge PI(PO)
is a PI(PO) node which is also a bridge. Aleaf PI(PO) is a PI(PO)
node which is not a bridge.

Our definition ofbridgesuses a form of connectedness called
weakly connected. A weakly connected graph is where the direc-
tion of the graph is ignored and the connectedness is defined as if
the graph was undirected. An example is shown in Figure 3. In (a),
node 1 is a leaf input; nodes 6 and 7 are leaf outputs; node 2 is a
bridge input. With the definition of leaf PI/PO, we can proof the
following theorems.

LEMMA 1. A DAG G has at least one leaf PI or one leaf PO.

PROOF: Assume all the PIs and POs inG are bridges. We ran-
domly select a bridge PI/POv, and removal of nodev will result in
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Figure 3: A DAG example and its primary subgraph.

two or more subgraphs. LetG′ be one of these subgraphs. Every
bridge PI/PO inG is still a bridge PI/PO inG′

S

v. Repeat the same
process. Finally we can reach a state where a subgraph has two
nodes but still has a bridge PI/PO, which is a contradiction.�

LEMMA 2. The subgraph G′, generated by removing a leaf
PI/PO from a convex DAG G, is still convex.

PROOF: Removing a PI/PO can not destroy the convexity be-
cause a PI/PO is not on any path insideG.�

DEFINITION 7. A graph G′ is a primary subgraph of graph G
if G′ is generated by removing the leaf PI/PO in G which has the
biggest ID among all leaf PIs/POs.

THEOREM 1. A convex DAG Gk+1 has a unique primary sub-
graph Gk that is also convex.

PROOF: It can be easily seen that there is only one unique way
to get the primary subgraph of a DAG. Based on Lemma 2, the
primary subgraph is also convex.�

For example, the primary subgraph of the graph in Figure 3(a)
is shown in (b), while the graph in (c) is not the primary subgraph
because node 7 is the biggest ID among all leaf PIs/POs. Basedon
the primary subgraph relation, we propose a bottom-up construc-
tive method for the subgraph enumeration problem. At stepk+1,
all the convex subgraphs withk nodes are generated, and they are
extended by adding one neighbor in the original DFG. We assume
that a convex subgraphGk+1 can only be generated by extending
its primary subgraphGk, therefore duplications are avoided. Please
be noticed that a different labeling algorithm may change IDs of
nodes, therefore the primary subgraph of a subgraph may alsobe
changed; however subgraphs are still guaranteed to be generated
only once as long as each ID is unique. Our method only checks
a property inside a subgraph, and is totally independent of the to-
tal number of patterns. Bridges can be detected by a DFS traverse
of the subgraph; in practice, the subgraphs are usually verysmall,
which means the validation of primary subgraph relation literally
takes a constant time. Our approach also dramatically reduces the
storage requirements since patterns are no longer needed tobe kept
in memory for duplication checking after they are visited.

4.1.2 Characteristic Vector
Since the computation of graph edit distance is ex-

pensive, we compute a signature of a subgraph called
characteristic vector(CV) similar to the work in [34]. If a
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Figure 4: (a) A DFG. (b) Binary branches and CV of the given
DAG. (c) Binary branches and CV of the given DAG modified
for pattern pruning.

signature of a subgraph is significantly different than the signature
of a pattern, this subgraph is not needed for matching with the
pattern. Actually, for tree structures, Yang et.al [34] proved that
we can estimate the lower bound of edit distance based on CVs.In
this section we propose CV generation mechanism for DAGs.

DEFINITION 8. In a DAG G= (V,E), a Binary Branch is a
subgraphS= {u, l , r} ⊆G , such that edge(u, l) and(u, r) ∈ E.

DEFINITION 9. For a given universe of distinct binary
branchesU = {BB1,BB2, ...} with size|τ|, theCharacteristic Vec-
tor (CV) of a DAG G is a vector(b1,b2, ...,b|τ|) with each element
bi representing the number of occurrences of the ith binary branch
in U.

In [34], all distinctq-level binary trees serve as the universeU for
CV calculation; however it is possible that some binary branches
are never used which results in a waste of storage spaces. In our
approach, only the binary branches which appear at least once in
the given set of DFG are considered. As shown in Figure 4(a)(b),
there are three different binary branches in the given graph. Notice
that actuallyb2 has two instances since multipliers are commutative
operations. The symbolε denotes an empty node if the input of that
node is not in this graph. In practice, our method can effectively
capture the topological order and labels of a graph since most of
the operations in behavior synthesis have less than two inputs. If a
node has more than two inputs, we simply ignore this node.

For tree structures, it is easy to see that each node may appear in
at most two binary branches; therefore one edit operation, like rela-
beling, can only slightly change the occurrence of binary branches.
However for DAGs the property will not hold since one node may
have multiple outputs. To make this relation hold in DAGs, the
calculation of CV is slightly changed, as shown in Figure 4(c). If
one node has multiple outputs, then this node will be treatedas
an empty input for all its successors. With this modification, the
relation between edit distance and CV can be summarized as the
following:

THEOREM 2. Let d(G1,G2) be the edit distance between two
DAG G1 and G2, CV(G1),CV(G2) be the characteristic vectors of
G1 and G2 respectively,‖CV(G1)−CV(G2)‖1 ≤ 4∗d(G1,G2).

PROOF: As we discussed above, one node can only ap-
pear in at most two binary branches after we modified the CV
calculation method. Since one edit operation (vertex relabel-
ing/insertion/deletion, edge insertion/deletion) can only change at
most one node at a time, we can conclude that at most two bi-
nary branches are destroyed and at most two new binary branches
are generated; i.e., the change in CV in terms ofl1 norm is≤ 4.
Adding all the edit operations together, we come to the conclusion
that‖CV(G1)−CV(G2)‖1 ≤ 4∗d(G1,G2).�

Theorem 2 can help the pattern recognition process to reducethe
edit distance calculation. If the edit distance limit isldist, a sub-
graphg can not be an instance of patternp if ‖CV(g)−CV(p)‖1 >
4∗ ldist.

4.1.3 Locality-Sensitive Hashing(LSH)
After subgraphs are enumerated, they are matched with patterns

to see whether they are instances of discovered patterns or not.
When the number of found patterns is very large, finding the correct
pattern for a given subgraph can be costly using pairwise compar-
ison between subgraphs and patterns. LSH provides a perfecttool
to find near-neighbors of a query vector in the Euclidean space, and
a characteristic vector serves as the metric for comparison.

DEFINITION 10. Let ‖−→v ‖p denote the lp norm of vector−→v ; S
and U denote vector spaces while|U | < |S|. A hashing function
familyH ={h : S→U} is called(r1, r2, p1, p2)-sensitive if for any
u,v∈ S

• if ‖u−v‖p ≤ r1, then PrH [h(u) = h(v)]≥ p1.

• if ‖u−v‖p ≥ r2, then PrH [h(u) = h(v)]≤ p2.

LSH can hash two similar vectors the same bucket with arbitrary
high probability and hash two distant vectors to the same bucket
with arbitrary low probability. A LSH implementation can befound
in [14]. Using LSH, we can efficiently find all(1+ε) approximated
nearest neighbors of any vector within distanceR with arbitrary
possibilityp in O(n∗ logn) instead ofO(n2) for n vectors. Detailed
information can be found in [14].

Overall, our pruning process combines LSH and CV to re-
duce expensive pattern-matching operations. When a subgraph is
matched with a set of patterns, we calculate the CV of this sub-
graph and obtain the nearest neighbors of this subgraph within dis-
tance 4∗ ldist using LSH. As discussed above, the patterns which
have CVs out of that range need not to be considered. Experiments
show that for each subgraph we only need to calculate edit dis-
tance about 2-6 times on average before the corresponding pattern
is found.

4.2 Pattern Recognition Algorithm
Having all the important techniques discussed, a pattern recog-

nition (PR) algorithm is proposed in this section. Our algorithm
has two phases: a breath-first search step (HPR) and a depth-first
search step (VPR). At the beginning, the HPR algorithm exhaus-
tively discovers patterns, level by level. But if there is a big pattern
in this design, all its subgraphs are patterns, too; and the poten-
tially exponential number of subgraphs of a big pattern (say20)
can be very huge. If the number of patterns is too large, the pat-
tern recogniion algorithm automatically changes from HPR phase
to VPR phase. The VPR algorithm tries to find those big patterns
first using depth-first search; therefore, small patterns contained by
discovered patterns will not be generated later.

4.2.1 Horizontal Pattern Recognition (HPR)



Algorithm 1 HPR Algorithm

1: P → set of discovered patterns
2: Sk → set of sizek subgraph
3: INST(P) → instances of a patternP
4: ldist → edit distance limit
5: lcount → frequency limit
6:
7: travel all DFGs, add size 1 patterns and instances toP andS1
8: for k← 2,N do
9: for all sk ∈ Sk do

10: adding a neighbor to expandsk to sk+1
11: if sk is the primary subgraph ofsk+1 and convexthen
12: calculate CV(sk+1)
13: get list of patternsPi s.t. ‖CV(Pi)−CV(sk+1)‖1 ≤ 4∗

ldist using LSH
14: calculate edit distance ofsk+1 with eachPi
15: if d(Pi,sk+1) < ldist then
16: addsk+1 to INST(Pi)
17: else
18: create a new pattern based onsk+1, add toP

19: end if
20: addsk+1 to Sk+1
21: end if
22: end for
23: for all new patternPi ∈ P do
24: if |INST(Pi)|< lcount && size(Pi)≤ (k+1− ldist) then
25: removePi from P

26: remove INST(Pi) from Sk+1
27: end if
28: end for
29: end for

Algorithm 2 VPR Algorithm
1: P → current pattern
2: k → size of patternP
3: Pk+1 → set of sizek+1 patterns
4: M → set of maximal patterns
5: INST(P) → instances of a patternP
6: ldist → edit distance limit
7: lcount → frequency limit
8:
9: for all sk ∈ INST(P) do

10: adding a neighbor expandsk to sk+1
11: if sk is the primary subgraph ofsk+1 and convexthen
12: similar with HPR algorithm, find pattern forsk+1, or in-

sert a new pattern toPk+1
13: end if
14: end for
15: for all new patternPi ∈ Pk+1 do
16: if Pi is contained by a maximal patternM ∈M then
17: continue
18: else
19: call VPR(Pi) recursively
20: end if
21: end for
22: if P is not contained by any pattern inM then
23: addP to M

24: end if

HPR, as suggested by its name, discovers patterns with a breath-
first-search approach. The pseudo code of the HPR algorithm is
shown in Algorithm 1.

At stepk+1, all the sizek pattern instances are extended by one
node using the subgraph enumeration techniques in Section 4.1.1.
HPR is complete because subgraphs of a pattern are also patterns.
If a subgraphsk is not a pattern instance of a certain patternP at
stepk, it can not be a subgraph of another pattern instance larger
thank, which means no further extension is needed forsk.

Lines 12− 20 show the pruning process in HPR. After a new
subgraphsk+1 is generated, it is compared to the existing patterns
by calculating the edit distance between itself and existing patterns.
However, most of the calculation can be avoided using the CV and
LSH techniques in Section 4.1.2 and Section 4.1.3. The CV of a
subgraph is calculated and used as a key to find the patterns which
have close CVs, as shown in line 12. This can be solved by finding
the nearest neighbors using LSH in line 13. After getting thelist
of possible pattern candidates, edit distances are calculated. If sk+1
matches a patternP, it will be added to the pattern instance list of
P; otherwise a new pattern will be generated based onsk+1.

When all the subgraphs are processed, each newly generated
pattern will be examined to see whether it satisfies the frequency
limit. If not, it will be removed together with all its instances.
Edit distance further complicates the pruning process since pattern
instances may have different node sizes because of vertex inser-
tion/deletion. For example, ifldist is 1, we can not remove sizek
patterns until we finish searching all sizek+1 subgraphs. The sec-
ond condition in line 24 make sure no pattern are thrown away until
it is really not useful. To overcome this problem, we can either limit
ldist or limit the number of vertex insertions/deletions allowed.

4.2.2 Vertical Pattern Recognition (VPR)
As previously mentioned, subgraphs of a pattern are also pat-

terns, and this may result in an explosion in the number of patterns
found in HPR. If the number of patterns is too large, we will begin
the VPR phase to find maximal patterns.

DEFINITION 11. Let P1 and P2 be two patterns, sets S1 =
{pi

1|i = 1..n} and S2 = {pi
2|i = 1..n} denote the instances of P1

and P2 respectively; P1 ≺ P2 if P1 is a subgraph of P2 and there is
bijection between elements of S1 and S2: pi

1→ p j
2 such that pi1 is a

subgraph of pj2.

DEFINITION 12. A pattern P is a maximal pattern with respect
to a set of DFGs if there is no other pattern P′ in the same set of
DGFs that satisfies P≺ P′.

Intuitively, a maximal pattern can not be contained by otherpat-
terns, and each pattern is a subgraph of a certain maximal pat-
tern. In our VPR algorithm, a depth-first approach is deployed to
find maximal patterns; the pseudo-code of VPR is shown in Algo-
rithm 2. The pattern recognition is similar to HPR except that we
extend one pattern group at a time instead of a set of pattern groups
with sizek. At each step, a larger pattern which contains the cur-
rent pattern will be discovered. VPR can find maximal patterns in a
short time using depth-first search. After the maximal patterns are
discovered, we can avoid enumerating all their sub-patterns during
the search steps by checking to see if the current pattern is con-
tained by certain maximal patterns or not, as shown in line 22. In
practice, HPR algorithm will get stuck with large patterns in DFGs;
however VPR solves the problem caused by the explosive growth
of pattern numbers, and can efficiently find all maximal patterns.



5. PATTERN-BASED SYNTHESIS FLOW
FOR FPGA RESOURCE REDUCTION

Our pattern recognition framework can be applied in many prac-
tical problems, such as the FPGA resource reduction problem
(PBS-RR) discussed in this paper. If all pattern instances are sched-
uled and bounded in a uniform way, the internal data flows are free
of multiplexors (except the multiplexors generated due to resource
sharing among nodes inside a single pattern instance). Based on
this observation, a pattern-based behavior synthesis flow is pro-
posed in this section for FPGA resource reduction.

p2p1

p1 p2

(a) (b)

Figure 5: (a) A DFG covered by two pattern instancesp1 and
p2. (b) The reduced graph.

Specifically for the PBS-RR problem, only vertex relabelingis
allowed in edit distance calculation. The reason is that vertex inser-
tion/deletion not only increases the resource usage of a single pat-
tern with additional multiplexors to handle variations among pat-
tern instances, but also complicates the scheduling algorithm by in-
troducing latency variations. With this restriction, all the instances
of a pattern have the same number of nodes, and the pattern it-
self can be viewed as a complex operation. Therefore, our pattern
recognition framework can be easily integrated into any existing
behavior synthesis system, and no specific algorithm for pattern-
based synthesis is needed.

However, if patterns are viewed as complex nodes, instancesof
a same pattern may not be scheduled to the same time step in order
to share them like the regular operations. This seemingly restrictive
limitation is required because it guarantees that the resource con-
straints in the original design are maintained. With this restriction,
the following issues need to be addressed:

• If instances of a common pattern are required to be scheduled
in the same way, there is a possibility that no legal schedule
can be obtained. An example is shown in Figure 5. The
DFG in Figure 5(a) is covered by two pattern instancesp1
andp2; we can see that ifp1 andp2 are scheduled at differ-
ent time steps, they cannot be scheduled in the same way. If
we view each pattern instance as a big operation, the reduced
subgraph in (b) has a loop, which meansp1 andp2 can only
be scheduled at the same step. To fix this problem, the pat-
tern selection process will only pick one of these two pattern
instances.

• The latency of the design may increase after pattern-based
synthesis. As shown in Figure 6, the given DFG can be cov-
ered by instances of two patterns. If the pattern in (a) is cho-
sen, the resulting scheduling solution is shown in (b) with the
restriction that the execution time ofp1 andp2 cannot over-
lap. However, if we choose the pattern in (c), the latency of
the final synthesis result in (d) is almost half of the latency
in (b). This example suggests that we should choose patterns
with shorter critical paths if possible to reduce latency over-
head.
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Figure 6: Latency with different pattern selection strategy.

5.1 Pattern Selection
Pattern selection attempts to find an appropriate set of pattern

instances which minimize resource usage and latency overhead. In
this paper, a greedy algorithm is used. At each step, the bestpattern
is chosen based on some metrics, and all its pattern instances are
removed from the DFGs. The whole process is repeated until the
available patterns or nodes are empty. Please take notice that not all
instances of patternP can be chosen, because the pattern instances
may not be compatible. Two pattern instancesp1 andp2 are com-
patible to each other ifp1 andp2 do not share common nodes, and
there is no loop in the reduced graph as discussed previouslyin this
section.

For the PBS-RR problem, the following metric is used for a given
patternP with N compatible pattern instances:

N∗mux(io)+area(P)

N∗ (mux(io)+mux(internal))+area(P)
+α∗

|P|
latency(P)

(1)

In Equation 1, the first part of the metric is the area saving with
the assumption that each internal edge will not have multiplexors
after PBS-RR. The functionmux(e) returns the estimated area of
1-input multiplexor needed for data flow edgee; N ∗mux(io) and
N ∗mux(internal) are estimated areas ofN-input multiplexors at
PI/POs and internal data flows of patternP respectively. The sec-
ond part of the metric is a measurement of “flatness” ofP. A pat-
tern P is "flat" if the critical path ofP is very small compared to
the total nodes ofP, and flat patterns are good candidates to reduce
the latency overhead. The variableα is a parameter which users
can adjust based on their requirements to trade off between latency
overhead and resource reduction.

Experimental results show that the greedy pattern selection pro-
cess is efficient enough to find good pattern candidates. However,
it is not hard to further improve the pattern selection process using
a mathematical programming based algorithm.

5.2 Scheduling and Binding
After pattern selection, the scheduling and binding algorithms

are fairly easily designed to solve the PBS-RR problem. Briefly,
each pattern is scheduled and bounded based on the resource con-
straints in advance to get the respective hardware implementa-
tion. Next, patterns are viewed as complex multi-cycle operations,
and any state-of-the-art behavior synthesis algorithm canbe easily
adapted for PBS-RR problem.

In the scheduling step, each pattern instance can be scheduled in
the same way by adding relative timing constraints between apivot
node and all the other nodes. The pivot node can be any node in
this pattern instance, and the relative timing between a pivot node
and other nodes is determined based on the initial scheduling re-
sult of the corresponding pattern. For the example in Figure1, let



sv denote the time step of nodev in the scheduling solution; we
can add the following relative timing constraints to make sure that
pattern instances{2,3,4} and{5,6,7} of patternP are scheduled
alike: s4− s3 = 1,s4− s2 = 1,s7− s5 = 1,s7− s6 = 1. Nodes 4
and 7 are called pivot nodes because once they are scheduled,the
scheduling results of all the other nodes are known as well. Ad-
ditional constraints are added to make sure that execution times
of pattern instances do not overlap; these constraints are similar
to resource constraints of normal operations if we treat pattern in-
stances as complex operations. In our approach, the SDC schedul-
ing in [12] is used; it can handle relative timing constraints and
other general constraints.

The pattern-based resource binding algorithm should guarantee
that the corresponding nodes of pattern instances are assigned to the
same function unit. For the scheduling results in Figure 1(c), once
node 2 is bound to function unitFUi , node 4 should be bound to
FUi as well (but if there is a mismatch between nodei and nodej ,
these two nodes may not be bound to the same function unit); and
this kind of constraint should be considered in our pattern-based
resource binding step. In this paper an extension [11] of theiter-
ative bipartite matching algorithm in [18] is adapted for PBS-RR
problem. The work in [11] was originally designed for distributed
register files; however the core algorithm can be applied to general
binding problems as well. At each time step, if a node of a pattern
instance knows that the corresponding node in another pattern in-
stance is already bound, the binding solution of this node isknown
and does not to be considered; other operations are bound using a
bipartite-matching formulation found in [18].

6. EXPERIMENTAL RESULTS

6.1 Experiment Setup

Pattern Pattern 
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Figure 7: Pattern-based behavior synthesis flow.

Our pattern-based synthesis flow has been implemented in the
xPilot behavior synthesis system [9]. The whole design flow is
shown in Figure 7. xPilot takes behavioral languages like C as
input and parses them into control data flow graphs. The control
data flows graphs are viewed as collections of data flow graphsfor
pattern recognition. The GMT toolkit [1] is used for graph edit
distance calculation, and the LSH implementation can be found
at [15]. The synthesis engine will then perform the pattern-based

synthesis flow to reduce the resource usage with certain design con-
straints. The synthesis results are dumped into RT-level VHDL and
accepted by the downstream RTL synthesis tools. Our experiments
use the Xilinx Virtex-4 FPGA and ISE 9.1 tool [16].

Our test cases include a set of real-life computation-intensive
programs: CHENDCT, CHEM, DIR, LEE, PR, FFT and IDCT.
The first five test cases are DSP kernels with pure data flow; IDCT
and FFT have moderate control flows. Those test cases feature
abundant arithmetic computations, and sizes of their correspond-
ing DFGs range from tens to hundreds.

6.2 Effectiveness of Pruning Techniques in
Pattern Recognition

The effectiveness of our proposed pruning techniques usingCV
and LSH is shown in Table 1. The test case in this experiment is
CHENDCT, and the edit distance limitldist is set to 1. The first
column lists the size of the patterns. For each row with pattern
sizek, #Subgraphis the number of subgraphs with the sizek in the
given design; #Patternand #Inst are the number of patterns and
their instances respectively; and #Calc is the average number of
edit distance calculations needed before a subgraph matches with
one certain pattern.

Table 1: Pattern recognition results on CHENDCT.
Size #Subgraph #Pattern #Inst #Calc

2 62 3 62 0.96
3 108 12 108 1.08
4 195 20 161 1.48
5 366 26 248 1.49
6 701 35 404 1.9
7 1357 58 579 2.6
8 2533 76 714 3.18
9 4517 86 762 3.82
10 7800 94 793 4.43
11 13112 101 668 7.04
12 21365 73 348 7.89
13 33316 32 87 5.03
14 49040 3 6 1.7

Several conclusions can be drawn from Table 1. Our pattern syn-
thesis algorithm can effectively recognize patterns from an enor-
mous searching space in a complete and systematic way. This ex-
ample also demonstrates the existence of fairly big patterns in real
programs. Moreover, the results show that our proposed pruning
algorithm can dramatically reduce the number of expensive edit
distance calculations in pattern matching using CV and LSH;on
average only about 2-6 calculations are needed with hundreds of
pattern candidates.

6.3 FPGA Resource Reduction Results
In this section, the pattern-based FPGA resource reductionalgo-

rithm is tested on all seven of the test cases mentioned before. Our
algorithm is compared to a traditional behavior synthesis flow de-
ploying state-of-the-art scheduling and binding algorithms in [12,
11]. For a fair comparison, our pattern-based synthesis algorithm
extends the same algorithms discussed in Section 5.2. Thereare
several important parameters to be determined in this experiment,
such as the edit distance limitldist and frequency limitlcount. The
parameterlcount is dynamically adjusted in our implementation;
i.e., if the number of patterns with sizelcount is neglectful to the
number of whole patterns,lcount will be increased. The parame-
ter ldist affects both the runtime and the quality of our algorithm;
for the FPGA resource reduction problem, our experiment shows
that ldist← 1 is usually good in the respect that a larger edit dis-
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Figure 8: Trade-offs with different ldist value (N/A denotes the
results without pattern optimizations) .

tance usually results in more multiplexing overhead in pattern im-
plementations. The tradeoff withldist is shown in Figure 8 on ex-
ample DIR, where area/performance data are compared with differ-
ent ldist. Other test cases show similar behavior as DIR. So,ldist is
assigned to be 1 in the subsequent experiment.

Table 2 shows the QoR of our proposed pattern-based synthesis
algorithm compared to the flow without pattern optimization. The
first column lists names of test cases. For each test case, thesec-
ond and third columns are the register usage of the synthesisresult
without and with pattern optimization respectively; the fourth col-
umn is the comparison between two algorithms. Similarly, the fifth
to seventh columns are the numbers and comparison of LUT us-
age; the eighth to tenth columns are the numbers and comparison
of SLICEs. Table 2 also lists the number of pattern instancesin
the corresponding design and the maximal pattern size in columns
“PINSTS” and “MAX”. The numbers inside parenthesis in column
“MAX” are the maximal pattern sizes being actually used. For
comprehensive comparison of overall resource usages, we enforce
multipliers to be implemented by LUTs, not DSP blocks in Xilinx
FPGAs.

Overall, our pattern-based synthesis flow can achieve aboutan
average 20% reduction over the traditional behavior synthesis flow.
Data in Table 2 also suggests a high correlation between regular-
ities of given programs (number of patterns found) and resource
reductions. For other important metrics, the pattern-based synthe-
sis algorithm achieves the aforementioned resource reduction with
an averagely marginal±2% frequency variation and a reasonable
7% latency overhead on average. The pattern optimization flow is
also very efficient in runtime; most of the test cases can be finished
within 1 minute, with the largest one (FFT) in 5 minutes.

The efficacy of our approach is further demonstrated by a case
study of the FFT testbench. The FFT design contains∼200 lines of
C code, and about∼500 nodes in the translated CDFG (∼60 mul-
tipliers and∼200 adders respectively). The biggest pattern found
has size 34, and totally 8657 patterns are discovered. TheHPR
phase discovers∼7500 patterns with size up 11, while theVPR
phase discovers∼ 1000 patterns and∼80 of them are maximal pat-
terns. The whole algorithm finishes within 5 minute. The runtime
of thePRalgorithm is mainly determined by the size of the biggest
pattern, therefore thePRalgorithm should be able to handle most
programs in practice. By utilizing the detailed pattern information,
the pattern-based synthesis engine can reduce 20% of the total area
compared to the regular synthesis flow, as shown in Table 2 (the
line begins withFFT). Also, the clock period is reduced by 10%
and the number of clock cycles is slightly increased by 6%.

7. CONCLUSIONS AND ONGOING
WORK

In this paper we present a general pattern-based behavior synthe-
sis framework which can efficiently extract patterns from behavior
specifications. Our approach exploits advanced subgraph enumera-
tion and pattern pruning techniques to efficiently recognize patterns
from an enormous search space. Further, the pattern recognition
framework is applied to solve the resource optimization problem
on FPGA platforms. Experiment shows the efficacy of both the
pattern recognition algorithm and the resource reduction algorithm.
Our future work includes the support of patterns with control flows.
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