Pattern-Based Behavior Synthesis
for FPGA Resource Reduction

Jason Cong
Computer Science Department
University of California, Los Angeles
CA 90095, USA
cong@cs.ucla.edu

ABSTRACT

Pattern-based synthesis has drawn wide interest fromrodsra
who tried to utilize the regularity in applications for dgsiopti-
mizations. In this paper we present a general pattern-bbsed
havior synthesis framework which can efficiently extrachitr
structures in programs. Our approach is very scalable iefiief
advanced pruning techniques that include locality sesmsitashing
and characteristic vectors. The similarity of structusesaptured
by a mismatch-tolerant metric: graph edit distance. Thé didi
tance between two graphs is the minimum number of verter/edg
insertion, deletion, substitution operations to transfane graph
into the other. Graph edit distance can naturally handlievarpro-
gram variations such as bit-width, structure, and portatams. In
addition, we apply our pattern-based synthesis system @GAHR-
source optimization with the observation that multiplexare par-
ticularly expensive on FPGA platforms. Considering knalge of
discovered patterns, the resource binding step can teelliy gen-
erate the data-path to reduce interconnect costs. Expaisrabow
our approach can, on average, reduce the total area by ab¥ut 2
with 7% latency overhead on the Xilinx Virtex-4 FPGAs, comgzh

to the traditional behavior synthesis flow.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids—automatic synthesis

General Terms
Algorithm, Design, Experimentation

Keywords
Behavior Synthesis, pattern, FPGA

1. INTRODUCTION

Pattern-based synthesis has drawn wide interest fromrodmsea
who tried to extract and utilize the regularity in applicats for de-
sign optimizations. The common tasks of pattern-basechegig

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FPGA'08,February 24-26, 2008, Monterey,California, USA.

Copyright 2008 ACM 978-1-59593-934/08/0002 ...$5.00.

Wei Jiang
Computer Science Department
University of California, Los Angeles
_ CA 90095, USA
wijiang@cs.ucla.edu

consist of pattern matching and pattern recognition. Rattetch-
ing is a technique for checking the presence of a given patkep-
resentative works in pattern matching include graph-pgrsi cog-
nitive studies [32, 26], symbolic equivalence checking [35T-
based matching [20, 28] and graph isomorphism algorithrhs [2
Pattern recognition [30] was initially studied in the mawhiearn-
ing domain for taking action based on the category of the,data
i.e., extracting patterns from the raw data. Of all the pattecog-
nition techniques, structural pattern recognition is ahundblogy
which attempts to describe objects in terms of their partscaom-
nections. Structural pattern recognition is mainly based@ph
matching, where each object is represented by a labeledl.grep
cently, graph matching has found many applications in daténg,
biochemistry and VLSI CAD domains.

47

v
@

Figure 1: A sample design with different scheduling and
binding solutions (different shades represent differentdinction
units).

In circuit designs, the intelligent use of regularity usyigdro-
duces high quality results. Actually, this is one key reasby the
deliberate manual design can excel the design synthesized-b
tomated tools. In this paper we attempt to optimize the nesou
usage of FPGA designs using pattern-based synthesis geemi
Multiplexors, the data routing logics, are particularlypersive for
FPGA platforms, e.g., the area, delay and power data of @-32-t
multiplexor are almost equivalent to an 18-bit multipliemhodern

FPGA designs, as shown in [8]. Figure 1 shows how to effelgtive
reduce the number of multiplexers by taking advantage ofdge
ularity in the original specifications. Figure 1(a) is a tydilist
scheduling result for the given data flow graph with resowame-
straint|FU;| < 2. With the scheduling solution in (a), a possible
resource binding solution is shown in (b) where nodes 2 an@ 3 a
bound to the same function unit. For this small example, éaisy

to see that nodes {2,3,4} and nodes {5,6,7} have the same-stru
ture, which leads to optimized scheduling and binding sohstin

(c) and (d). For large designs, the complex interaction apoper-
ations make it almost impossible for scheduling and resohitd-
ing processes to generate regular data-path without theledge

of patterns in the original design.

It is not surprising that pattern recognition has been dtgadan
every level of the large circuit design from layout desigm$igh-
level synthesis [21, 29, 7, 13, 6, 25, 24]. Previous works attepn
matching in behavior synthesis have different limitatiosisch as
pattern size, pattern representation (tree or string)dlivam pro-
gram variations, scalability and mismatch-tolerance.hia paper
we propose a general and efficient pattern recognition amithegis
framework which benefits from the advanced subgraph enumera
tion/pruning/matching techniques, targeting compuratigensive
applications. Each pattern is represented by a labeledtdde
acyclic graph (DAG) to capture the data flows inside a bagiclol
in the original program. However a pattern can have instwaite
multiple basic blocks. In particular, the contributionsaafr ap-
proach include:

(i) Efficient subgraph enumeration and pruning techniques f
pattern recognition. A systematic subgraph enumeration
methodology is proposed based on the property of DAG to
avoid redundant subgraph generation.
tors (signatures of patterns) and locality-sensitive tmasare

Characteristic vec-

2. RELATED WORK

Past literature on pattern recognition can be roughly diighto
several categories: cognitive approach [32, 26], symledigiva-
lence checking [3], and graph-matching based approach®&282
2]. Cognitive approaches [32, 26] present the pattern anma
rules, and the parsing process is similar to the automatsateém
proof techniques in Al field. The symbolic approach in [3] by
formal verification techniques to discover subprogramscivizire
semantically equivalent, therefore it can handle moresstitt vari-
ations than other approaches. However, both cognitiveoagpes
and symbolic approaches suffer from the scalability pnobénd
are generally not applicable in practice. Graph-matchiggld ap-
proaches, including tree-based and graph-based appsogéte
28, 2] are usually efficient and scalable, but require cafosid-
erations for handling program variations.

Graph-matching based pattern recognition has been wigely a
plied to data mining, and a number of efficient and scalalge-al
rithms have been developed to find frequent patterns in grih
23, 33, 19]. AGM [19] uses a level-wise scheme to enumerae th
recurring subgraphs. The pattern candidates withisize are con-
structed by joining two frequent graphs with skzend a frequency
count of the current pattern candidate is done by subgraphds
phism checking. FSG [23] extended the AGM algorithm to handl
connected subgraphs, and they both belong to the first agtago
ing a breath-first search strategy. Algorithms in the secatelgory
use depth-first search to find frequent subgraphs like gSpain [
and FFSM [17]. Both approaches calculate the canonical tilze
graph to avoid redundant subgraph enumeration and graptoiso
phism test: gSpan uses a canonical representation of a-fiegth
traversal of a graph and FFSM uses the adjacent matrix ofpdngra
The canonical labeling problem is NP-hard in general, afferei
ent heuristics have been proposed to incrementally cartstine
canonical label. All these works can guarantee the commeteof

used to prune subgraphs before they are matched with pat-fining frequent subgraphs in terms of graph isomorphisisteld

terns. A hybrid search strategy combines the advantages of

both breath-first search and depth-first search to find large

and useful pattern instances. Experiments show that our ap-

proach can find thousands of patterns (with the largest one
containing 40 nodes), all in one minute.

(ii) A graph similarity metric called edit distance [27] tadle
variations. The edit distance between two graphs is the min-
imum number of vertex/edge insertion, deletion, substitu-
tion operations to transform one graph into the other. Graph
edit distance can naturally handle various program vanati
such as bit-width variations, structure variations andor
variations. In addition, several interesting theoretisutts
are presented to bound the edit distance calculation for-pru

ing.

(iii) A pattern-based behavior synthesis flow targeting ARG
resource reduction. With the knowledge of patterns, our ap-
proach minimizes the resource cost through pattern setecti

pattern-adaptive scheduling and binding on the basis of the

target FPGA platform.

The remainder of the paper is organized as follows. Section 2
discusses related work; Section 3 gives the preliminaridgaob-
lem formulation of our pattern-based synthesis problenctiSe 4
presents our pattern recognition algorithm; Section Sepressour
overall pattern-based behavior synthesis flow; Sectiopérts ex-
perimental results and is followed by conclusions in Sectio

of these approaches, our work focuses on DAGs. Furthermare,
restrict the graphs to be convex and connected for FPGA resou
reduction, and propose efficient subgraph enumeratiomigabs
specifically for DAGs. Our approach can also handle misnestch
in the pattern matching step using the edit distance metric.
Regularity extraction has been exploited in the behaviatts
sis domain in works [29, 7, 10, 35, 4, 5, 13, 6, 25]. In [29] angfr
matching based approach is proposed to cluster similactates
and replace the instances of a pattern with a common implemen
tation. Graphs are represented by a string called K-forprana
this linearizion process is the major drawback since thecsieh
order of nodes can dramatically affect the matching restilie
work in [13] tries to improve the quality of logical synthedby
considering patterns at the behavior synthesis step, anplattern
library is given by users. Other interesting works includeesiul-
ing and binding algorithms with patterns [6, 25], which beat
sume that patterns are given in advance. Pattern-basedesist
techniques can also be found in custom instruction set gdoer
like [7, 10, 35, 4, 5]. In [10], patterns are restricted to éanly
one output. Atasu et al. developed an exhaustive binagysearch
algorithm [4]; however, the connectedness of the subgraptoi
considered. The work in [5] proposed a polynomial time atan
with respect to the input/output port number. Despite thtlof
the size on input/output ports, the enumeration procegst jsurely
incremental since the subgraphs grow with an arbitrary. stae
other approach in [35] constructs subgraphs by combininglesi
input cones, which shares the same problem with [5]. Alsastmo
of the works avoid the duplicate enumeration using hastesabl
therefore the performance is dependent on the number @frpatt

and implementation of the hash tables. Our proposed atgorit
can discover connected and convex patterns from the ofigjies-
ification in a complete, efficient and incremental way; meezp
duplication checking in our approach is independent to remolh
patterns which results in dramatic performance improveraed
storage space reduction.

There is extensive literature on general binding algorghim
high-level synthesis like [31, 18, 22, 8, 11]. For example t
weighted bipartite matching approach [18] tries to minienthe
multiplexers following a step-by-step method, and it ietagn-
hanced by the co-family based approach in [8].
tributed register architecture is proposed to reduce tieedannect

cost by using abundant embedded memory blocks on FPGAs. The

common problem in these approaches is that regularity isomwt
sidered and maintained before the binding step. In contoast
pattern-based approach discovers and preserves the riggina
the whole design flow.

3. PRELIMINARIES AND
FORMULATION

This section presents the preliminaries and the problemder
lation of our pattern-based behavior synthesis flow.

PROBLEM

3.1 Preliminaries

DEFINITION 1. Adata flow graph (DFG)is a directed acyclic
graph Gy, Eq4), where the vertices ingfepresent the operation

In [11], a dis-

K i
Qﬁ%@&%
% ?%EH

Figure 2: Design variations and corresponding datapaths. &)
structural variation, (b) bit-width variation, (c) port va riation.

shows three kinds of common variations for data-path géoera
Structural variation occurs when two DFGs have a small disto
in the structures, such as the operation mismatches inéRfa).
In (a), the cost of combining the functionality of a comparaind
a subtractor in hardware is marginal, which leads to thendpéd
data-path on the right. Similarly, bit-width variation apdrt vari-
ation can be perfectly captured using the editing distane#ios
in (b) and (c). Furthermore, these decisions are made atent

nodes, and the edges i Eepresent the data dependencies (or data which is more flexible than making an arbitrary decision bg-pr

transfers) between operations. A directed edge,evj) denotes

processing. For instance, we can merge all adders/sufatsatct

that operation yproduces one of the input operands for operation unified addsub operations. However, addition operatioasam-

Vj.

For computation-intensive designs, we typically use data fl
graphs to capture the computation kernels. However, ouoagh
is not limited to pure data flow applications only; designgwanod-
erate control flows can be handled in the sense that the design
treated as a collection of data flow graphs by treating easfctba
block inside the original program as a DFG.

DEFINITION 2. A labeled graph G is a five-element tuple=G

mutative while subtraction operations are not. ConsereBti if
we set the addsub operations to non-commutative, potigntiainy
patterns can not be found due to the restrictions. With timeegt
of edit distance, we can dynamically merge them withoutnigsi
any pattern.

With respect to editing distance, pattern and patterniitesare
defined as the following:

DEFINITION 4. Given a set of DFGYG;i|i = 1,2,..N}, a edit-
ing distance thresholdyl; and a frequency thresholdoynt, a la-

{V,E,3y,2g,l} where V is a set of vertices and E is a set of edges. beled graphP is called apatternif 3 setS = {SGj}: (1) [S| >
sy andZg denote the sets of vertex labels and edge labels respec-lcount; (2) VSGj € S,3G;j such that SGis a subgraph of G (3)

tively. The label function | defines a mapping from verticed a
edges to labels.

The labeled graph provides a proper representation to i@aptu

the structure and properties of the data flow graphs. In tyEp
labeled graphs are used to describe patterns, and natweitan
easily derive a labeled graph of a DFG by choosing the labal of
node to be the type of the respective operation (additiortipiiu
cation, etc.).

DEFINITION 3. Theediting distance dG1,G>) [27] of two la-
beled graphs @ and & is the minimal sequence of edit opera-
tions(relabel of node, insert a node/edge or delete a naldee
that transform G to G,.

Unlike the aforementioned exact matching approaches, we ex

ploit the concept okditing distancdo describe the similarity of
graphs. Please notice that each edit operation can be afegbci
with a cost, and editing distance is redefined to be the miniora
tal cost of edit operation sequences. Editing distanceiges\great
flexibility for handling variations in the practical desgrFigure 2

VSG €8, d(SG,P) < lgist- Respectively, each subgraph in set
S is called apattern instanceof the patternP; setS is called a
pattern group

3.2 Problem Formulation

Using the definitions in Section 3.1, we can formulate our
pattern-based synthesis problem. Our proposed approacheca
partitioned into two main problems: pattern recognitioR{Rnd
pattern-based synthesis for FPGA resource reduction (RBS-

PrROBLEM 1. Pattern recognition problem (PR)Given a be-
havior specification in a set of DFGs, find all the patterns adlw
as all the pattern instances with respect to user-definetl dish
tance limit and frequency limit.

PROBLEM 2. Pattern-based synthesis problem for FPGA re-
source reduction (PBS-RR)Given all the patterns (or part of all
patterns) of a behavior description and platform infornoatiof the
target FPGA, generate the hardware implementation satigfger-
tain design constraints and minimize the resource usageedfital
design.

4. PATTERN RECOGNITION (PR)

In this section we describe our pattern recognition albarifor
discovering all feasible patterns inside DFGs. Our appraseffi-
cient and scalable by considering the property of DAGs aiirtgus
advanced pruning techniques. First, we will introduce somuor-
tant techniques to solve thR problem. Next, the overall pattern
recognition framework is introduced and two different sharg
strategies are discussed.

4.1 Techniques

4.1.1 Subgraph Enumeration

Subgraph enumeration plays an important role in the pattern
recognition algorithm. A good enumeration algorithm slaguiar-
antee completeness while avoiding redundant enumeratibos
the purpose of multiplexor reduction, the subgraphs enataeérn
our approach are limited to:

e connected patterns with disjoint operations will not help
to reduce the multiplexors since there are no interconnects
among them.

convex a subgraphG’ of graphG is convex if there is no
path inG from nodeu € G’ to nodev € G’ which contains

a nodew ¢ G'. The requirement for convexity comes from
the consideration of better performance estimation. Ugual
all pattern instances are scheduled in a uniform way. If a
pattern is non-convex, the scheduler can not estimate the la
tency inside a pattern which may result in very large latency
overhead. In addition, non-convex patterns usually intoed
more ports which resultin more multiplexors in final designs

Specifically for pattern recognition, the subgraph enutimna
process should be incremental, i.e., dzel subgraphs should be
enumerated only after all the sikesubgraphs are enumerated. The
rational behind this requirement is that the pattern pryiprocess
can safely throw away infrequent sikesubgraphs before expand-
ing them to siz&k+ 1 subgraphs. However, if the enumeration pro-
cess is not incremental, we can not make early decisionsutzepr
useless subgraphs.

Next, a new subgraph enumeration approach is designed for
DAGs which can enumerate convex connected subgraphs in-a com
plete, efficient and incremental way. Before details arewdised,
several definitions need to be introduced.

DEFINITION 5. In a connected DAGS, a bridge nodebv is a
node inG whose removal disconnects the graph.

DEFINITION 6. In a DAGG, Pls are nodes without any input
edge and®?Osare nodes without any output edgebidge PI(PO)
is a PI(PO) node which is also a bridge.léaf PI(PO)is a PI(PO)
node which is not a bridge.

Our definition ofbridgesuses a form of connectedness called
weakly connected. A weakly connected graph is where the-dire
tion of the graph is ignored and the connectedness is defméd a
the graph was undirected. An example is shown in Figure 3a)in (
node 1 is a leaf input; nodes 6 and 7 are leaf outputs; node 2 is a
bridge input. With the definition of leaf PI/PO, we can probét
following theorems.

LEMMA 1. A DAG G has at least one leaf Pl or one leaf PO.

PROOF: Assume all the PIs and POs@are bridges. We ran-
domly select a bridge PI/P@ and removal of node will result in

Leaf PI/PO

Bridge PI/PO

Internal Nodes

©

Figure 3: A DAG example and its primary subgraph.

two or more subgraphs. L&' be one of these subgraphs. Every
bridge PI/PO irG is still a bridge PI/PO ifG’ | Jv. Repeat the same

process. Finally we can reach a state where a subgraph has two
nodes but still has a bridge PI/PO, which is a contradidfion.

LEMMA 2. The subgraph G generated by removing a leaf
PI/PO from a convex DAG G, is still convex.

PROOF: Removing a PI/PO can not destroy the convexity be-
cause a PI/PO is not on any path insalé]

DEFINITION 7. A graph G is a primary subgraph of graph G
if G’ is generated by removing the leaf PI/PO in G which has the
biggest ID among all leaf PIs/POs.

THEOREM 1. A convex DAG .1 has a unique primary sub-
graph G that is also convex.

PROOF: It can be easily seen that there is only one unique way
to get the primary subgraph of a DAG. Based on Lemma 2, the
primary subgraph is also convex.

For example, the primary subgraph of the graph in Figure 3(a)
is shown in (b), while the graph in (c) is not the primary suapr
because node 7 is the biggest ID among all leaf PIs/POs. Rased
the primary subgraph relation, we propose a bottom-up oenst
tive method for the subgraph enumeration problem. At &ted,
all the convex subgraphs withnodes are generated, and they are
extended by adding one neighbor in the original DFG. We agsum
that a convex subgrapBy_1 can only be generated by extending
its primary subgrapky, therefore duplications are avoided. Please
be noticed that a different labeling algorithm may change ¢
nodes, therefore the primary subgraph of a subgraph maybalso
changed; however subgraphs are still guaranteed to beajeder
only once as long as each ID is unique. Our method only checks
a property inside a subgraph, and is totally independertieta-
tal number of patterns. Bridges can be detected by a DFSrs@ave
of the subgraph; in practice, the subgraphs are usually sregll,
which means the validation of primary subgraph relatioerdtly
takes a constant time. Our approach also dramatically esdine
storage requirements since patterns are no longer neetieckept
in memory for duplication checking after they are visited.

4.1.2 Characteristic Vector

Since the computation of graph edit distance is ex-
pensive, we compute a signature of a subgraph called
characteristic vector(CV) similar to the work in [34]. If a

cv=(1,2,1)
(c)

Figure 4: (a) A DFG. (b) Binary branches and CV of the given
DAG. (c) Binary branches and CV of the given DAG modified
for pattern pruning.

signature of a subgraph is significantly different than tigaature
of a pattern, this subgraph is not needed for matching wigh th
pattern. Actually, for tree structures, Yang et.al [34]vao that
we can estimate the lower bound of edit distance based on @Vs.
this section we propose CV generation mechanism for DAGs.

DEFINITION 8. In a DAG G= (V,E), a Binary Branch is a
subgraphS= {u,l,r} C G, such that edgéu,l) and(u,r) € E.

DEFINITION 9. For a given universe of distinct binary
branchesU = {BBy, BB, ...} with size|t|, the Characteristic Vec-
tor (CV) of a DAG G is a vectotbs, by, ...7bM) with each element
b; representing the number of occurrences of the ith binarybina
inTU.

In [34], all distinctg-level binary trees serve as the univeltstor
CV calculation; however it is possible that some binary brasch
are never used which results in a waste of storage spacesir In o
approach, only the binary branches which appear at least ionc
the given set of DFG are considered. As shown in Figure 4fa)(b
there are three different binary branches in the given grbjolice
that actuallyb, has two instances since multipliers are commutative
operations. The symbeldenotes an empty node if the input of that
node is not in this graph. In practice, our method can effebti
capture the topological order and labels of a graph since ofos
the operations in behavior synthesis have less than twasnffia
node has more than two inputs, we simply ignore this node.

For tree structures, it is easy to see that each node mayrappea
at most two binary branches; therefore one edit operatikaréla-
beling, can only slightly change the occurrence of binagnbhes.
However for DAGs the property will not hold since one node may
have multiple outputs. To make this relation hold in DAGs th
calculation of CV is slightly changed, as shown in Figure)4(€
one node has multiple outputs, then this node will be treated
an empty input for all its successors. With this modificatitive
relation between edit distance and CV can be summarizedeas th
following:

THEOREM 2. Let d(G1,Gy) be the edit distance between two
DAG G, and G, CV(G1),CV(Gy) be the characteristic vectors of
Gy and G respectively||CV(G1) —CV(Gy)||1 < 4xd(Gq,Gy).

PROOF: As we discussed above, one node can only ap-
pear in at most two binary branches after we modified the CV
calculation method. Since one edit operation (vertex edab
ing/insertion/deletion, edge insertion/deletion) catyahange at
most one node at a time, we can conclude that at most two bi-
nary branches are destroyed and at most two new binary leanch
are generated; i.e., the change in CV in term$;aform is< 4.
Adding all the edit operations together, we come to the amich
that||CV(G1) —CV(Gy)||1 < 4xd(G1,G2).0

Theorem 2 can help the pattern recognition process to retiace
edit distance calculation. If the edit distance limitl g, a sub-
graphg can not be an instance of pattegif ||CV(g) —CV(p)|l1 >
4l gist-

4.1.3 Locality-Sensitive Hashing(LSH)

After subgraphs are enumerated, they are matched withrpsitte
to see whether they are instances of discovered patternstor n
When the number of found patterns is very large, finding thieect
pattern for a given subgraph can be costly using pairwisepanom
ison between subgraphs and patterns. LSH provides a péstect
to find near-neighbors of a query vector in the Euclideanespaad
a characteristic vector serves as the metric for comparison

DEFINITION 10. Let||V ||, denote thed norm of vectorv'; S
and U denote vector spaces whil¢| < |S. A hashing function
family # ={h : S— U} is called(r1,r2, p1, p2)-sensitive if for any
uves

o if |[u—V||p <rg, then P, [h(u) = h(v)] > p;.
o if |[u—V||p > ro, then Pr, [h(u) = h(v)] < pa.

LSH can hash two similar vectors the same bucket with arfyitra
high probability and hash two distant vectors to the saméeddiuc
with arbitrary low probability. A LSH implementation can foaund
in [14]. Using LSH, we can efficiently find allL + €) approximated
nearest neighbors of any vector within distariRevith arbitrary
possibility pin O(nxlogn) instead of0(n?) for n vectors. Detailed
information can be found in [14].

Overall, our pruning process combines LSH and CV to re-
duce expensive pattern-matching operations. When a suibbdgga
matched with a set of patterns, we calculate the CV of this sub
graph and obtain the nearest neighbors of this subgraplirveit-
tance 4« lgjst using LSH. As discussed above, the patterns which
have CVs out of that range need not to be considered. Expetsme
show that for each subgraph we only need to calculate edit dis
tance about 2-6 times on average before the corresponditegmpa
is found.

4.2 Pattern Recognition Algorithm

Having all the important techniques discussed, a patterogre
nition (PR) algorithm is proposed in this section. Our aition
has two phases: a breath-first search step (HPR) and a degth-fi
search step (VPR). At the beginning, the HPR algorithm eshau
tively discovers patterns, level by level. But if there isi@ pattern
in this design, all its subgraphs are patterns, too; and thenp
tially exponential number of subgraphs of a big pattern (ay
can be very huge. If the number of patterns is too large, tlte pa
tern recogniion algorithm automatically changes from HPRSe
to VPR phase. The VPR algorithm tries to find those big pastern
first using depth-first search; therefore, small pattermgéained by
discovered patterns will not be generated later.

4.2.1 Horizontal Pattern Recognition (HPR)

Algorithm 1 HPR Algorithm

1:

COoNORWDN

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

. INST(P)

P — set of discovered patterns
Sk — set of sizek subgraph

— instances of a patteid
| gist — edit distance limit

lcount — frequency limit

: travel all DFGs, add size 1 patterns and instanc@&andS;
: for k—2,Ndo

for all ¢ € Sk do
adding a neighbor to expasggto s, 1
if s¢ is the primary subgraph &1 and convexhen
calculate CV4, 1)
get list of pattern® s.t. |CV(P) —CV(skr1)|l1 < 4%
lgist Using LSH
calculate edit distance gf, 1 with eachP,
if d(P,S+1) < laist then
addsc, 1 to INST(R)
else
create a new pattern basedspp;, add toP
end if
addsc;1 t0 Sk 1
end if
end for
for all new patterr? € P do
if INST(P)| < lcount && sizeP) < (k41— lgist) then
removeP from P
remove INSTR) from Sy, 1
end if
end for
end for

Algorithm 2 VPR Algorithm

COXNDURWNE

11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

P — current pattern

k — size of patterrP

Pyi1 — set of sizek+ 1 patterns
M — set of maximal patterns
INST(P) — instances of a patteid
| gist — edit distance limit

lcount — frequency limit

: for all ¢ € INST(P) do

adding a neighbor expaisgdto s, 1
if 5 is the primary subgraph &k, 1 and convexhen
similar with HPR algorithm, find pattern feg, 1, or in-
sert a new pattern 1
end if
end for
for all new patterr? € Py1 do
if B is contained by a maximal pattekh € M then
continue
else
call VPRP) recursively
end if
end for
if P is not contained by any patternivi then
addP to M
end if

HPR, as suggested by its name, discovers patterns with thbrea
first-search approach. The pseudo code of the HPR algorghm i
shown in Algorithm 1.

At stepk+ 1, all the sizek pattern instances are extended by one
node using the subgraph enumeration techniques in Sectich 4
HPR is complete because subgraphs of a pattern are alsmpatte
If a subgraphs is not a pattern instance of a certain pattBrat
stepk, it can not be a subgraph of another pattern instance larger
thank, which means no further extension is neededsfor

Lines 12— 20 show the pruning process in HPR. After a new
subgraphsc, 1 is generated, it is compared to the existing patterns
by calculating the edit distance between itself and exjgpatterns.
However, most of the calculation can be avoided using the @/ a
LSH techniques in Section 4.1.2 and Section 4.1.3. The CV of a
subgraph is calculated and used as a key to find the patteink wh
have close CVs, as shown in line 12. This can be solved by findin
the nearest neighbors using LSH in line 13. After gettinglite
of possible pattern candidates, edit distances are ctaclld s, 1
matches a patterB, it will be added to the pattern instance list of
P; otherwise a new pattern will be generated basesdon

When all the subgraphs are processed, each newly generated
pattern will be examined to see whether it satisfies the &aqu
limit. If not, it will be removed together with all its instaes.
Edit distance further complicates the pruning processegiaitern
instances may have different node sizes because of versex-in
tion/deletion. For example, If;ist is 1, we can not remove sie
patterns until we finish searching all size- 1 subgraphs. The sec-
ond condition in line 24 make sure no pattern are thrown awaiy u
itis really not useful. To overcome this problem, we canasitimit
lgist Or limit the number of vertex insertions/deletions allowed

4.2.2 \ertical Pattern Recognition (VPR)

As previously mentioned, subgraphs of a pattern are also pat
terns, and this may result in an explosion in the number dépas
found in HPR. If the number of patterns is too large, we wiljine
the VPR phase to find maximal patterns.

DEFINITION 11. Let R and B be two patterns, sets;S=
{pili=1.n} and $ = {p,i = 1..n} denote the instances of P
and B respectively; P < P; if Py is a subgraph of pand there is
bijection between elements of &d S: pil — pé such that Q isa
subgraph of p.

DEFINITION 12. A pattern P is a maximal pattern with respect
to a set of DFGs if there is no other patteri iR the same set of
DGFs that satisfies R P'.

Intuitively, a maximal pattern can not be contained by oftedr
terns, and each pattern is a subgraph of a certain maximal pat
tern. In our VPR algorithm, a depth-first approach is depdiote
find maximal patterns; the pseudo-code of VPR is shown in Algo
rithm 2. The pattern recognition is similar to HPR except tha
extend one pattern group at a time instead of a set of patteupg
with sizek. At each step, a larger pattern which contains the cur-
rent pattern will be discovered. VPR can find maximal patténra
short time using depth-first search. After the maximal pageare
discovered, we can avoid enumerating all their sub-pagtduning
the search steps by checking to see if the current patteranis ¢
tained by certain maximal patterns or not, as shown in linel@2
practice, HPR algorithm will get stuck with large pattem®iFGs;
however VPR solves the problem caused by the explosive growt
of pattern numbers, and can efficiently find all maximal pake

5. PATTERN-BASED SYNTHESIS FLOW
FOR FPGA RESOURCE REDUCTION

Our pattern recognition framework can be applied in mang-pra
tical problems, such as the FPGA resource reduction probler
(PBS-RR) discussed in this paper. If all pattern instanoesehed-
uled and bounded in a uniform way, the internal data flowsae f
of multiplexors (except the multiplexors generated dueegmtrce
sharing among nodes inside a single pattern instance). dBase
this observation, a pattern-based behavior synthesis fiopra-
posed in this section for FPGA resource reduction.

(b)

Figure 5: (a) A DFG covered by two pattern instancesp; and
p2. (b) The reduced graph.

Specifically for the PBS-RR problem, only vertex relabelisg
allowed in edit distance calculation. The reason is thaexdnser-
tion/deletion not only increases the resource usage ofggespat-
tern with additional multiplexors to handle variations aiggat-
tern instances, but also complicates the scheduling &hgotby in-
troducing latency variations. With this restriction, dietinstances
of a pattern have the same number of nodes, and the pattern
self can be viewed as a complex operation. Therefore, oterpat
recognition framework can be easily integrated into angtég
behavior synthesis system, and no specific algorithm faepat
based synthesis is needed.

However, if patterns are viewed as complex nodes, instaofces
a same pattern may not be scheduled to the same time stegein ord
to share them like the regular operations. This seeminglyictive
limitation is required because it guarantees that the resoton-
straints in the original design are maintained. With thinietion,
the following issues need to be addressed:

(d)

Figure 6: Latency with different pattern selection strategy.

5.1 Pattern Selection

Pattern selection attempts to find an appropriate set oénpatt
instances which minimize resource usage and latency caérlie
this paper, a greedy algorithm is used. At each step, theph#sirn
is chosen based on some metrics, and all its pattern instamee
removed from the DFGs. The whole process is repeated ustil th
available patterns or nodes are empty. Please take noéitedhall
instances of patterR can be chosen, because the pattern instances
may not be compatible. Two pattern instanggsand p, are com-
patible to each other iy and p, do not share common nodes, and
there is no loop in the reduced graph as discussed previouslis
section.

For the PBS-RR problem, the following metric is used for &giv
patternP with N compatible pattern instances:

N+ muxio) + area(P)
N (muxio) + muxinternal)) + area(P)

Pl
ax latency(P) @

In Equation 1, the first part of the metric is the area savintp wi
the assumption that each internal edge will not have mekipis
after PBS-RR. The functiomuxe) returns the estimated area of
1-input multiplexor needed for data flow edgeN « muxio) and
N« muxinternal) are estimated areas dl-input multiplexors at
P1/POs and internal data flows of pattd?rrespectively. The sec-
ond part of the metric is a measurement of “flatnessP.ofA pat-
tern P is "flat" if the critical path ofP is very small compared to

o Ifinstances of a common pattern are required to be scheduledthe total nodes oP, and flat patterns are good candidates to reduce
in the same way, there is a possibility that no legal schedule the latency overhead. The varialileis a parameter which users

can be obtained. An example is shown in Figure 5. The
DFG in Figure 5(a) is covered by two pattern instanpgs
and py; we can see that ip; and pp are scheduled at differ-

can adjust based on their requirements to trade off betvetendy
overhead and resource reduction.
Experimental results show that the greedy pattern sefeptio-

ent time steps, they cannot be scheduled in the same way. Ifcess is efficient enough to find good pattern candidates. t#awe
we view each pattern instance as a big operation, the reducedit is not hard to further improve the pattern selection psscasing

subgraph in (b) has a loop, which megmsand p, can only

be scheduled at the same step. To fix this problem, the pat-

tern selection process will only pick one of these two patter
instances.

a mathematical programming based algorithm.

5.2 Scheduling and Binding

After pattern selection, the scheduling and binding atbars
are fairly easily designed to solve the PBS-RR problem. fBrie

e The latency of the design may increase after pattern-basedeach pattern is scheduled and bounded based on the resonrce c

synthesis. As shown in Figure 6, the given DFG can be cov-
ered by instances of two patterns. If the pattern in (a) is cho
sen, the resulting scheduling solution is shown in (b) whth t
restriction that the execution time pf and p, cannot over-
lap. However, if we choose the pattern in (c), the latency of
the final synthesis result in (d) is almost half of the latency

straints in advance to get the respective hardware implanen
tion. Next, patterns are viewed as complex multi-cycle afpens,
and any state-of-the-art behavior synthesis algorithmbeaeasily
adapted for PBS-RR problem.

In the scheduling step, each pattern instance can be setkidul
the same way by adding relative timing constraints betweganc

in (b). This example suggests that we should choose patternsnode and all the other nodes. The pivot node can be any node in

with shorter critical paths if possible to reduce latencgrev
head.

this pattern instance, and the relative timing between atpiode
and other nodes is determined based on the initial scheptdin
sult of the corresponding pattern. For the example in Figydet

s, denote the time step of nodein the scheduling solution; we
can add the following relative timing constraints to makeeshat
pattern instance§2, 3,4} and{5,6,7} of patternP are scheduled
alke: y—s3=1lsy—s =15 -5 =15 —5=21. Nodes 4
and 7 are called pivot nodes because once they are schethéed,
scheduling results of all the other nodes are known as well: A
ditional constraints are added to make sure that execuitioest
of pattern instances do not overlap; these constraintsianiéas
to resource constraints of normal operations if we tregepain-
stances as complex operations. In our approach, the SD@wdehe
ing in [12] is used; it can handle relative timing constraiand
other general constraints.

The pattern-based resource binding algorithm should gtega
that the corresponding nodes of pattern instances arenasiig the
same function unit. For the scheduling results in Figurg, oce
node 2 is bound to function uniRU;, node 4 should be bound to
FU; as well (but if there is a mismatch between no@ad nodej,
these two nodes may not be bound to the same function und); an
this kind of constraint should be considered in our patteased
resource binding step. In this paper an extension [11] ofttre
ative bipartite matching algorithm in [18] is adapted for$?BR
problem. The work in [11] was originally designed for dibtried
register files; however the core algorithm can be applieceteeal
binding problems as well. At each time step, if a node of agpatt
instance knows that the corresponding node in anotherrpatte
stance is already bound, the binding solution of this nod@désvn
and does not to be considered; other operations are boung asi
bipartite-matching formulation found in [18].

6. EXPERIMENTAL RESULTS

DM

(System Synthesis
Data Model)

6.1 Experiment Setup
=
SystemC/C information
specification |:> <::| Constraints

Horizontal Pattern

’ .
:Recanmon Recogpnition

Vertical Pattern
Recognition

EPattern—based

'Synthesis :
A e ———————— Yoo i
VHDL Design Constraints

Figure 7: Pattern-based behavior synthesis flow.

synthesis flow to reduce the resource usage with certaigmesin-
straints. The synthesis results are dumped into RT-levéd/End
accepted by the downstream RTL synthesis tools. Our expatsn
use the Xilinx Virtex-4 FPGA and ISE 9.1 tool [16].

Our test cases include a set of real-life computation-Biten
programs: CHENDCT, CHEM, DIR, LEE, PR, FFT and IDCT.
The first five test cases are DSP kernels with pure data flowTIDC
and FFT have moderate control flows. Those test cases feature
abundant arithmetic computations, and sizes of their spomed-
ing DFGs range from tens to hundreds.

6.2 Effectiveness of Pruning Techniques in
Pattern Recognition

The effectiveness of our proposed pruning techniques 8ing
and LSH is shown in Table 1. The test case in this experiment is
CHENDCT, and the edit distance linlijjs; is set to 1. The first
column lists the size of the patterns. For each row with patte
sizek, #Subgraphs the number of subgraphs with the skizia the
given design; Ratternand #nst are the number of patterns and
their instances respectively; an€aic is the average number of
edit distance calculations needed before a subgraph nsabdtte
one certain pattern.

Table 1: Pattern recognition results on CHENDCT.

Size | #Subgraph | #Pattern | #Inst | #Calc
2 62 3 62 0.96
3 108 12 108 | 1.08
4 195 20 161 1.48
5 366 26 248 1.49
6 701 35 404 1.9
7 1357 58 579 2.6
8 2533 76 714 | 3.18
9 4517 86 762 | 3.82
10 7800 94 793 4.43
11 13112 101 668 7.04
12 21365 73 348 7.89
13 33316 32 87 5.03
14 49040 3 6 1.7

Several conclusions can be drawn from Table 1. Our pattern sy
thesis algorithm can effectively recognize patterns fromeaor-
mous searching space in a complete and systematic way. Xhis e
ample also demonstrates the existence of fairly big pattierneal
programs. Moreover, the results show that our proposedimgun
algorithm can dramatically reduce the number of expenstlie e
distance calculations in pattern matching using CV and L&H;
average only about 2-6 calculations are needed with huedséd
pattern candidates.

6.3 FPGA Resource Reduction Results

In this section, the pattern-based FPGA resource reduatgm
rithm is tested on all seven of the test cases mentionedde®ir
algorithm is compared to a traditional behavior synthesiw file-
ploying state-of-the-art scheduling and binding algerighin [12,
11]. For a fair comparison, our pattern-based synthesisrigthgn
extends the same algorithms discussed in Section 5.2. Hnere

Our pattern-based synthesis flow has been implemented in theseveral important parameters to be determined in this expat,

xPilot behavior synthesis system [9]. The whole design flow is
shown in Figure 7.xPilot takes behavioral languages like C as
input and parses them into control data flow graphs. The abntr
data flows graphs are viewed as collections of data flow graghs
pattern recognition. The GMT toolkit [1] is used for graphted
distance calculation, and the LSH implementation can badou
at [15]. The synthesis engine will then perform the patteased

such as the edit distance linbifis; and frequency limitcount. The
parametefcount is dynamically adjusted in our implementation;
i.e., if the number of patterns with sizgyunt is neglectful to the
number of whole patterndgount will be increased. The parame-
ter lyist affects both the runtime and the quality of our algorithm;
for the FPGA resource reduction problem, our experimentsho
thatlgist < 1 is usually good in the respect that a larger edit dis-

7. CONCLUSIONS AND ONGOING
WORK

:"L\zfzm In this paper we present a general pattern-based behavitbresy
& Patterns sis framework which can efficiently extract patterns frorhdeor

S Runtime specifications. Our approach exploits advanced subgrajphena-
tion and pattern pruning techniques to efficiently recogpatterns
from an enormous search space. Further, the pattern reicogni

* framework is applied to solve the resource optimizatiorbfam

N/A 0 1 2 on FPGA platforms. Experiment shows the efficacy of both the

pattern recognition algorithm and the resource reductigorihm.

Figure 8: Trade-offs with different lg;s; value (N/A denotes the Our future work includes the support of patterns with corftoos.
results without pattern optimizations) .

8. ACKNOWLEDGMENT

This work is partially supported by MARCO/DARPA Gigascale
Silicon Research Center (GSRC), the SRC GRC contract 2006-T
1400, the NSF grant CCF-0530261, and a grant from Xilinx Inc.
and Magma Inc. under the California MICRO program.

tance usually results in more multiplexing overhead ingratim-
plementations. The tradeoff with;s; is shown in Figure 8 on ex- 9. REFERENCES

ample DIR, where area/performance data are compared vifitn-di [1] GMT toolkit. http://www.cs.sunysb.edu/ algo-

entlyist. Other test cases show similar behavior as DIR.IG4Q.is rith/implement/gmt/implement.shtml.

assigned to be 1 in the subsequent experiment. [2] M. A. Abdulrahim and M. Misra. A graph isomorphism
Table 2 shows the QoR of our proposed pattern-based sysithesi algorithm for object recognitiorPattern Analysis and

algorithm compared to the flow without pattern optimizatidie Applications 1(3), 1998.

first column lists names of test cases. For each test cassethe [3] C. Alias. Program Optimization by Template Recognition

ond and third columns are the register usage of the syntresi# and ReplacemenPhD thesis, 2005.

without and with pattern optimization respectively; therfi col- [4] K. Atasu, L. Pozzi, and P. lenne. Automatic

umn is the comparison between two algorithms. Similarky,ftfth application-specific instruction-set extensions under

to seventh columns are the numbers and comparison of LUT us- microarchitectural constraints. DAC '03: Proceedings of

age; the eighth to tenth columns are the numbers and coraparis the 40th conference on Design automatipages 256—261,

of SLICEs. Table 2 also lists the number of pattern instarices New York, NY, USA, 2003. ACM Press.

the corresponding design and the maximal pattern size umuows [5] P. Bonzini and L. Pozzi. Polynomial-time subgraph

“PINSTS” and “MAX”. The numbers inside parenthesis in colum
“MAX" are the maximal pattern sizes being actually used. For DATE '07: Proceedings of the conference on Design

comprehensive comparison of overall resource usages, foecen automation and test in Europpages 13311336, New York
multipliers to be implemented by LUTs, not DSP blocks in Ki NY USA 2007. ACM Press. ' '

FPGAs.

Overall, our pattern-based synthesis flow can achieve aout
average 20% reduction over the traditional behavior sygisteow.
Data in Table 2 also suggests a high correlation betweeraregu
ities of given programs (number of patterns found) and nesou
reductions. For other important metrics, the pattern-tbasyathe- 7]
sis algorithm achieves the aforementioned resource neugith
an averagely marginat2% frequency variation and a reasonable
7% latency overhead on average. The pattern optimizatianifio
also very efficient in runtime; most of the test cases can lighfixal (8l
within 1 minute, with the largest one (FFT) in 5 minutes.

The efficacy of our approach is further demonstrated by a case

enumeration for automated instruction set extension. In

[6] O. Bringmann and W. Rosenstiel. Resource sharing in
hierarchical synthesis. iCCAD '97: Proceedings of the
1997 IEEE/ACM international conference on
Computer-aided desigipages 318-325, Washington, DC,
USA, 1997. IEEE Computer Society.

P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh.
Instruction generation and regularity extraction for
reconfigurable processors. Rmoc. of CASES2002.

D. Chen, J. Cong, and Y. Fan. Low-power high-level
synthesis for FPGA architectures.Pmoc. International
Symposium on Low Power Electronics and DesRfiO3.

study of the FFT testbench. The FFT design contai80 lines of [9] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. .
C code, and about500 nodes in the translated CDF&E0 mul- Platform-based behavior-level and system-level synthési
tipliers and~200 adders respectively). The biggest pattern found Proceedings of IEEE SOCQ006.

has size 34, and totally 8657 patterns are discovered. HPR [10] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-sfeci
phase discovers.7500 patterns with size up 11, while thePR instruction generation for configurable processor

phase discovers 1000 patterns ang80 of them are maximal pat- architectures. IfProc. of the ACM International Symposium
terns. The whole algorithm finishes within 5 minute. The imet on Field-Programmable Gate Arraypages 183-189, 2004.
of the PRalgorithm is mainly determined by the size of the biggest [11] J. Cong, Y. Fan, and W. Jiang. Platform-based resource
pattern, therefore thER algorithm should be able to handle most binding using a distributed register-file microarchiteetun
programs in practice. By utilizing the detailed patterroimfiation, ICCAD ’'06: Proceedings of the 2006 IEEE/ACM

the pattern-based synthesis engine can reduce 20% of dhatea international conference on Computer-aided desjgages
compared to the regular synthesis flow, as shown in Tablee? (th 709-715, New York, NY, USA, 2006. ACM Press.

line begins withFFT). Also, the clock period is reduced by 10% [12] J. Cong and Z. Zhang. An efficient and versatile scheduli
and the number of clock cycles is slightly increased by 6%. algorithm based on SDC formulation. Rroceedings of

Table 2: Resource reduction on all testcases.

| | FF [FF(p) | CMP] LUT [LUT(p) | CMP [SLICE | SLICE(p) | CMP | PINSTS | MAX(u) |
CHEM | 1729 | 1191 | -31.12%| 4480 3355 | -25.11%| 2611 2105 -19.38% | 2709 16(6)
CHENDCT | 1963 | 1625 | -17.22% | 3087 2129 | -31.03%| 1880 1672 -11.06% | 4940 14(4)
DIR | 2012 | 1413 | -29.77%| 2767 1926 | -30.39% | 2347 1543 -34.26%| 5415 15(15)
LEE | 1787 | 1809 | 1.23% | 3550 3217 -9.38% | 2010 1987 -1.14% 641 9(4)
PR | 1764 | 1443 | -18.20% | 3811 2403 | -36.95%| 2163 1652 -23.62%| 1601 13(3)
FFT | 8117 | 6371 | -21.51% | 12494 10436 | -16.47%| 9390 7514 -19.98%| 8657 34(12)
IDCT | 1917 | 1978 | 3.18% | 4730 3362 | -28.92%| 3236 2575 -20.43%| 8318 40(4)

average -16.20% -25.47% -18.55%

Design Automation Conferencéuly 2006.

M. R. Corazao, M. A. Khalaf, L. M. Guerra, M. Potkonjak,

and J. M. Rabaey. Performance optimization using template

mapping for datapath-intensive high-level synthel&&E

Trans. on CAD of Integrated Circuits and Systems

15(8):877—-888, 1996.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable

distributions. INSCG '04: Proceedings of the twentieth

annual symposium on Computational geomgtgges

253-262, New York, NY, USA, 2004. ACM Press.

http://www.mit.edu/ andoni/LSHLSH Algorithm and

Implementation

http://www.xilinx.com.Xilinx Website

J. Huan, W. Wang, and J. Prins. Efficient mining of frecfue

subgraphs in the presence of isomorphismidDM, pages

549-552, 2003.

C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu. Datatp

allocation based on bipartite weighted matchingPtac. of

the 27th Conference on Design Automatipages 499-504,

1990.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based

algorithm for mining frequent substructures from graphadat

In PKDD, pages 13-23, 2000.

[20] C. Keler. Pattern-driven automatic parallelizatiom.
Scientific Programming, 5:251-274996.

[21] K. Keutzer. DAGON: Technology binding and local
optimization by DAG matching. Ii®roc. of the 24th Design
Automation Conferencpages 341-347, 1987.

[22] T. Kim and C. Liu. An integrated data path synthesis
algorithm based on network flow methd@iustom Integrated
Circuits Conference, 1995., Proc. of the IEEE 1995
1-4:615-618, May 1995.

[23] M. Kuramochi and G. Karypis. Frequent subgraph discpve
In ICDM, pages 313-320, 2001.

[24] T. Kutzschebauch and L. Stok. Regularity driven logic
synthesis. INCCAD, pages 439-446, 2000.

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[25] T. Ly, D. Knapp, R. Miller, and D. MacMillen. Scheduling

using behavioral templates. DAC '95: Proceedings of the

32nd ACM/IEEE conference on Design automatiosges

101-106, New York, NY, USA, 1995. ACM Press.

B. D. Martino and G. lannello. PAP recognizer: A tool for

automatic recognition of parallelizable patternsPhoc. of

IWPC, 2004.

B. T. Messmer and H. Bunke. A new algorithm for

error-tolerant subgraph isomorphism detecti®EE Trans.

Pattern Anal. Mach. Intel].20(5):493-504, 1998.

R. Metzger and Z. WerAutamatic algorithm recognition

and replacement: a new approach to program optimization

MIT Press, Cambridge, MA, USA, 2000.

D. Rao and F. J. Kurdahi. On clustering for maximal

regularity extractionlEEE Trans. Computer Aided Design

12(8), Aug. 1993.

[30] S. Theodoridis and K. KoutroumbaRattern recognition
Academic Press, 1999.

[31] C.-J. Tseng and D. Siewiorek. Automated synthesis tf da
paths in digital systems. 5(3):379-395, July 1986.

[32] L. M. Wills. Automated program recognition by graph
parsing PhD thesis, 1992.

[33] X.Yan and J. Han. gSpan: Graph-based substructurerpatt

mining. INnICDM, pages 721-724, 2002.

R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaligat

on tree-structured data. BIGMOD '05: Proceedings of the

2005 ACM SIGMOD international conference on

Management of datgpages 754-765, New York, NY, USA,

2005. ACM Press.

P. Yu and T. Mitra. Scalable custom instructions

identification for instruction-set extensible processbrs

CASES '04: Proceedings of the 2004 international

conference on Compilers, architecture, and synthesis for

embedded systenEages 69-78, New York, NY, USA, 2004.

ACM Press.

[26]

[27]

(28]

[29]

[34]

[35]

