Latch-Based Performance Optimization for FPGAs

Bill Teng
Department of ECE
University of Toronto
Toronto, ON, Canada
Email: bill.teng@eecg.toronto.edu

Abstract—We explore using pulsed latches for timing opti-
mization — a first in the FPGA community. Pulsed latches
are transparent latches driven by a clock with a non-standard
(non-50%) duty cycle. We exploit existing functionality within
commercial FPGA chips to implement latch-based optimizations
that do not have the power or area drawbacks associated with
other timing optimization approaches, such as clock skew and
retiming. We propose an algorithm that iteratively replaces
certain flip-flops in a logic design with latches for an improvement
in circuit speed. Results show that much of the performance
improvement achieved by using multiple skewed clocks can also
be achieved using a single clock and latches. We also consider
the impact of short delay paths (i.e. minimum delays), which
can cause hold-time violations. Under conservative minimum
delay assumptions, our latch-based optimization, operating on
the routed design, provides a 5% performance improvement, on
average, essentially for “free” (i.e. without any re-routing/delay
padding). We show that short paths greatly hinder the ability of
using latches for speed improvement, motivating further work to
reduce their effects.

I. INTRODUCTION

The speed of a sequential circuit is inversely related to the
length of the longest path between any two pairs of flip-flops.
Time borrowing or cycle stealing is a well-studied technique
that allows the longest paths to “steal” time from adjacent
combinational stages, in order to reduce the clock period.

One well-known approach, clock skew scheduling, inten-
tionally delays some clocks to certain flip-flops to steal time
from subsequent combinational stages [1]. For example, for
a combinational logic path from a flip-flop j to flip-flop <,
clock skew scheduling may delay the arrival of the clock
signal to 7, thereby allowing more time for a logic signal to
arrive at ¢’s input. Recent research [2]-[4] has shown that
only a few skewed clocks are necessary to obtain appreciable
improvements in circuit speed. Unfortunately, clocks comprise
20-39% of dynamic power consumption in commercial FPGAs
[5], [6] and FPGAs already consume 7-14x more dynamic
power than ASICs [7]. It is clear that for FPGAs to remain
competitive with ASICs, it would be desirable to improve
circuit performance without using extra clocks.

Another approach to borrowing time is retiming, which
physically relocates flip-flops across combinational logic to
balance the delays between combinational stages. Although
extra clock lines are not required to borrow time, the practical
usage of retiming is limited due to its impact on the verifi-
cation methodology, i.e., equivalence checking and functional

Jason H. Anderson
Department of ECE
University of Toronto
Toronto, ON, Canada
Email: janders@eecg.toronto.edu

simulation [2]. Retiming can change the number of flip-flops
in a design, for example, in the case of moving a flip-flop
“upstream” from the output of a multi-input logic gate to its
inputs. As such, retiming may increase circuit area, and make
it difficult for a designer to verify functionality or to correlate
the retimed design with the original RTL specification.

In this work, we use latches to perform time borrowing,
thereby overcoming the power barrier associated with using
multiple clocks, and the netlist modifications required for
retiming. Consider again a combinational path from a flip-
flop j to a transparent latch ¢. The maximum allowable delay
for the path is extended beyond the clock period. Specifically,
a transition launched from j need not settle on ¢’s input by the
next rising clock edge — it may settle after the clock edge during
the time window when 4 is transparent. A downside of latches,
however, is that they make timing analysis more difficult
because transparency allows critical long (max delay) and
short (min delay) paths to extend across multiple combinational
stages, unlike standard timing analysis using flip-flops. This
can lead to hold-time violations. Using pulsed latches driven
by a clock with a non-standard duty cycle or pulse width
(i.e. not 50%), is one method of reducing the effects of short
paths plaguing conventional latch-based circuits, while allowing
time borrowing for long paths. This is a viable option as
commercial FPGAs (e.g. Xilinx Virtex 6) can generate clocks
with different duty cycles, as well as allow the sequential
elements in Combinational Logic Blocks (CLBs) to be used
as either flip-flops or latches [8], [9]. That is, commercial
FPGAs already contain the necessary hardware functionality
to support pulsed latch-based timing optimization, but to the
best of our knowledge, no prior work has explored the pulsed
latch concept for FPGAs.

An illustration of pulsed latches is shown in Fig. 1. Fig. 1 (a)
shows that with latches, it is possible that two signals launched
on two different clock cycles can arrive at one flip-flop (FF3)
at the same time, which clearly is invalid. The solid and dashed
lines represent long and short combinational paths, respectively,
between latch L2, FF1, and FF3. The cause of this problem
is the short path signal launched from FF1 arriving at L2
when it is still transparent — a hold-time violation. Fig. 1(b)
shows that this violation can be fixed by reducing the pulse
width until the short signal arrives at L2 when it is no longer
transparent. Naturally, the use of large pulse widths is desirable
in the sense that they permit more time borrowing between

Min =3
Max = 4

Min =3
Max = 8 L2

Clock Period: 6

—|FF1 FF3[

(a) Duty Cycle: 50%

(b) Duty Cycle: 33%

Fig. 1. Illustration showing how a 33% duty cycle can fix hold-time violation.

adjacent combinational stages; however, large pulse widths are
more likely to create hold-time violations. In our approach,
we reduce the negative impact of short paths by forcing some
flip-flops to remain as flip-flops. The main contributions of our
work are:

o An algorithm that improves circuit speed by selectively
converting some flip-flops to latches in FPGAs.

« Results showing that when short path (min) delays are 70%
of long path (max) delays, our optimization, operating
on the routed design, improves circuit speed by 5%, on
average — a “no cost” performance gain.

o We compare the use of pulsed latches (driven by a single
clock) with clock skew using multiple clocks, and show
that pulsed latches provide the majority of benefits offered
by clock skew.

The remainder of this paper is organized as follows: In Section
II, we summarize related work on clock skew and latches. In
Section III, we review latch timing constraints. In Section IV,
we show how the latch timing constraints can be represented
as a graph and formulate the timing optimization problem in a

graph-theoretic manner. We explain our algorithm in Section V.

We present our results in Section VI. Finally, we conclude and
provide insight into future directions of our work in Section
VIL

II. RELATED WORK

Although we could not find published work that uses latches,
time borrowing using clock skew has been explored. Singh
and Brown showed that 4 shifted clock lines provides over a
20% improvement in circuit speed [4]. The downside to this
approach is the use of extra clock lines to allow time borrowing,
which increases overall power consumption.

Other work [10], [11] involving FPGAs has focused on the
use of programmable delay elements (PDEs) to purposely
delay clock signals. The work in [10] used PDEs on the clock
tree, whereas the PDEs were inserted into FPGA logic elements
in [11]. Both methods incur a hardware penalty and require
additional architectural considerations.

Timing optimization of latch-based circuits has been studied
extensively for ASICs. Most prior work has represented the
latch-based optimization problem using linear constraints and
solved it using linear programming (LP) [12]-[14], [25] or
graph algorithms [15], [24]. Among the prior work on latches,

Teq clock-to-Q delay
Taq data-to-Q delay
a;, A; earliest and latest arrival times at latch ¢
P clock period
cdj;, CDj; | short and long j — ¢ combinational
path delay from latch j to latch 4
Tsu setup time
T, hold-time
Wi pulse width of latch ¢
TABLE I

SUMMARY OF LATCH TIMING PARAMETERS.

our approach is most similar to [24]. The authors optimize
circuit performance by using two clocks with adjustable duty
cycles. Their approach is exact and can be extended to more
than two clocks. However, they strictly forbid combinational
paths that start and end at the same latch, which we found to
be quite prevalent in our benchmark suite. Our formulation
supports these combinational paths, while also improving
performance with only a single clock.

Pulsed latches have recently been explored in the ASIC
context by Lee et. al [16], [17]. Using flip-flop-like timing
constraints, their optimization strategy relies on exploiting the
difference between pulse widths and clock delays to steal
time from neighboring combinational stages. Their approach to
time borrowing uses multiple pulse widths and skewed clocks.
This differs from our approach which mimics the presence of
multiple “skews” using one pulse width.

III. LATCH TIMING CONSTRAINTS

Table I summarizes variables necessary to understand latch
timing constraints. The main difference between latch and flip-
flop timing constraints is the ability of short and long paths to
extend through multiple latches. This manifests as non-linearity
(a max function) in the constraints [17]:

A; = mazyji[max(Teq, Aj + Taq) + CDj], Vi (1)

a; = minyj_;[max(Teq, a; + Taq) + cdj;), Vi)

Equations (1) and (2) show that the latest and earliest arrival
times of latch ¢ are functions of the latest and earliest arrival
times of latches connected to ¢ through combinational paths,
respectively. The latch setup constraint shown below assumes
that latch ¢ is driven by a pulse of width W; [17]:

A <P+ W; =Ty, 3)
Combining (1) and (3), we obtain:

10maxyj—i[maz(Teq, Aj+Taq) +CDji] < P+W; =Ty, Vi

“)
We can remove the leftmost max term in (4) by generating
(4) for every j — i path:

max(ch7Aj + qu) + CDJZ <P+W;— Tsu,Vj —1 (5)

The purpose of the remaining max term is to ensure that the
signal at latch j launches no earlier than T¢, after the rising
edge. We can represent (5) with two linear constraints:

Aj +qu Z ch,Vj

(6)
)

(7) is a lower bound on the launch time of a signal from latch
7. Conservatively, we can assume that the latest arrival time
of latch j always occurs at the falling edge of a pulse, that is
Aj; = W; —Ty,. Plugging this into (6) and (7) gives:

W, + Tyg + CDji < P+ Wi, Vj — i
Wj - Tsu + qu > chavj

®)
©))

Similarly, the hold-time constraint for latches, when combined
with (2) yields:

miny;—ilmax(Teq, aj + Taq) + cdji] > Wi + T3, Vi (10)

We can relax this non-linear constraint by first transforming (10)
to occur between every latch pair connected by a combinational
path. We conservatively assume that every early signal launches
at the beginning of a latch’s opening window (i.e. the rising
edge of the clock). If we assume T, > Ty, and set a; = 0,
this results in:

ch—FCdji > Wz—FTh,Vj—)Z (11

Although the assumptions made to remove the non-linearity
from (8) and (11) would appear to restrict the full potential
of using latches, we will show that one clock can implement
most of the gains achieved by clock skew requiring multiple
clock lines.

IV. GRAPH FORMULATION

We can formulate the problem of latch-based timing opti-
mization as a graph problem. This section will discuss how
constraints derived in Section III map into a graph problem. A
proof of this equivalence can be found in [18]. Let G = (V, E)
be a strongly-connected directed graph. Let a vertex v € V
represent a flip-flop or a latch in G. Every v has an associated
W,, the pulse width. Let an edge, e(u,v), and its delay, d (u,v)
represent the delay on a © — v combinational path.

A path is a traversal of vertices through connecting edges
with an arbitrary start and end vertex. A cycle is a path that
starts and ends at the same vertex. Let ¢ and C represent a
cycle and the set of all cycles in G, respectively. The maximum
cycle ratio (MCR) is defined as:

d (u,v)
]

where |c| represents the number of edges on c¢. The MCR
is the optimum clock period, P, for the circuit represented
by G. In essence, the MCR is the maximum total delay of
any cycle in G divided by the number of sequential elements
on that cycle. It represents the best clock period that can be
achieved by latches/retiming/clock skew for the circuit, given

MCR (G) = mazxeec

>

e(u,v)€c

(12)

Wg=+1 Wp=+2
(a) (b)

Fig. 2. Sample circuit fragment and its graph representation. The dashed
cycle in (b) yields the MCR.

the specified delay values. A proof of this property can be
found in [19]. Given P, the set of pulse widths for every latch,
w = {Wo,Wi,...,Wjy|—1}, can be determined (outlined
below).

Fig. 2 shows how a circuit fragment, (a), is represented in
our graph formulation, (b), where the integers next to edges
represent path delays in the circuit in (a). Fig. 2 (b) also
illustrates how the M CR (G) yields the optimum P. For this
example, assume that every edge in (b) represents constraint (8).
The cycle containing dashed edges, v4 — vp — vo — v4,
is the MCR in this example, with a value of 5: the sum of
edge delays along the cycle is 15, and 15/(3 edges) = 5. Thus,
we can operate this circuit with a clock period of 5. Observe,
however, that the edge from v4 — vp has a path delay of 7.
Consequently, we must set Wp = +2, in order for signals on
the v4 — vp path to arrive on time. In addition, since timing
analysis requires EVERY constraint to be satisifed, we must set
Wp = +1 to satisfy v4 — vp. Any other cycle in this graph,
with a lower cycle ratio would not satisfy every constraint.
Note that in this example, constraints (9) and (11) have been
omitted for clarity. However, they can also be represented in
the graph formulation.

The equations and constraints defined in Section III can be
solved using linear programming. However, we use Howard’s
algorithm [20] to find the MCR. Howard’s algorithm maintains
a subgraph, G,,, C G, where each vertex has exactly one
outgoing edge. Since G is strongly-connected, G, is also.
This implies G5, contains at least one cycle. A cycle is found
in Ggyp by traversing its edges and its cycle ratio, 7, is used
as an initial estimate for MCR(G). To determine if r,,;, is the
MCR, Bellman-Ford is applied to G. If 7, is not the MCR,
Gsyp 1s “improved upon” and the algorithm continues until
the MCR is found. The interested reader is referred to [21]
for details. Although the algorithm has no known upper bound
on the worst-case time complexity, it has an almost linear
execution time in practice.

V. ALGORITHM

Although we can incorporate (11) into G (i.e. hold-time
constraints) and find the optimum P using the MCR approach,
the solution to this problem would imply that every sequential
element is a latch with a (possibly different) pulse width,

Imput: G(V, E), Ein
OUtPUt: Pfina,la sz'nal; Winal
I: Pipit, winit < Howard (G)
2: Sort edges in E in ascending order of their short path
delays in Ej,in
3 Winal < maz(winit)
4: for e(u,v) € sorted E do
5: dmin(u,v) < short path delay of e(u,v) from E,,;,
6: if Toq + dmin(u,v) < Winit(v) + T then
7 Wfinal <~ ch + dmin(u7 ’U) - Th
8 EXIT FOR
9: end if
10: end for
11: for e(u,v) € E do
12: dmin(u,v) < short path delay of e(u,v) from E,,;p,
13: if To,+ dmm(u, v) < meal + T}, then

14: forceFlipFlop(v)
15: else

16: forceLatch(v)

17 end if

18: end for

19: Pfinala Winal £ Howard (G)

Fig. 3. Pulsed latch timing optimization.

thereby requiring multiple clocks and significant power con-
sumption. We wish to use a single clock and therefore, must
decide the specific pulse width to use, and also whether each
sequential element should be a flip-flop or a latch. Although flip-
flops cannot borrow time, their hold-time constraints are less
restrictive and because of this, we use flip-flops to prevent very
short paths from limiting the pulse width. The flip-flop/latch
choice adds a binary decision element to the optimization
problem, and would require Mixed Integer Linear Programming
(MILP) to solve exactly. As MILP is NP-hard [18], unlike
linear programming and Howard’s algorithm, our algorithm is
a greedy heuristic that attempts to maximize the pulse width
in an iterative manner.

We first solve for the best-case clock period, P;,;:, and
associated pulse widths, w;,;¢, without considering hold-time
constraint (11), and then use w;,;; in conjunction with (11)
to guide the process of selecting some sequential elements to
be latches, some to remain as flip-flops and settle on a single
pulse width W;,,q;. The approach we take is to start with a
large value for Wy, and then scale it back based on any
short path delay violations. We then assign each sequential
element to be either a flip-flop or a latch, and then re-solve for
P and Wy;nq based on the flip-flop/latch assignments. The
full algorithm is detailed in Fig. 3.

The inputs to the algorithm are G(V, E'), which represents
the constraint set depicted in Fig. 2, and the set of minimum
delays between every pair of sequential elements, F,,;,. At line
1, we begin by calculating P;,,;; and w;,;: subject to only the
constraints described in Section IV (no consideration of short
path delays). At line 2, we sort the edges in E in ascending
order of the values in FE,,;,. This step identifies the first

possible hold-time violation without having to iterate through
all of E,;y,. Line 3 initializes W;y4; to be the maximum pulse
width in the set w;,;:. Lines 4 - 10 look for the first violation
of constraint (11). If we do find a violation, we know that using
a pulse width larger than Ti, + d(u,v) — T}, would not satisfy
the current violated constraint. Furthermore, subsequent edges
in the sorted edge set would not generate a more constraining
pulse width because the edge set is sorted in ascending order.
After setting Wy, at line 7, iteration through E stops at
line 8. Lines 11 - 18 constrain sequential elements that have
incoming edges with minimum delay less than Wy;,, to be
flip-flops to prevent other hold-time violations from occurring.
We allow sequential elements that do not have incoming edges
with delay less than Wy, to be latches.

Finally, we compute Pfinq; and wyinq; subject to the newly-
created constraints at line 19. In the next section, we show this
approach delivers most of the performance benefits of clock
skew using only a single clock with pulse width W;pq.

VI. EXPERIMENTAL STUDY

We implemented our approach within the VPR 5.0 frame-
work [22]. Our results use a mix of VPR 5.0 and MCNC
benchmarks mapped to an architecture using a LUT size of 6,
and cluster size of 8. We used an island style FPGA architecture
consisting of 50% length-4 and 50% length-2 routing segments.
Each benchmark was given an extra 30% in channel capacity
on top of the minimum required for routing, in order to emulate
a “medium stress” scenario. The results for each circuit are
averaged over 5 runs, each using a different placement seed
value. We set T}, = 1T.,, and T,y = Ty, = Ty, based on
values for the Xilinx Virtex 6.

In this work, we show the impact of latches and clock
skew both with and without considering hold-time violations.
Naturally, smaller short path delays lead to more hold-time
violations and degraded performance results. However, the
VPR timing model does not incorporate short path delays for
combinational logic and routing paths. To handle this, we
present results for several short path delay scenarios, ranging
from optimistic to pessimistic. Specifically, we use VPR’s
timing information to calculate the shortest paths between
sequential elements and emulate different scenarios by taking
a fraction, f%, of these short delays. We consider three settings
for f: 80% (optimistic), 70% (medium), and 60% (pessimistic).

Table II contrasts the gains of using pulsed latches and
flip-flops (columns labeled PL), clock skew using flip-flops
only (columns labeled CS) with no restrictions on the number
of clock lines available, and theoretical possible gains using
latches (column labeled PL,,;) without any short path con-
straints. The column labeled “Critical Path” presents the clock
period of each circuit assuming only flip-flops are used, and
the flops are driven by a single clock. We refer to this as the
“traditional” flow. The results in the table, in essence, represent
different ways of analyzing a set of fully placed and routed
designs. Values in the table represent achievable clock periods
in ns, as reported by VPR and our latch-based timing analysis

[Minimum Delay Assumptions | None “ 80% “ 70% “ 60%]
[Clock Period (ns) [| Critical Path | PLope || PL]| CS | PL | CS || PL]| CS |
bigkey 2.806 2.296 2.331 2.531 2.361 2.561 2.405 2.605
cf_cordic_v_18_18_18 5.177 2.952 4.834 4.834 4.889 4.889 4.944 4.944
cf_cordic_v_8_8_8 3.011 1.807 2.651 2.668 2.706 2.723 2.762 2.778
cf_fir_24_16_16 12.147 4.584 11.804 9.706 11.859 9.733 11.915 9.761
cf_fir 3_8_8 10.717 4.2717 10.373 7.058 10.429 7.1 10.484 7.141
clma 7.434 6.954 7.113 7.154 7.095 7.154 7.129 7.156
des_area 5.644 5.342 5.342 5.544 5.342 5.544 5.342 5.544
des_perf 3.318 2.312 2.893 3.02 2.939 3.064 2.989 3.108
diffeq 4.714 3.287 437 4.37 4.426 4.426 4.481 4.481
diffeq_paj_convert 37.381 37.039 37.067 | 37.239 37.105 | 37.239 37.15 | 37.239
elliptic 4.421 3.433 4.077 4.077 4.133 4.133 4.188 4.188
fir_scu_rtl_restructured_for_cmm_exp 14.8 5.182 14.457 14.457 14.512 14.512 14.568 14.568
iir 16.026 6.064 15.682 15.311 15.738 15.413 15.793 15.514
iirl 15.384 14.16 15.04 15.04 15.096 | 15.096 15.151 15.151
macl 12.258 11.503 11.914 11.914 11.97 11.97 12.025 12.025
mac2 21.012 20.275 20.662 | 20.668 20.717 | 20.724 20.773 | 20.779
oc54_cpu 18.073 11.552 17.73 17.73 17.785 17.785 17.84 17.84
paj_boundtop_hierarchy_no_mem 5.867 5.207 5.524 5.535 5.579 5.581 5.635 5.635
paj_framebuftop_hierarchy_no_mem 4416 3.089 4.073 4.073 4.128 4.128 4.184 4.184
paj_raygentop_hierarchy_no_mem 11.407 5.564 11.063 7.639 11.119 7.683 11.174 7.726
rs_decoder_1 14.071 13.246 13.728 13.728 13.783 13.783 13.839 13.839
rs_decoder_2 18 17.409 17.657 17.669 17.713 17.714 17.768 17.768
s38417 4918 4.225 4.574 4.574 4.629 4.629 4.685 4.685
$38584.1 4.542 4.424 4.424 4.424 4.424 4.424 4.424 4.424
sv_chip0_hierarchy_no_mem 4.193 3.419 3.85 3.845 3.905 3.9 3.96 3.956
sv_chipl_hierarchy_no_mem 12.277 3.518 11.933 8.832 11.989 8.86 12.044 8.888
tseng 4.752 3.198 4.409 4.409 4.464 4.464 4.52 4.52
Geomean 8.172 5.593 7.736 7.428 7.792 7.482 7.853 7.537
Ratio to Critical Path 1 0.684 0.947 0.909 0.954 0.916 0.961 0.922
Ratio to PL, ¢ 1 1.383 1.328 1.393 1.338 1.404 1.348
Ratio of Clock Skew to Pulsed Latches 0.96 0.96 0.96
TABLE II

ACHIEVABLE CLOCK PERIOD (NS) USING FLIP-FLOPS WITHOUT ANY TIME BORROWING (CRITICAL PATH), THEORETICAL MINIMUM WITH TIME
BORROWING USING PULSED LATCHES(PLopt), PULSED LATCHES (PL) AND CLOCK SKEW (CS) SUBJECT TO DIFFERENT MINIMUM DELAY ASSUMPTIONS.

framework. Geometric mean results and normalized geometric
means appear at the bottom of each column.

On average, the “PL,,;” column shows that clock periods
are reduced by 32%. Since this result does not consider hold-
time violations, it represents a lower bound on the achievable
clock period.

The rest of the results in Table II consider hold-time
violations. For example, the columns grouped under 80%
represent results for the case of minimum path delays set to be
80% of maximum path delays. Observe that the performance
results degrade considerably when hold-times constraints must
be honored, and underscores the necessity of considering
such constraints. Pulsed latches provide 5% performance
improvement, on average, relative to the traditional flow; clock
skew with arbitrarily many clocks provides 9% improvement.
Similar results are observed when minimum delays are set to
70% of maximum delays. Essentially, with 70% min delays,
we get a 5% clock period improvement, on average, by latch
conversion on a routed design, without requiring any delay
padding (hold-time violation repair).

Comparing the results for pulsed latches and clock skew
with 70% min delays, we observe identical clock periods for
many circuits. A detailed analysis revealed that the circuits
for which pulsed latches did poorly compared to clock skew
contained what we term as self-loops: combinational paths
that begin and end at the same sequential element. Such loops
do not present a problem for clock skew with edge-triggered
flip-flops. However, they do present a problem for latches, and
limit the performance improvement for some benchmarks.

After observing that short paths have a considerable negative
impact on both pulsed latch and clock skew-based optimization,
we investigated the extent of delay padding needed to improve
the clock period results. Specifically, we investigated how each
circuit’s clock period would be affected if it were possible to
pad 2% of its paths'. The aggregated results, normalized to the
clock period without any short path repairs, are given in Fig. 4.
The rightmost bar indicates that about 3% additional reduction
in clock period would be achieved if it were possible to lengthen
about 10% of paths. Circuit-by-circuit results could not be
included due to page limits, however, we did see reductions of
up to 8% for some circuits with 10% of paths delay padded.

The results in Table II are based on placement/routing
solutions generated in a manner that was unaware of pulsed
latch-based optimization. We wondered whether improved
results could be achieved if the placement and routing tools
were aware of latches? VPR gauges the criticality of a
connection using its slack ratio, which is the ratio of the
worst-case path delay through a connection, to the current
critical path delay. We altered VPR’s criticality notion to drive
place and route using cycle-slacks [19], [23]. The cycle-slack
ratio of a connection is the cycle ratio of any cycle that uses
the connection, to the current MCR of the design. Its definition
is thus analogous to slack ratio, making it straightforward to
integrate into VPR. Fig. 5 shows the benefits of pulsed latch
optimization with place and route using cycle-slacks, and our

IFor this analysis, we removed circuits that already achieved the optimum
clock period using latch-based optimization.

1.005

0.995 -

0.99 -
0.985 -
0.98 -
0.975 -
0.97 +
0.965 -
0.96 -
0.955 + T T T

None 3% 5% 10%

Clock Period

% of Connections Fixed

Fig. 4. Clock period as a result of extending 3%, 5%, or 10% of the total
number of short paths under 70% minimum delay assumptions.

M Post P&R Optimization Integrated + Post P&R Optimization

1.03
1.02
1.01 —

1 4 —
0.99 - —
0.98 - —
0.97 + —
0.96 - —
0.95 - —
0.94 - T T T

None 80% 70% 60%

Clock Period

Mininum Delay Assumptions

Fig. 5. Comparing the benefits of pulsed latches with and without using
cycle-slacks in VPR.

optimization with regular place and route, normalized to 1.
If we ignore short paths completely, we observe a 3%

reduction in the MCR when VPR is driven with cycle-slacks.

However, with minimum delay constraints, our results indicate
an increase in the MCR - i.e. slightly worse results than if VPR
is driven by normal slacks! We believe this is a consequence
of cycle-slacks being unaware of short paths, which constrain
the amount of time borrowing allowed. While cycle-slacks
indeed yield higher performance when short paths are not
considered, higher performance requires more time borrowing
to be realized, and is therefore more susceptible to short path
violations. We noticed that VPR had to deal with many near
critical cycles throughout the flow, and since it is difficult to
equally optimize all equally-critical cycles, cycle-slacks may
drive VPR to optimize the wrong cycles. Altering VPR to
target critical cycles requiring a lot of time borrowing and
lengthening paths in certain cases are likely fruitful directions
for improving the results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered performance optimization using
pulsed latches for FPGAs. We showed that most of the gains
of using skewed clocks can be realized by a post place and
route latch-based optimization that has no area or power
drawbacks by using existing features found on commercial
FPGAs. However, short paths still limit the possible gains of
pulsed latches.

Results in Fig. 5 and Fig. 4 show that padding short paths
can give considerable benefits, while driving VPR with cycle-
slacks gives varied results. It is clear that optimizing the MCR
throughout place and route is a flawed approach if short paths
are not considered. This calls for an integrated approach that
exploits the time borrowing benefits of pulsed latches and
mitigates the short paths that hinder the benefits of pulsed
latches.

REFERENCES

[1] J. Fishburn, “Clock skew optimization,” Computers, IEEE Transactions
on, vol. 39, no. 7, Jul. 1990.

[2] K. Ravindran, A. Kuehlmann, and E. Sentovich, “Multi-domain clock
skew scheduling,” in ACM/IEEE ICCAD.

[3] J. Casanova and J. Cortadella, “Multi-level clustering for clock skew
optimization,” in ACM/IEEE ICCAD, 2009.

[4] D. P. Singh and S. D. Brown, “Constrained clock shifting for field
programmable gate arrays,” in ACM FPGA, 2002.

[5] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption
in Virtex-II FPGA family,” in ACM FPGA, 2002.

[6] V. Degalahal and T. Tuan, “Methodology for high level estimation of
FPGA power consumption,” in IEEE/ACM ASP-DAC, vol. 1, 2005.

[7] 1. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
in ACM FPGA, 2006.

[8] Virtex-6 FPGA Configurable Logic Block, Xilinx, Inc., San Jose, CA,
2009.

[9] Virtex-6 FPGA Clocking Resources, Xilinx, Inc., San Jose, CA, 2011.

[10] C.-Y. Yeh and M. Marek-Sadowska, “Skew-programmable clock design
for FPGA and skew-aware placement,” in ACM FPGA, 2005.

[11] X. Dong and G. Lemieux, “PGR: Period and glitch reduction via clock
skew scheduling, delay padding and glitchless,” in IEEE FPT, 2009.
[12] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Analysis and design

of latch-controlled synchronous digital circuits,” in ACM/IEEE DAC, 1990.

[13] T. G. Szymanski, “Computing optimal clock schedules,” in ACM/IEEE
DAC, ser. DAC ’92.

[14] B. Taskin and I. Kourtev, “Delay insertion method in clock skew
scheduling,” IEEE TCAD, vol. 25, no. 4, 2006.

[15] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Graph
algorithms for clock schedule optimization,” in ACM/IEEE ICCAD, 1992.

[16] S. Lee, S. Paik, and Y. Shin, “Retiming and time borrowing: Optimizing
high-performance pulsed-latch-based circuits,” in ACM/IEEE ICCAD,
2009.

[17] H. Lee, S. Paik, and Y. Shin, “Pulse width allocation and clock skew
scheduling: Optimizing sequential circuits based on pulsed latches,” IEEE
TCAD, vol. 29, no. 3, 2010.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[19] “Maximum mean weight cycle in a digraph and minimizing cycle time
of a logic chip,” Discrete Applied Mathematics, vol. 123, no. 1-3.

[20] J. Cochet-terrasson, G. Cohen, S. Gaubert, M. M. Gettrick, and J. pierre
Quadrat, “Numerical computation of spectral elements in max-plus algebra,”
1998.

[21] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio
and mean algorithms,” ACM TODAES, vol. 9, no. 4, 2004.

[22] J.Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose,
“Vpr 5.0: Fpga cad and architecture exploration tools with single-driver
routing, heterogeneity and process scaling,” in ACM FPGA, 2009.

[23] D. P. Singh and S. D. Brown, “Integrated retiming and placement for
field programmable gate arrays,” in ACM FPGA, 2002.

[24] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou, “Optimizing
two-phase, level-clocked circuitry,” J. ACM, vol. 44, pp. 148-199, January
1997.

[25] B. Lockyear and C. Ebeling, “Optimal retiming of level-clocked circuits
using symmetric clock schedules,” IEEE TCAD, vol. 13, no. 9, sep 1994.

