
1

2

3

The error-backpropagation algorithm is one of the most important and widely
used (and some would say wildly used) learning techniques for neural
networks. First we will look at the algorithm itself and how it can be put to use.
Then we’ll look at the theory behind the algorithm and finally examples of
backpropagation for some practical applications.
Backpropagation is used almost exclusively with feed forward, multi-layer
perceptrons using continuous valued cells. Learning takes place based upon
mean squared error and gradient descent. Backpropagation makes its easy to
find the networks’ error weight gradient for a given pattern.
In Fausett, x is used to label inputs, y for output neurons and z for hidden units.

4

The activation or threshold function acts upon the weighted sum of the neuron
and is used to compute the output of the neuron. In backpropagation, the output
is computed as shown above.

5

The activation function defined by
Is sigmoidal in shape. It has asymptotes at 1.0 and 0.0. Also it returns a value
of 0.5 when x=0.
The important point to note for the backpropagation algorithm is the function is
continuous and has a derivative. This derivative has some interesting properties
too! (See next slide)
Note that actually, any sigmoidal activation function can be used. The
asymptotes do not have to be at 1 or 0. Though attempting to stretch the range
can lead to steep slopes which should be avoided.

f (x) = 1
1 + e− x

6

Since backpropagation requires that we determine the derivative of the weight
error, it is handy to find the derivative of the f (x). It turns out that the
derivative of the function can be expressed in terms of the function itself as
shown above!

7

The important thing to note here is that the derivative is practically zero for
large negative or large positive values of x. This, as we will see later, has a
significant implication for speed of learning in backpropagation.

8

The total error is the sum of errors (squared difference between desired and
actual outputs) generated by all patterns in the training set. The above equation
describes the summation for single variable outputs. In the more general case,
where the output if a vector of dimensionality h, the total error is defined as:

E = E p =
1
2

(yh
p −Ch

p)2
p
∑

h
∑

p
∑

9

How “acceptable” the total error should be is dependent on how the network is
to be used. For example, if the usage is such that the outputs represent binary
values, e.g. to decide whether a request for a loan should be granted or not.
Then it is valid to accept values of >0.5 as 1 and <0.5 as 0. If on the other hand
the target values represent real numbers such as a speed or direction, then the
total error must be “tighter”. In this case you might find it useful to determine
how the total error E, relates to the average error in the predicted out of the
network. One way to do this is to convert E into an RMS (root mean square).

10

Step 1. Weight Initialisation
Chose a small positive value for ρ, the learning rate and initialize the weights
(wji) of the network to small random values in the range [-0.1, 0.1] say.
Motivation for weight initialisation is to scale them close to their final target
values. This should keep training cycles short. If there is a large variation in
magnitude between the final and initial weight values, the algorithm will take
much longer to reach an acceptable total error level.

11

Step 2a - Forward propagation step
Make a bottom up pass through the net computing weighted sums Si and
activations yi for all cells.

12

Step 2b - Backward error propagation step
Beginning with the outputs, evaluate errors and propagate them down through
the weights as follows:
Compute

If yi is an output unit

If yi is a hidden unit

Note that for hidden layer units, the error signal, δi , is the weighted sum of the
errors at the units above.

f ' (Si) = yi (1− yi)

δi = (Ci − yi) f
' (Si)

δi = whiδh
h>i
∑ f ' (Si)

13

Step 2c - Weight update
The weights are updated typically immediately after the forward propagation
and before the next pattern is presented. This is known as online updating and
is a form of stochastic gradient descent. See later slides on batch versus online
updating.

14

15

16

There is always a problem in deciding on the magnitude of ρ, too large and
learning can oscillate, too small and convergence becomes very slow. The
addition of a momentum term helps to smooth out the learning curve. The
diagram is meant to show lines of equal error. You can see that in (a), taking
large steps may cause you to oscillate in regions of higher error.

17

The addition of “momentum” to the weight update term is an easy way to
reduce training times. As the name implies, the weight update is given some
inertia to keep going in the direction of the previous update.
Momentum is easily implemented. The idea is that the weight change is
pushed on by the previous weight change. Step 2c becomes as shown above. It
does mean that your software implementation of backpropagation now needs to
store both the current set of weights and a previous set of weights.

18

3 - Test total error
The total error is computed once all patterns in the training set have been
presented. One presentation of a training set is known as an epoch. It’s normal
for many hundreds or thousands of epochs to pass before an acceptable total
error is reached.
One question to ask yourself here, is what is an “acceptable” error?

19

Backpropagation is a generalization of the delta rule and is sometimes referred
to as the “generalized delta rule”.
We start with the delta rule as before:
where Ep is the error pattern p
and wji is the weight ith to neuron j, then using the chain rule,

 let

And

 so

Leading to

The trick is to calculate the error signal δj for each unit yj

Δ pwji ∝−
∂E p

∂wji

∂E p

∂wji

=
∂E p

∂Sj

∂Sj
∂wji

∂E p

∂Sj
= δ j

Sj = wjixi
i
∑

∂Sj
∂wji

= xi

−
∂E p

∂wji

= δ j xi

20

It turns out that there is a simple way in which δj can be computed and
propagated back through the network.

Using the chain rule,

If yj is an output unit
To calculate the second factor

 à

To calculate the first factor, à

Thus (folding in the –ve sign from the initial gradient descent starting point)

δ j =
∂E p

∂Sj

δ j =
∂E p

∂yj

∂yj
∂Sj

yj = f (Sj)
∂yj
∂Sj

= f ' (Si)

E p =
1
2

(yj −Cj)
2

j
∑ ∂E p

∂yj
= (yj −Cj)

δ j = (Cj − yj) f
' (Sj)

21

If yj is a hidden unit
Then using

we can define

in terms of the units of the layer above. Thus

and, as before,

 and see previous slide

so

δ j = f
' (Sj) δhwhj

h
∑

∂E p

∂yj
∂E p

∂yj
=

∂E p

∂Sh
∂Sh
∂yjh

∑

∂E p

∂yj
=

∂E p

∂Sh

∂
∂yj

whjx j
j
∑

h
∑

∂E p

∂yj
=

∂E p

∂Sh
whj

h
∑∂yj

∂Sj
= f ' (Sj)

∂E p

∂Sh
= δh

δ j = f
' (Sj) δhwhj

h
∑

22

23

The squashing function guarantees that the output of a cell will be less than 1.0
and greater than 0.0. If the output is to be interpreted in a boolean sense, then
arbitrary values must be assigned to 1 and 0. E.g. the output may be deemed to
be a 1 if the output of the cell exceeds 0.9, or 0 if the output is below 0.1. Of
course, the response could also be based on which side of 0.5, the output is.
To keep training fast, it might be better to use correct values Ck as 0.2 and 0.8
instead of 0 and 1. This prevents from reaching flatter portions of the sigmoid
where f'(Si) is close to zero and the weight change correspondingly smaller

24

When working with the BP algorithm, it is important to include a bias term.
Without it, BP is restricted in the extent of the learning it can perform.
To explain its importance, consider a 2-dimensional categorisation problem as
shown above. Without a bias term, backpropagation is restricted to finding a
hyperplane that intersects the origin. In this case, one that correctly learns both
categories of pattern cannot be found. Once a bias term is introduced, the
problem is easily solved.
A bias term is simply a weight from an input that is always 1 and is usually
built into the implementation of the algorithm. When training a single layer of
neurons, we learned that you can add bias by simply changing your training
patterns by adding an additional input of value 1, to each pattern.
Unfortunately, this does not work for training in multiple layers. This is
because the neurons in the other layers also need a bias.

25

To break the initial symmetry, the weights of the net should be set to small
random values before learning commences. If the values are too large, f'(Si)
could be close to 0, slowing down learning. Gallant suggests if there are z
inputs, the initial values should be in the range [-2/z, 2/z], but this is not
critical. Note, you may also want to consider Nguyen-Widrow initialization
procedure which is claimed to yield faster learning. (See page 297 of Fausett).

The general idea behind the Nguyen-Widrow initization procedure is simple
and is typically described in terms of using a one input neural network to
approximate a continuous function between some range of input values.
Given H hidden neurons, once trained we would like each neuron to
approximate, in a piecewise fashion, a section of the curve. This can be done if
the linear portion of the output of each neuron maps to some range of the input
domain. Using this idea, Nguyen-Widrow extend it to apply to any number of
input neurons.

26

From page 297 Fausett.
Note that Fausett suggests that only the weights of the hidden neurons are
adjusted. However, other authors tend to apply Nguyen-Widrow initialization
to all layers.

27

28

As mentioned before, small step sizes will invariably reduce the speed of
convergence and too large could lead to oscillations as learning jumps around a
minimum. The use of a momentum term allows higher values of step size to
be used (e.g. 0.9).

29

The number of output units and the number of input units is completely
defined by the problem itself and the representation of the input/output data.
However the number of hidden units is arbitrary. The hidden layer may contain
as few or as many hidden units as desired.

30

The number of hidden units must be sufficient to accommodate learning of the
problem, I.e. all the patterns in the training set.
However, the best generalization which is typically desirable, is achieved when
the fewest possible units are used.
Selection of the actual amount of units is a balancing act! The network should
be forced to learn with a limited, but just enough, capacity. This should lead to
the network, learning the “general” concept rather than say “parrot-fashion”.

31

As an analogy, consider using a neural net to interpolate a set of points.
When just the right amount of hidden units are used, the “general concept” is
learned.
When too many hidden units are used, overfitting occurs and the result is a
high-order polynomial that obviously has no bearing on the set of points being
interpolated.

Recently, learning in deep neural networks uses backpropagation in which the
number of hidden units in a layer may be large compared to the number of
inputs. Does this not lead to overfitting?
In Deep Learning, backpropagation is used in an autoencoder configuration,
for which useful internal representations result when used with large numbers
of neurons. To prevent overfitting, techniques such as denoising and dropout
are used. However, it may be that these only work for autoencoders and not the
more general application of BP.

32

33

Weight decay is a mechanism for dynamically keeping the number of hidden
neurons to a minimum.
During training, each weight is decayed according to the following step:

Where ε is some small parameter between 0 and 1 and determines the
magnitude of the decay. Those weights that are not continuously reinforced,
will gradually decay to 0. When a weight is 0, it is effectively equivalent to
disconnecting that input.

wji
* = (1−ε)wji

34

The aim of learning is to reach the lowest possible error minimum for the
pattern being trained. This is called the global minima. However a known
problem associated with gradient descent type learning is that of local minima.
The diagram illustrates the situation. Generally it is difficult to know whether a
minima is local or global!
In practice, local minima are not necessarily a problem, especially for
problems where dimensionality of the input is high. This is because to be a real
minima, the point must be a minima in all dimensions simultaneously. For
example, a gutter is not a minima since it curves up only in cross-section and
not along its length.

35

[0,1] vs [-1, +1] activations
Earlier it was mentioned that [-1, +1] activation is preferred over the traditional
[0,1] values. Here's why. Consider the update:
Using [0,1], with a 0 input xi = 0
thus the weight change is 0 and no learning takes place.
Using [-1, +1], with a -1 input xi =-1 and the weight change is non-zero.
Convergence will obviously be faster and this result can be verified
experimentally. To use these [-1, +1] activations requires a simple modification
to the sigmoid squashing function as shown above. In fact it is easy to change
the activation function to cover any required range of values, not just -1 to +1.

wji
* = wji + ρδ j xi

36

37

38

Remember the total error calculated is for all patterns in the training set. There
are two alternatives to updating the weights, on-line updating or batch
updating.

On-line updating (stochastic gradient descent)

A training example is presented and the errors computed for this
pattern. The errors are used immediately to update the weights before
the next pattern is presented.

Batch updating
As each training pattern is presented, the weight changes based on the
errors are summed. Once all patterns in the training set have been
presented, the sum of the weight changes is used to update the weights
before another pass through the training set.

Note that gradient descent is defined in terms of batch updates. In practice, the
best (fastest) approach is to update after presentation of each example, i.e. on-
line updates.

39

NETtalk is a now well known early application of backpropagation that helped
revive interest in neural networks.
The goal of the project was to develop a network that could learn to pronounce
English text.

Input & output Representation

The input to the net consisted of ASCII text and the output was a
phoneme description. The output of the net was connected to a device
for actually producing the voice for a given phoneme.
To capture contextual data, the input was a seven character moving
window, 3 characters before and 3 after the character to be spoken.
Each character was represented by 29 boolean inputs (26 for each letter
of the alphabet, 2 for punctuations and 1 for a space).

40

The output was represented using 26 features, e.g. low, voiced, affricative,
nasal, etc. and again, each output was boolean indicating either the presence or
absence of a feature.
At most, 3 features were true and the rest false at any one time.

41

1024 words were chosen for training and 439 other words selected for testing.
80 hidden units were used.
When examined, units in the hidden layer were found to develop according to a
distributed representation rather than a local representation, giving the net the
benefit of resistance to damage and noise.
An example was considered perfect if all output cells had the desired activation
and correct if the output vector was closer in angle to the desired vector than to
any other vector.
The audible speech generated was reasonably coherent and its performance
comparable to DECtalk, an earlier, rule based, text-to-speech system.
It's interesting to note that learning was very childlike with the initial babbling
turning gradually to garbled words and then to understandable words.
NETtalk was a milestone because it proved connectionist approaches were a
feasible alternative to conventional programming. DECtalk had taken in the
region of a couple of years to develop, mainly because of the need to find and
"tune" rules capable of adequately describing the text-to-speech process.
NETtalk on the other hand was built in as little as a few months over summer
and required no knowledge of speech.

42

LeCun et al. applied a backpropagation model to handwritten character
recognition. The model, based upon the neocognitron by Fukushima, used a
hierarchically structured multi-layer network.
The input was a 16 x 16 gray scale image containing examples of handwritten
digits. The outputs were 10 boolean units, used to represent the digit appearing
on the input.
The idea was that each layer contained a number of grids of cells. Each cell in
the grid takes its input from a small receptive field from either the image or the
cells in the previous layer. The receptive fields were made to overlap.
All cells in a layer or plane, shared the same weights, The idea here is that
each plane is meant to recognize the same pattern, be it from any location in
the input. This was an attempt to manually bestow the net with built in
translation invariance.
Each successive layer is geared towards responding to increasingly complex
patterns. The nice thing about the approach, is that all cells in the structure are
the same, and all undergo training according to the backpropagation algorithm.
However, rather than using a fully connected net and hoping that the required
behaviour develops, connectivity within the net has been strategically
restricted, thus forcing the net to develop in a particular way.

43

Results
The net was trained with 7,291 handwritten digits and tested on 2007 new
examples. The approach it seems provided for good generalization. In
comparison, a normal fully connected net with 40 units was trained to 98.4%
which upon testing was found to generalize only 91.9% of the time.
Overfitting of Data
As the number of hidden units in a backpropagation net increase, the net seems
to overfit the data. That is, it in effect learns the patterns by rote, slowly giving
up it ability to generalize.
With fewer hidden units, the net does not have the capacity to store each
pattern and is forced to learn a more general description of the input - thus
enhancing generalization.
However, some complex problems such as this cannot be learnt well, while at
the same time retaining the ability for good generalization.
The approach used by Le Cun appears to prevent overfitting of data by limiting
the connectivity within the net.

44

Given an input pattern and a network trained using backpropagation, the net
will produce the same output each time, for that input.
What if instead, we want the net to respond to a particular sequence appearing
through time at the input?
For example, consider a network with three (boolean) inputs and one
continuous output. The required behaviour is shown above.
Following an input of 100, the pattern 010 should generate 0.0, but following
an input of 001, the input 010 should generate a 1.0. Clearly a standard
backpropagation net could not handle this.
In this case, the output depends on the context.

45

The diagram shows a modified multi-layer perceptron using recurrent units
(marked rn). The network is recurrent because the connections are not feed
forward only; r1 and r2 not only provide inputs to u4 and u5, but the outputs of
u4 and u5 are fed back in to r1 and r2.
How to use recurrent backpropagation
A forward pass through the net is based upon the fact that the recurrent units
inputs reflect their corresponding regular unit outputs in the previous “tick” of
the clock. This provides a way of preserving contextual information for the
current pattern on the inputs. Training is a little more complicated and is
performed in batch for each pattern sequence. I.e. the weights changes are
accumulated for each pattern in the sequence before updating takes place.
Errors are accumulated for the last “tick” in the sequence working back to the
first. The weight changes are computed using the normal delta rule for
backpropagation. In some cases, when the input pattern is small, it may be
possible to simplify the sequence by joining it together into one large input,
much the same way as it was done for NETtalk. That is not practical if a single
pattern in the sequence is already large. This might be the case in areas such as
stock market prediction where large amounts of data are often needed for a
single prediction to be made. One set of recurrent units provides a temporal
context extending back to the previous input pattern. An addition of a second
set of recurrent units, attached to the first, would increase the context to the

