
Graph Minor Approach for Application Mapping on CGRAs

Liang Chen, Tulika Mitra

School of Computing

National University of Singapore

{chenliang,tulika}@comp.nus.edu.sg

Abstract—Coarse-grained reconfigurable arrays (CGRA) exhibit high
performance, improved flexibility, low cost, and power efficiency for
various application domains. Compute-intensive loop kernels are mapped
to CGRA through modified modulo scheduling algorithms that integrate
placement and routing. Most existing approaches are heavily influenced
by VLIW compilation and FPGA synthesis techniques. A salient feature
of these approaches is that data routing from a single source node to
multiple destination nodes follow independent paths leading to resource
wastage and hence inefficient schedule. We transform the CGRA mapping
problem with route sharing into a graph minor problem. Our graph
minor formalization provides a solid foundation for application mapping
on CGRA. We provide an efficient framework based on graph mapping
to solve this problem. Experimental validation shows that our approach
leads to higher performance compared to state-of-the-art solutions with
better resource utilization and minimal compilation time.

I. INTRODUCTION

Coarse-Grained Reconfigurable Arrays (CGRA) are a promising

alternatives between ASIC and FPGA. Traditionally in embedded

systems, compute intensive kernels of an application are implemented

as ASIC, which has high efficiency but limited flexibility. Current

generation embedded systems (e.g., smartphone) demand flexibility

to support a diverse range of applications. FPGAs provide high

flexibility, but suffer from low efficiency and high power consump-

tion. To bridge this gap, CGRA architectures have been proposed

such as ADRES [11], MorphoSys [18], and others. Most of these

architectures arrange the function units (FUs) in a mesh-like structure

with different register file (RF) configurations (Fig. 8).

The compute-intensive loop kernels are perfect candidates to be

mapped to CGRA containing multiple functional units and dedicated

or shared register files targeting high instruction-level parallelism.

Software pipelining techniques, e.g., modulo scheduling, are thus

introduced to map applications onto CGRA. Most of the CGRA

mapping algorithms are inspired by mapping approaches for VLIW

architectures and FPGA synthesis as CGRA share some similarities

with both these architectures. For example, CGRA mapping algo-

rithms adopt placement and routing techniques from FPGA synthesis

process and inherit register allocation as a post-processing phase

from VLIW compilation process. While these mechanisms have

dominated the research in application mapping for CGRA, it is

important to note that the inherent structure of the CGRA is very

different from both FPGA and VLIW architecture. More concretely,

the connectivity among the functional units in CGRA is usually

fixed unlike FPGA where the interconnection can be reconfigured.

Thus the mapping algorithms based on FPGA place and route

techniques find it challenging to identify feasible routing paths in

fixed interconnect structure of CGRA. This is one of the principle

reasons why popular mapping algorithms, such as DRESC [12] with

its simulated annealing based routing, take long time to converge to a

solution. Similarly, unlike VLIW architecture, the functional units in

most CGRAs have limited and explicit connection to the register files.

Thus it is not safe to assume sufficient register resources during the

(b) Scheduling with disjoint routes

…

Cycle 0

Cycle 1

Cycle 2

Cycle 3

FU0 FU1 FU3 FU2

Time
(a) DFG of a simple loop

op4

op3

op1

e1

e3

op2

e2

2

ee2

4

p3

e32

op

e4

opp

e4

e1

e5

op3

op1

op2 IS S IS

IS IS

(c) Scheduling with shared routes

…

Cycle 0

Cycle 1

Cycle 2

Cycle 3

FU0 FU1 FU3 FU2

Time

op3

op1

op2 IS

IS IS

op4 op4

Fig. 1. Disjoint routes and shared routes.

scheduling phase and apply register allocation as a post-processing

step. Instead, register allocation should be integrated in the early stage

with scheduling (place and route) to achieve the optimal mapping.

Another drawback of most existing approaches is that they do not

consider route sharing among different edges of the data flow graph

(DFG). For example consider the DFG corresponding to a simple loop

in Fig. 1 being mapped onto a CGRA with four nodes. The edges e2
and e3 have the same source node but different destination nodes, i.e.,

they are propagating the same data. But existing approaches route e2
and e3 independently as shown in Fig. 1(b). In this case, we require

three intermediate storage (IS) nodes for routing. If we can exploit

node sharing among the routes, the number of intermediate storage

required for routing can be reduced to two as shown in Fig. 1(c).

This reduced resource usage often lead to more efficient schedules. In

fact, application mapping with route sharing across edges essentially

defines a restricted version of the graph minor problem. This graph

minor based formalization provides a solid foundation to efficiently

solve the application mapping problem for CGRA.

In this paper, we provide a comprehensive solution to the ap-

plication mapping problem for CGRA. We first model the CGRA

architecture as an enhanced modulo routing resource graph (MRRG)

with wrap-around edges and register file. We formalize the modulo

scheduling problem with node sharing across routes as a restricted

version of the graph minor problem between the DFG and the MRRG.

We propose an efficient solution for the graph minor problem that

fully exploits the structure of the DFG and the CGRA interconnects

to effectively navigate and prune the mapping alternatives. Moreover,

register allocation is integrated with scheduling and routing rather

than being performed in isolation as a post-processing step. Our

approach leads to high quality mapping both in terms of performance

and resource usage with minimal compilation time.

II. RELATED WORK

Mapping a loop kernel to CGRA using modulo scheduling was first

discussed in [12]. While this simulated annealing based approach

provides high quality schedules, it has long runtime especially for

large graphs. Most of the following work use node-centric techniques.

In node-centric approaches [12], [14], [7], [5], [6], the operations

(nodes) in the DFG are placed one at a time followed by routing.

A later work, [15] observes that node-centric modulo scheduling

is a poor match for CGRA. Their edge-centric approach shows978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

op4

op3

op1

e1
e2

e3

e4

op2

(d) DFG of a simple loop

FU0 FU1

FU2 FU3

(a) An example for 2x2 CGRA

(e) Modulo scheduling for CGRA

…

Cycle 0

Cycle 1

Cycle 2

Cycle 3
Steady state
Kernel: II = 2

Prologue

Time

Epilogue

Cycle 2*N-2

Cycle 2*N-1

FU0 FU1 FU3 FU2

IS, i=0

op1, i=0 op2, i=0

op3, i=0

op1, i=1 op2, i=1

op3, i=1 IS, i=1

op3, i=N

op4, i=N

IS, i=N

op4, i=0
(f) Schedule and route graph

(c) Wrap-around MRRG with II = 2

op1

 IS op3

op2 op4

 ISS IS op3pp3op3

(h) Invalid schedule and route graph

op4 op1 op2 IS

 IS op3 IS

t=0

t=3

t=2

t=1 t=1

conflict

t=0

op3 IS IS

 IS op4 op2 op1

FU3 FU0 FU1 FU2

FU3 FU0 FU1 FU2

…
…

 Time

Cycle 0

Cycle 1

Cycle 2

(b) MRRG

FU3 FU0 FU1 FU2

FU3 FU0 FU1 FU2

FU3 FU0 FU1 FU2

Fig. 2. Modeling of loop kernel mapping on CGRAs: An illustrative example.

significant benefit obtained from explicit routing of the edges in the

DFG. However, none of these approaches attempt to share routes

corresponding to different edges with the same source.

Most techniques also do not model explicit routing through the

register files. While the register files consume significant amount of

area and substantially impact the performance of CGRA [10], most

current approaches implicitly assume the availability of sufficient

number of registers and connectivity between the functional units and

the registers. Thus the generated schedule may use a large number of

registers with register allocation performed as a post-processing step.

[19] performs explicit routing through register files. Their register

rotation approach still uses a post-pass register allocator and assumes

enough capacity in the register file during scheduling. In contrast,

our approach integrates register allocation with scheduling through

explicit modeling of the register files and their connectivity with the

functional units. Our approach with route sharing in both registers and

routing functional units often leads to better schedule and potentially

reduces the register pressure compared to adapting VLIW compilation

technologies such as register spilling [4] and register rotation [19].

III. MODULO SCHEDULING FOR CGRA

Given an input loop kernel from an application and a CGRA

architecture, the goal of application mapping is to generate a schedule

such that the application throughput is maximized. The loop kernel

is represented as a data flow graph (DFG) where the nodes represent

the operations and the edges represent the dependency among the

operations. Fig. 2(d) shows the DFG corresponding to a simple loop.

Fig. 2(a) shows a 2x2 CGRA consisting of four functional units (FUs)

where the loop should be mapped to. The mapping problem consists

of (a) scheduling the operations in space and time so as to satisfy

the dependency constraints, and (b) explicit routing of the operands

from the producers to the consumers.

A. Modulo Scheduling

Modulo scheduling is a software pipelining technique used to

exploit instruction-level-parallelism in the loops by overlapping con-

secutive iterations [16]. The schedule produced includes three phases:

the prologue, the kernel and the epilogue. The length of the kernel,

which is also the interval between successive iterations, is called

the initiation interval (II). The kernel corresponds to the steady state

execution of the loop and comprises of operations from consecutive

iterations. If the number of loop iterations is high, then the execution

time in the kernel is dominant compared to the prologue and the

epilogue. Thus, the goal for modulo scheduling is to minimize the

II value. Initially, the scheduler selects the minimal II (MII) value

between resource-minimal II (resMII) and recurrence-minimal II

(recMII), and attempts to find a feasible schedule with that II value.

If the scheduling fails, then the scheduling process is repeated with

an increased II. Fig. 2(e) shows the modulo-scheduled version of the

loop in Fig. 2(d) to the CGRA architecture in Fig. 2(a) with prologue,

kernel, and epilogue where II=2. Notice that op4 from the ith iteration

is executing in the same cycle with op1 and op2 from the (i+1)th

iteration in the steady state. Also, we need to hold the output of op2
in an intermediate storage (IS) till it gets consumed by op4. This

explicit routing between FUs is what sets apart modulo scheduling

in CGRA from conventional modulo scheduling. In conventional

modulo scheduling, function units are fully connected as routing is

guaranteed through the central RF. In CGRA, the modulo scheduler

has to be aware of the details of the underlying architecture, such as

the interconnections among the FUs and the RFs, to route the data.

B. Modulo Routing Resource Graph (MRRG)

Mei et al. [12] defined a resource management graph for CGRA

mapping, called Modulo Routing resource graph (MRRG), which has

been used extensively in subsequent research [7], [14], [15], [5]. The

MRRG captures the interconnections among the FUs and the RFs. In

MRRG, the resources are presented in a time-space view. The nodes

represent the ports of the FUs and the RFs, and the edges represent

the connectivity among the ports. In this paper, we adopt a simplified

form of MRRG proposed in [14] where a node corresponds to a FU

or a RF rather than the ports. Thus MRRG is a directed graph G =
(V, E, II) where II corresponds to the initiation interval. Each node v
∈ V is a tuple (n, t), where n refers to the resource (FU or RF) and

t is the cycle. Let {e = (u, v)} ∈ E be an edge in the MRRG where

u = (m, t) and v = (n, t+1). Then the edge e represents a connection

from resource m in cycle t to resource n in cycle t+1. If resource m
is connected to resource n in the CGRA, then in the MRRG, node u
= (m, t) is connected to node v = (n, t+1) for t ≥ 0.

For example, Fig. 2(b) shows the MRRG corresponding to the

CGRA shown in Fig. 2(a). The resources of the CGRA are replicated

every cycle along the time axis, and the edges always point forward in

time. During modulo scheduling, when a node v=(n, t) in the MRRG

becomes occupied, then all the nodes v’=(n, t+k×II) (where k > 0)

are also marked occupied. For example, in the modulo schedule with

II=2 shown in Fig. 2(e), as FU1 is occupied by op1 in cycle 0, it is

also occupied by op1 every 2 × k cycle. In most CGRA mapping

techniques, this modulo reservation for occupied resources is done

through a modulo reservation table introduced in [12].

The goal of CGRA modulo scheduler is to generate II different

configurations for the CGRA where each configuration corresponds to

a particular cycle. These configurations are stored in a configuration

RAM and provide configuration context to the CGRA every cycle.

The configuration context specify the functionalities of the FUs,

connectivity among the FUs and the registers, etc. Usually, this

is done by configuring the context registers every cycle. If the

scheduling specifies routing explicitly, then a configuration also

includes directives for each FU about where to get its input from

the previous cycle and where to write its output for the next cycle.

As these configurations are reloaded every II cycles, the output from

the configuration in the last cycle are consumed by the configuration

in the first cycle. Thus instead of using MRRG where the time axis

grows indefinitely till the steady state is achieved, we could restrict

the time axis to the target II. We then need to add wrap around

edges from the last cycle to the first cycle as shown in Fig. 2(c)

(similar graph is also used in [5]). Now we are only interested in the

configuration in the steady state, that is, the kernel. For example,

the modulo scheduling kernel shown in Fig. 2(e) could now be

simplified to the graph in Fig. 2(f). This simplified graph will be

referred to schedule and route graph which captures all the necessary

information for scheduling and routing and is a subgraph of the

MRRG. So instead of using a modulo reservation table, we can

directly use MRRG with wrap around edges which provides us a

clear view during the mapping process. In the following, the term
MRRG will be used to refer to MRRG with wrap around edges.

C. Register File Modeling

Our mapping technique integrates register allocation with schedul-

ing. We model each RF as one node per cycle in the MRRG. The

individual registers within RF are treated as identical elements and

represented by the capacity of the RF as in compact register file
model [19]. However, different from [19], the usage of registers is

tracked and constrained during the mapping procedure. The number

of read and write ports per RF is also included as a constraint.

Modeling the RF as a single node reduces the complexity of the

MRRG, which in essence helps to accelerate the mapping algorithm.

IV. GRAPH MINOR MAPPING

As mentioned in Section I, node sharing among the data routes

can bring in substantial savings in resource usage. Consider an

operation v in the DFG with multiple direct successors. In existing

modulo scheduling techniques, the data from node v will be routed

to the direct successors along different routes. However, this is

wasteful as all the direct successors need the same data and hence

can easily share the routes. We call the sharing of nodes among

routes starting from the same source node, route sharing. We model

the application mapping on CGRA with routes sharing as a graph
minor problem [17] between the DFG and the MRRG. Finally, an

efficient algorithm is provided to compute the optimal or near-optimal

application mapping.

A. Advantages of Route Sharing

Route sharing can lead to lower initiation interval (II) while

minimizing the resource usage. Route sharing reduces resource usage

when data is routed through functional units and reduces register

pressure when data needs to be stored in the register file temporarily.

When resource budget and connectivity are limited, route sharing

leads to lower II.

Fig. 3 presents an illustrative example. The DFG is being mapped

on the 2x2 CGRA shown Fig. 2(a). The node op2 in the DFG has

three direct successor nodes: op3, op4 and op5. Existing approaches

route the data corresponding to each edge independently and required

three intermediate storage (IS). Moreover, the route between op1 and

op3 needs an additional IS, bringing the total number of IS required

to four. As we have five nodes in the DFG, we now require 5+4 = 9
FU slots, while the CGRA contains only four FU slots. Thus we need

(a) DFG of a simple loop

op5

op3

op2

e1

e3

e5

op4

e2

e4 444

op1

e6

e7

(c) Result of mapping with route sharing

(b) Result of mapping without route sharing

op4 op

 IS IS

 IS IS

 IS 4

IS IS

IS

op5

op3

op2

op1

op4 op

 IS IS

 IS

 IS 444

op5

op3

op2

op1

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2

Cycle 2
op3

op2

op1 op4

op5

IS IS

IS

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2

IS

op1 op3

op4 IS

op5

op2

IS

Fig. 3. Illustration of smaller II achieved by route sharing

II=3 because �9/4� = 3 and the modulo schedule is shown in Fig.

3(b). Once we enable route sharing, the edges op2 → op4 and op2
→ op5 can share IS to achieve II=2 as shown in Fig. 3(c).

(b) Result of mapping without route sharing (c) Result of mapping with route sharing (a) DFG of a simple loop

op5

op2

op1

e1

e3

e5

op4

e2

e4

op3

op1 Cycle 0

Cycle 1

Cycle 2

Cycle 3

RF FU0 FU1 FU3 FU2

op2

op3

op4 op5

op1 Cycle 0

Cycle 1

Cycle 2

Cycle 3

RF FU0 FU1 FU3 FU2

op2

op3

op4 op5

Fig. 4. Illustration of reduced register pressure achieved by route sharing.

Fig. 4 presents an illustrative example of reduced register pressure

due to route sharing. Let us assume that the 2x2 CGRA in Fig. 2(a)

has a central register file with two registers and each FU is directly

connected to the register file. We would like to map the DFG in Fig.

4(a). We model the RF as a single node with capacity constraint as

discussed before. We further assume that the RF has higher priority

to route data compare to FUs. In this DFG, op1 has three direct

successor nodes. In mapping without route sharing, edges e2 and e3
require different registers as shown in Fig. 4(b). However, with route

sharing, we can use only one register that is shared by both edge e2
and e3 leading to much reduced register pressure.

B. Problem Formulation

We now present graph minor [17] based formulation of the appli-

cation mapping problem on CGRA with route sharing. An undirected

graph H is called a minor of the graph G if H is isomorphic to a graph

that can be obtained by zero or more edge contractions on a subgraph

of G. An edge contraction is an operation that removes an edge from a

graph while simultaneously merging together the two vertices it used

to connect. 1 The definition of graph minor is restricted to undirected

graphs. However, in our problem we would like to perform edge

contractions on a subgraph of the MRRG to obtain the DFG. Thus

we need to develop the definition of a restricted graph minor for
directed graphs. Similar to the undirected case, we need to define

edge contraction for directed graphs.

Edge contraction: An edge contraction operation in a directed

graph removes an edge by merging the start node and end node of the

1More formally, an undirected graph H is a minor of another undirected
graph G if a graph isomorphic to H can be obtained from G by contracting
some edges, deleting some edges, and deleting some isolated vertices. The
order in which a sequence of such contractions and deletions is performed on
G does not affect the resulting graph H.

(a) Original graph (b) Graph generated after edge contraction

Edge to be contracted Remaining edges

Fig. 5. An example of edge contraction in a directed graph.

directed edge into one. Fig. 5 shows an example of edge contraction

in a directed graph. After the contraction of the bold edge, the start

node and the end node of the edge now are merged into a new node.

All the edges originally connected to/from the two nodes are now

connected to/from the new node.

op1

op3 op4

Cycle 0

Cycle 1

Cycle 2

Cycle 3

FU0 FU1 FU3 FU2

op2 IS

IS

(a) DFG of a simple loop (b) Schedule and route graph

Edge contractions

op4

op2

op1

e1 e3

op3

e2

op

e1 ee2

2

e3

p

2

op

d1

d2
e4

(d1)

Fig. 6. Graph minor relationship between DFG and MRRG

Restricted edge contraction: We need to impose some re-

strictions on the edges that can be contracted. A directed edge

e = (u → v) in the schedule and route graph (a subgraph of the

MRRG) can be contracted if and only if the end node v of the edge e
corresponds to either an intermediate storage or a register file. In other

words, a directed edge cannot be contracted if its end node represents

an operation from the DFG. Clearly, edge contractions in shared

data routes can generate the corresponding fragment of the DFG.

As an example consider the DFG in Fig. 6(a). The corresponding

schedule and route graph appears in Fig. 6(b). The highlighted portion

represents data routing from the source node op1 to all its destination

nodes. Route sharing is present through the two intermediate storage

(IS) nodes. As we can see, contracting the two bold edges in the

schedule and route graph can recreate the original DFG.

Invalid Mapping: Once we have identified a subgraph of the

MRRG from which the DFG could be obtained through restricted

edge contraction, we have to reconstruct the cycle-by-cycle modulo

schedule to ensure the correctness for the identified subgraph. It may

not be feasible to reconstruct this modulo schedule for some identified

subgraphs due to the wrap-around nature of the MRRG. For example,

consider the identified subgraph of the MRRG shown in Figure 2(h)

for the DFG shown in Figure 2(d). When we attempt to reconstruct

the module schedule, we realize that the edge e3=(op2,op4) is routed

through three IS nodes. On the other hand, the edge e4=(op3, op4)
is routed directly. Thus the input to op4 along the edge e3 is reached

in cycle 4, while the input along the edge e4 is reached in cycle 2.

Thus the mapping is invalid.

The validity check could be performed during the mapping process

by explicitly assigning time stamps (cycle values). For example, when

the first node of the DFG is mapped to a MRRG node, we could

assign it a time stamp of 0. This time stamp is propagated along the

edges and incremented (or decremented as detailed in Section IV-C2)

by one every time it passes through a node in a different tier (cycle)

in the MRRG (see Fig. 2(h)). One can proceed with the mapping

of an internal DFG node to a MRRG node only if the time stamps

passed along all the connected edges are identical.

Restricted Graph Minor: We can now define application

mapping on the CGRA as finding a valid subgraph G’ of the MRRG

such that the DFG can be obtained through repeated restricted edge

contractions of G’. We call the DFG a restricted minor of the MRRG.

C. Mapping algorithm

Graph minor is an important concept in graph theory. Unfortu-

nately, there does not exist an appropriate algorithm to test if graph

H is a minor of graph G. Fortunately for us, we are considering

a somewhat constrained version of the problem, where we would

like to check if the DFG is a restricted minor of the MRRG. We

solve this graph minor testing problem through a systematic and

intelligent search of the mapping alternatives with effective structural

and pruning constraints (similar to state space search widely used in

solving graph matching problems [13])

The basic idea of our algorithm is as follows. Similar to the

traditional modulo scheduling, we start with the minimum possible

II, which is the maximum of the resource constrained II and the

recurrence constrained II, that is, II = max(ResMII, recMII). Given

this II value, we create the MRRG corresponding to the CGRA

architecture. We now attempt to find a subgraph G’ in the MRRG

such that the DFG is a restricted minor of G’. If we can find such

a subgraph G’, then the DFG can be mapped to the CGRA with

II initiation interval. Otherwise, we increment II by one, create the

MRRG corresponding to this new II value, and again try to find

a subgraph G’ in the new MRRG such that the DFG can be a

minor. This process is repeated till we have generated a MRRG

with sufficiently large value of II so that the DFG can satisfy the

graph minor test. Algorithm 1 shows the pseudo code for our iterative

modulo scheduling framework.

Algorithm 1: Mapping Algorithm

begin
order list = DFG node ordering();
II = min(resMII, recMII);
while do

/*Create MRRG with II*/;
Initialization();
if Minor(DFG, MRRG,II,PMap) == 1 then

break;
II++;

Func Minor(DFG,MRRG,II,PMap)

begin
get next unmapped dfg node;
/*Node mapping*/
for all possible MRRG → node do

Check node mapping constraits(W MRRG→node);
save(PMap);
PMap = map(dfg node, MRRG → node);
successful = Minor(DFG, MRRG, II, PMap);
if successful == 1 OR all dfg nodes have been mapped then

return 1;
restore(PMap);

/*Data routing through edge mapping*/
for all possible MRRG → node do

for every dfg edge between PMap → dfg node set and dfg node do
Check edge mapping constraits(MRRG→node);
backup(PMap);
PMap = map(data(dfg edge), MRRG→node);
successful = Minor(DFG, MRRG, II, PMap);
if successful == 1 then

return 1;
restore(PMap);

Recall that given the DFG and the MRRG, we have to decide

whether the DFG is a restricted minor of the MRRG by identifying a

subgraph of the MRRG such that the DFG can be obtained through

a series of restricted edge contractions. The subgraph of the MRRG

then represents the place and route of the DFG on the MRRG.

Instead of finding a subgraph G’ of the MRRG and then performing

a sequence of restricted edge contractions to reach the DFG, we take

the dual approach. Starting with the DFG, we perform a series of

node and edge mappings to create the subgraph G’ of the MRRG.

The mapping process Minor() in Algorithm 1 starts with an empty

set. At each step, we add either a node or an edge mapping to the

current partial mapping. If it is not feasible to add any node or edge

mapping to a partial mapping without violating restricted graph minor

constraints, then current partial mapping is eliminated and the search

process backtracks to the previous valid partial mapping to attempt a

new node or edge mapping. Exploitation of route sharing is embedded

in the constraints while looking for the candidate MRRG nodes for

either node mapping or edge mapping. The details will be explained

later in this section. The mapping process continues till we have either

found a complete mapping (i.e., the DFG is a restricted minor of the

MRRG) or we have discovered that no such mapping is possible

(i.e., the DFG is not a restricted minor of the MRRG) and we have

to increment the II.

As we perform an exhaustive exploration, that is, we consider all

possible mappings between the DFG and the MRRG, our algorithm

is guaranteed to generate a valid mapping if it exists. Clearly, the

number of possible mappings between the DFG and the MRRG is

exponential in the number of nodes of the DFG. That is, our search

space is extremely large. Our goal is to either (a) quickly identify a

mapping such that the DFG passes the restricted minor test, or (b)

establish that no such mapping exists. We employ powerful pruning

strategies to efficiently navigate this search space. We also carefully

choose the order in which we attempt to map the nodes and the edges

so as to either quickly read a valid mapping or achieve substantial

pruning that help establish the absence of any valid mapping.

1) DFG node ordering: An appropriate ordering of the DFG nodes

during mapping is crucial to quickly find a feasible solution. To

achieve this goal, we employ an ordering that helps us validate and

meet the time stamp constraints as discussed in Section IV-B. The

idea of the ordering is simple. A node v can be mapped only when at

least one of its direct predecessor or direct successor nodes has been

mapped. That is v should appear in the ordering after at least one of

its direct predecessor or direct successor nodes. The only exception

is the first node in the ordering. The advantage of this ordering is

that the time stamps are generated appropriately for the nodes so that

time stamp conflict at edges can be avoided easily. Moreover, we can

filter out the invalid mappings of v due to mismatched time stamps

at the edges of v.

We also impose an additional constraint that the nodes along the

critical path has higher priority , i.e., they appear earlier. The higher

priority of the critical path nodes is motivated by the fact that if the

critical path cannot be mapped with the current II value, then we can

terminate the search process and move on to the next II value.

Fig. 7(b) shows a simple DFG and Fig. 7(c) shows the ordering of

the nodes in the DFG (arrow signs). We start with the input node op1
on the critical path. We proceed along the critical path ordering nodes

op3, op4, op5. We could not order op2 because none of its direct

predecessors or direct successors appeared in the ordering. After op5,

we are free to include op2 in the ordering.

When the DFG contains disjoint parts, a new time stamp is

generated and propagated for every disjoint component during the

mapping process. The relative ordering of the components is not

important for our problem.

2) Mapping Example: It is best to illustrate the mapping process

with an example. We have a simple DFG as shown in Fig. 7(b) being

mapped to a 2x2 CGRA array. FU2 in the CGRA is a memory node.

Any operation from the DFG with the exception of memory operation

can map to any functional unit in the CGRA. The memory operation

op4 can only map to a memory unit (FU2). Let us assume that we

are currently considering II=2. For simplicity of exposition, we only

draw the utilized edges in the MRRG. The entire mapping process

is illustrated in Fig. 7(d-m).

The process starts with mapping op1 and op3 to FU1 in different

cycles. We also generate the time stamps. Now we would like to map

op4, which can only be mapped to FU2. However, we cannot map

op4 to FU2 in either cycle 0 or cycle 1 because of missing direct

edges from op1 in cycle 0 and op3 in cycle 1. As node mapping fails,

we have to perform mapping of the edges e1 and e2 first and have

to resort to the use of intermediate storage (IS) for edge mapping as

shown in partial mapping PMap3. After a series of mapping for the

edges, op4 can be mapped in cycle 0 and the time stamp constraint

is satisfied. Unfortunately, we have used up all the resources with IS

and the remaining operations cannot be mapped. So we are forced

to backtrack. After backtracking, we attempt an alternative route for

edge e2 through FU2 in PMap’3. Finally op4 is successfully mapped

in PMap4 with enough resources left.

The next partial mapping illustrates data route sharing. We are now

attempting to map op5, two of whose predecessors op1 and op4 have

been mapped previously. Again we cannot find a valid node mapping

with direct connection from the predecessors. So we try to map the

edge e3. At this point, we explore an interesting option of routing

e3 by sharing a node from the route of e2. This is shown in PMap5

where the IS in cycle 1 is shared between the two routes. Then op5
could be mapped and assigned a time stamp of 3. Finally, the last

node op2 is mapped with time stamp of 2, which is consistent with

the time stamp of the other incoming edges of node op5. Notice that

the time stamp can be propagated backwards from a child node to

its parent node in DFG. For example, when we map op2, the time

stamp of the child node op5 is propagated to the parent node op2.

In this case, the time stamp is decreased rather than increased.

3) Constraints: The constraints play a crucial role in pruning the

search space effectively. The constraints can be divided into two

categories: structural and pruning constraints. Structural constraints

are imposed by inherent properties and structure of the DFG and

the MRRG as well as time stamp matching requirement. We use the

following structural constraints to ensure validity of the mapping.

Attribute constraint: Each node in the DFG and the MRRG has

an attribute that specifies the functionality of the node. For example,

a node in the DFG can have memory operation as its attribute, while

the attribute of a MRRG node may signify that it supports memory

operations. Attribute constraints ensure that a DFG node or edge is

mapped to a MRRG structure with matching attribute. For example,

a memory operation in the DFG can only be mapped to a functional

unit supporting memory access. The register files in the MRRG can

only be used for routing data during edge mapping. However, any

functional unit or register can be used to route data if necessary.

Data routing constraint for edge mapping: The data produced

by a source node may need to be routed to all its direct successors

through multiple edge mapping steps. To enable sharing among these

routes, we remember the intermediate nodes used to route an edge

e. While mapping another edge e’ with the same source node as e,

the routing for e’ continues from one of the intermediate nodes of e

c) Node ordering/time stamp propagation
respects to critical path of the DFG

op5

op4

op1

op3 3

op

op2

5

op4op4op4

(b) DFG of a simple loop

op5

op4

MEM

op1

op3

op2
e1

e2 e3

e4

e5

e6

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

(f) PMap3 generated by routing edge e2 to (C1,
FU1)

t = 0

t = 1 t = 1

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

(g) Invalid PMap generated after finding a
successful node mapping for memory operation op3

t = 0

t = 1 t = 1

IS IS

IS IS

op4

t = 2 t = 2

t = 3 t = 3

t = 4

(m) PMapF generated by Mapping op2 to (C0, FU1),
all nodes are mapped.

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

op4

t = 1 t = 1

IS

t = 3 t = 2

op5

op2

t = 2

t = 3

(j) PMap4 generated by Mapping op4 to (C0,
FU2), time stamp validity checking passed for op4

op1 Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

(e) PMap2 generated by Mapping op3 to (C1, FU0)

t = 0

t = 1
(d) PMap1 generated by Mapping p1 to (C0, FU0)

op1 Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)
t = 0

(i) PMap3
’ generated by routing edge e2 to (C1,

FU2)

FU0 FU2

FU1 FU3

0 F

1 F

(a) 2×2 CGRA with
one Memory FU

(l) PMap6 generated by Mapping op5 to (C1, FU3),
time stamp validity checking passed for op5.

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

op4

t = 1 t = 1

IS

t = 3 t = 2

op5

t = 3

(k) PMap5 generated by routing edge e3 to (C0,
FU3), route is shared between e2 and e3

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

op4

t = 1 t = 1

IS

t = 3 t = 2

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

op4

t = 1 t = 1

t = 2

op1

IS

Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

t = 1 t = 1

op1 Cycle 0

Cycle 1

FU0 FU1 FU3 FU2(MEM)

op3

t = 0

t = 1
(h) Backtrack to PMap2

Fig. 7. Illustrative example of partial mapping and backtracking during mapping space search for restricted minor test

as shown in PMap5 in Fig. 7.

Data routing constraint for node mapping: A node can be

mapped only after data from/to all direct predecessor/successor nodes

in the partial mapping can be routed to/from this node successfully.

This requires direct connection from/to direct predecessor/successor

nodes and no conflict in time stamp values. Otherwise, the edges

from/to direct predecessor/successor nodes have to be mapped first

through intermediate storage.

Recurrence edge constraint: The data routing for a recurrence

edge requires a different time stamp check that respects its recurrence

distance. Let tstamp be a function that returns the time stamp value

assigned to a MRRG node during the search process and f be a

function that returns the MRRG mapped corresponding to a DFG

node. If an edge e = (u, v) is a recurrence edge with recurrence

distance d in the DFG, then the data routing path identified by this

recurrence edge from source MRRG node f(u) to the destination

MRRG node f(v) should have a length equal to II × d - tstamp(f(v))
+ tstamp(f(u)).

Register file constraint: Both node mapping and edge mapping

should ensure availability of register file read/write ports and capacity

in the corresponding cycle if the data is routed from/to the register

file. The routing through the same register in consecutive cycles does

not require any port.

Pruning constraints: Pruning constraints help us look ahead in

the future and quickly identify if the current valid partial mapping can

be extended to a successful final mapping. If not, then we do not need

to explore this partial mapping further. This looking ahead helps us

eliminate a partial mapping PMap that will fail in the future, thereby

pruning substantial portion of the design space consisting of all the

children of PMap, that is, all the partial and complete mappings that

can be obtained by extending PMap.

Unlike structural constraints, most of which have O(1) complexity,

the pruning constraints are usually more complex and have higher

time and space complexity. The pruning constraints we integrate in

our search process are listed in Table I. A node mapping pair is

denoted as (m, f(m)), where m is a DFG node and f(m) is the corre-

sponding MRRG node. A predecessor/direct predecessor of a node n
in a graph (DFG or MRRG) is denoted as pred(n)/direct pred(n), and

similarly a successor/direct successor of a node n could be denoted as

succ(n)/direct succ(n). Normally, a constraint with stronger pruning

ability would require more running time and space. For example,

constraint C pred succ and C feasible have strong pruning ability

but both require the reachability information for nodes in the partial

mapping to/from free nodes in the MRRG. We build the reachability

matrix using an efficient algorithm by Italiano et al. [8] with O(N)
time complexity but O(N2) space overhead, where N is the number

of nodes in MRRG. We build two matrices both with M0 rows for M0

DFG nodes within the partial mapping bringing the time complexity

to O(M0N).

D. Integration of Heuristics

Our modulo scheduling algorithm (Algorithm 1) can achieve the

optimal II by definition. This is because it checks if the DFG is a

minor of the MRRG (i.e., whether a valid mapping exists from the

DFG to the MRRG) for each value of II, starting with the minimum

possible value. However, even with the pruning strategies, the runtime

of the optimal algorithm can be prohibitive when both the number

of DFG nodes and CGRA functional units are quite large. Therefore,

we integrate some heuristics to speed up the search process. This

may introduce sub-optimality, i.e., the search process may miss a

valid mapping at lower II value even though it exists. But the search

process becomes extremely fast.

The first heuristic avoids backtracking between two unrelated

nodes. In the optimal search process, if a node m cannot be mapped,

then we backtrack to the node n which appears just before m in

the DFG node ordering. However, node n may not be a predecessor

or successor of node m in the DFG and hence may not be able

to steer the search towards a successful mapping to m. Instead,

we directly backtrack to the last predecessor or successor of node

m in the ordering. For example, consider the DFG in Fig. 4. Let

us suppose the node ordering is op1, op2, op3, op4, op5. If node

mapping fails for op5, normal search process would backtrack to the

previous mapping, i.e., node op4. However, op4 is unrelated to op5.

So instead we backtrack to the node op3.

The second heuristic is motivated by the edge-centric mapping

for CGRA [15]. During graph minor testing, instead of enumerating

all possible edge mappings to route data to node n, the procedure

Constraint Description Complexity Pruning Ability

C degree
For DFG node m in the partial mapping, check the number of available direct pred(f(m)) in MRGG. The number should
be larger than the number of unmapped direct pred(m). On the other hand, if there is any unmapped direct succ(m), then
we should have at least one available direct succ(f(m)) or one direct succ(f(m)) used to route the data provided by f(m).

Time: O(N) Medium

C units Check the number of available FUs in MRRG. This number should be larger than the number of unmapped DFG nodes. Time: O(1) Medium

C pred succ

For every node mapping pair: (m, f(m)), check the number of all the free FUs that could be reached by f(m) or any MRRG
nodes used for routing the data provided by f(m) through a path only containing free nodes. This number should be larger
than the number of unmapped succ(m). Similarly, check the number of all the free FUs that could reach the node f(m) by
a path containing free nodes. This number should be larger than the number of unmapped pred(m).

Time: O(M0N)
Space: O(N2) Strong

C feasible

For every unmapped DFG node m, there is at least one free MRRG node n so that n could reach every f(direct succ(m)), if
direct succ(m) is in the partial mapping, through a path containing only free MRRG nodes. Meanwhile, for a direct pred(m)
in the partial mapping, this free MRRG node n should be reachable from f(direct pred(m)) or it could be reached by a
MRRG node used for routing the data provided by f(direct pred(m)).

Time: O(M0N)
Space: O(N2) Strong

TABLE I
PRUNING CONSTRAINTS.

simply aims to find one feasible route. Once a feasible route has been

found and the search progresses, even if we backtrack to node n, the

procedure does not attempt to find alternative routes.

The final heuristic helps us to escape from extensive mappings to

route one edge. We put a counter for each of the partial mapping

generated by node mapping. The counter is increased every time

we backtrack to this partial mapping. Once the counter reaches a

pre-defined threshold value, we eliminate the partial mapping and

backtrack to its predecessors. Our experimental evaluation reveals

that this is the only heuristic that sometimes prevent us from reaching

a feasible solution even if one exists.

V. EXPERIMENTAL EVALUATION

(a) No shared RF (b) Local RF (c) Central RF

FU

ALU RF

Reg

Read from neighbors

Write to neighbors

MUX MUX

C
on

te
xt

 R
eg

is
te

r

Central register file

Fig. 8. 4×4 CGRA with different register file configurations

We now proceed to evaluate the quality and the efficiency of

our mapping algorithm. Our target CGRA architecture is a mesh-

like 4×4 array with different register file configurations (Figure 8).

The 4×4 array is the fundamental unit in many CGRA architectures

including ADRES and MorphoSys. The 4×4 array has also been

widely used to evaluate various mapping algorithms [14], [15], [10],

[7], [9], [3]. The functional units in the array can be heterogeneous

or homogeneous and each of them is connected to its immediate

neighbors. We evaluate three different register file configurations

denoted as NORF (architecture with no RF shown in Figure 8(a)),

LRF (architecture with local shared RF shown in Figure 8(b)) and

CRF (the architecture with central shared RF shown in Figure 8(c)).

We also use Homo to denote homogeneous functional units and

MxC to denote the availability of x columns of memory units. An

architectural configuration MxC-LRF-yR corresponds to an array

with x columns of memory units and a locally shared register file

with y registers. Each register file is associated with two read ports

and one write port.

We select a set of loop kernels from MediaBench and MiBench

benchmark suite shown in Table II. The DFGs for these kernels

are generated from Trimaran [1] back-end using Elcor intermediate

representation [2]. The column MII shows the minimal initiation

interval imposed by resource and recurrence constraints. The MIIs

are computed for three different configurations.

Comparison with DRESC: The most well-known algorithm

and arguably the one that can achieve the best performance (smallest

Kernel #ops #MEM ops #edges MII(Res, Rec)
(Homo/M1C/M2C)

fft 40 20 42 3/5/3

osmesa 16 9 17 1/3/2

quantize 21 8 24 2/2/2

rgb2ycc 41 15 44 3/4/3

rijndael 32 13 35 2/4/2

scissor 12 4 13 1/1/1

texture 29 7 31 2/2/2

tiff2bw 42 20 50 3/5/3

fdctfst 59 16 80 4/4/4

idctflt 87 25 114 6/7/6

TABLE II
BENCHMARK CHARACTERISTICS.

II) for CGRAs is DRESC [12], a simulated annealing based mod-

ulo scheduling approach. Although edge-centric modulo scheduler

(EMS) [15] is widely considered to be the most efficient, EMS

reports 10–13% degradation in schedule quality compared to DRESC,

while compilation time is reduced by 27–46%. We show that our

graph minor approach, referred to as G-Minor, can generate better

schedules compared to DRESC, while compilation time is reduced by

orders of magnitude. As DRESC does not explicitly handle routing

through register files and heterogeneous FUs, we restrict our target

architecture for this comparison to a homogeneous 4×4 CGRA with

no register file Homo-NORF. All the functional units in this CGRA

are comprehensive function units capable of handling any operation.

0

0.2

0.4

0.6

0.8

1

R
ou

tin
g

no
de

s r
at

io

Ratio to DRESC

0

0.2

0.4

0.6

0.8

1

T
ot

al
 u

til
iz

at
io

n

G-Minor DRESC

0
2
4
6
8

10
12
14
16

A
ch

ie
ve

d
II

G-Minor DRESC

0

0.2

0.4

0.6

0.8

1

R
es

ou
rc

e
ut

ili
za

tio
n

G-Minor DRESC
(a) Achieved II

(c) Total Utilization (d) Routing nodes ratio

(b) Resource Utilization
(with routing nodes excluded)

Fig. 9. Schedule quality of G-Minor and DRESC

Figure 9 shows the schedule qualities for G-Minor and DRESC.

The achieved II in Figure 9(a) shows that G-Minor obtains equal

or smaller II compared to DRESC for all benchmarks. Notice that

the reduction of II by one improves the throughput by 100/II
percentage. This also leads to better resource utilization (with routing

nodes excluded) for G-Minor as shown in Figure 9(b) where G-Minor

achieves 62% resource utilization on an average compared to 54%

for DRESC. Both schedulers achieve high total resource utilization

when routing resources are included (average 79% shown in Figure

9(c)). G-Minor is more efficient in utilizing routings resource even

in the case when both schedulers achieve the same II, as shown in

Figure 9(d).

Average compilation time
(seconds)

Memory usage
(Megabytes)

G-Minor 4×4 3.4 < 3

DRESC 4×4 8045.2 < 2

G-Minor 8×8 15.6 < 8

TABLE III
COMPILATION TIME AND MEMORY USAGES.

Scalability: The average compilation time across all the bench-

marks is presented in Table III. G-Minor achieves substantial reduc-

tion in compilation time compared to DRESC. To test the scalability

of G-Minor approach, we also report the average compilation time to

map the 10 benchmarks to 8 × 8 CGRA. The average compilation

time is still minimal. However, for DRESC, we fail to obtain a

solution for most benchmarks on 8 × 8 CGRA even after running

for a day largely owing to expensive alternative routing computations

for avoiding congestions [12]. This demonstrates the scalability of G-

Minor approach. The memory usage reported in Table III reveals that

both the schedulers have similar memory footprint.

Different CGRA configurations: Our mapping approach can

support diverse CGRA architectures through parameterization. This

is because we can fully exploit the structural information of the

CGRA for explicit data routing. Our register file modeling approach

is highly flexible in that it can support many different register file

configurations. The experiment results for different CGRA configu-

rations with different number of memory units and different register

file configurations are shown in Figure 10.

��

��

��

��

��

���

���

���

���

���

	�
����

	�
�������

	�
�������

	�
�
�����

	�
�
�����

	�
�
�����

	�
�
�����

	�
����

	�
�������

	�
�������

	�
�
�����

	�
�
�����

	�
�
�����

	�
�
�����

�
��
��
��
��
��

���
������
� �!��"�
#$%�&��
#�'!���(
������#
��)� #�
�����%*

�����
�����(�

Fig. 10. Achieved II for different CGRA configurations.

The experiment results indicate that memory units is the most

critical resource. Adding more memory units brings substantial

benefit by reducing the achieved II. The most interesting point to

note is that adding more registers may not necessarily improve II.

This result contradicts previous work on register file evaluation for

CGRAs [10] that recommends a global register file with relatively

large number of registers. This is because a mapping algorithm that

performs register allocation as a post-processing step may end up

with a schedule using a large number of registers. But increasing

the number of read/write ports for a register file, specially when the

register file is global and is connected to all the functional units, is an

expensive proposition from both area and power perspective. Instead,

our scheduler aims to achieve smaller II with limited number of

registers. Moreover, as we share nodes across routes, register pressure

is further alleviated. Thus we notice that starting from M2C-LRF-

1R configuration, increasing the number of registers and providing

more connectivity through registers for routing does not reduce the

achieved II any further.

VI. CONCLUSIONS

In this paper, we provide a comprehensive approach for application

mapping on CGRA. We argue and experimentally validate that node

sharing across routes can substantially improve the quality of the

schedule. We formalize this new mapping problem with node sharing

across routes as a restricted version of the graph minor problem. We

propose an efficient algorithm to solve this problem that effectively

navigates through the mapping alternatives. Experimental evaluation

confirms that our approach can generate better quality schedules with

minimal compilation time.

VII. ACKNOWLEDGMENTS

This work was partially supported by Singapore Ministry of

Education Academic Research Fund Tier 2 MOE2009-T2-1-033.

REFERENCES

[1] The trimaran compiler infrastructure. http://www.trimaran.org.
[2] S. Aditya et al. Elcors machine description system. Technical report,

HPL-98-128, 1998.
[3] N. Bansal et al. Analysis of the performance of coarse-grain reconfig-

urable architectures with different processing element configurations. In
Micro, 2003.

[4] G. Dimitroulakos et al. Exploring the design space of an optimized com-
piler approach for mesh-like coarse-grained reconfigurable architectures.
In IPDPS, 2006.

[5] S. Friedman et al. SPR: an architecture-adaptive CGRA mapping tool.
In FPGA, 2009.

[6] R. Gnanaolivu et al. Mapping loops onto coarse-grained reconfigurable
architectures using particle swarm optimization. In SoCpaR, 2010.

[7] A. Hatanaka and N. Bagherzadeh. A modulo scheduling algorithm for
a coarse-grain reconfigurable array template. In IPDSP, 2007.

[8] G.F. Italiano. Amortized efficiency of a path retrieval data structure.
Theoretical Computer Science, 48(2-3), 1986.

[9] Y. Kim et al. High throughput data mapping for coarse-grained
reconfigurable architectures. TCAD, 30(11), 2011.

[10] Z. Kwok and S.J.E. Wilton. Register file architecture optimization in a
coarse-grained reconfigurable architecture. In FCCM, 2005.

[11] B. Mei et al. ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix. In FPL, 2003.

[12] B. Mei et al. Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling. In DATE, 2003.

[13] N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.
[14] H. Park et al. Modulo graph embedding: mapping applications onto

coarse-grained reconfigurable architectures. In CASES, 2006.
[15] H. Park et al. Edge-centric modulo scheduling for coarse-grained

reconfigurable architectures. In PACT, 2008.
[16] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for

software pipelining loops. In Micro, 1994.
[17] N. Robertson and P. D. Seymour. Graph minors. J. Comb. Theory Ser.

B, 77(1), 1999.
[18] H. Singh et al. MorphoSys: an integrated reconfigurable system for data-

parallel and computation-intensive applications. IEEE Transactions on
Computers, 49(5), 2000.

[19] B.D. Sutter et al. Placement-and-routing-based register allocation for
coarse-grained reconfigurable arrays. In LCTES, 2008.

	MAIN MENU
	Search
	Print
	Author Index
	Table of Contents

