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The error-backpropagation algorithm is one of the most important and widely 
used (and some would say wildly used) learning techniques for neural 
networks. First we will look at the algorithm itself and how it can be put to use.  
Then we’ll look at the theory behind the algorithm and finally examples of 
backpropagation for some practical applications. 
Backpropagation is used almost exclusively with feed forward, multi-layer 
perceptrons using continuous valued cells. Learning takes place based upon 
mean squared error and gradient descent.  Backpropagation makes its easy to 
find the networks’ error weight gradient for a given pattern. 
In Fausett, x is used to label inputs, y for output neurons and z for hidden units. 
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The activation or threshold function acts upon the weighted sum of the neuron 
and is used to compute the output of the neuron. In backpropagation, the output 
is computed as shown above. 
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The activation function defined by 
Is sigmoidal in shape.  It has asymptotes at 1.0 and 0.0. Also it returns a value 
of 0.5 when x=0. 
The important point to note for the backpropagation algorithm is the function is 
continuous and has a derivative. This derivative has some interesting properties 
too! (See next slide) 
Note that actually, any sigmoidal activation function can be used. The 
asymptotes do not have to be at 1 or 0. Though attempting to stretch the range 
can lead to steep slopes which should be avoided. 

f (x) = 1
1 + e− x
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Since backpropagation requires that we determine the derivative of the weight 
error, it is handy to find the derivative of the f (x).  It turns out that the 
derivative of the function can be expressed in terms of the function itself as 
shown above! 
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The important thing to note here is that the derivative is practically zero for 
large negative or large positive values of x. This, as we will see later, has a 
significant implication for speed of learning in backpropagation. 
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The total error is the sum of errors (squared difference between desired and 
actual outputs) generated by all patterns in the training set. The above equation 
describes the summation for single variable outputs. In the more general case, 
where the output if a vector of dimensionality h, the total error is defined as: 
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How “acceptable” the total error should be is dependent on how the network is 
to be used. For example, if the usage is such that the outputs represent binary 
values, e.g. to decide whether a request for a loan should be granted or not. 
Then it is valid to accept values of >0.5 as 1 and <0.5 as 0. If on the other hand 
the target values represent real numbers such as a speed or direction, then the 
total error must be “tighter”. In this case you might find it useful to determine 
how the total error E, relates to the average error in the predicted out of the 
network. One way to do this is to convert E into an RMS (root mean square). 
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Step 1. Weight Initialisation 
Chose a small positive value for ρ, the learning rate and initialize the weights 
(wji) of the network to small random values in the range [-0.1, 0.1] say. 
Motivation for weight initialisation is to scale them close to their final target 
values. This should keep training cycles short. If there is a large variation in 
magnitude between the final and initial weight values, the algorithm will take 
much longer to reach an acceptable total error level. 
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Step 2a - Forward propagation step 
Make a bottom up pass through the net computing weighted sums Si and 
activations yi for all cells. 
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Step 2b - Backward error propagation step 
Beginning with the outputs, evaluate errors and propagate them down through 
the weights as follows: 
Compute 
 
If yi is an output unit 
 
 
If yi is a hidden unit 
 
 
 
Note that for hidden layer units, the error signal, δi , is the weighted sum of the 
errors at the units above. 

f ' (Si ) = yi (1− yi )

δi = (Ci − yi ) f
' (Si )

δi = whiδh
h>i
∑ f ' (Si )
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Step 2c - Weight update 
The weights are updated typically immediately after the forward propagation 
and before the next pattern is presented. This is known as online updating and 
is a form of stochastic gradient descent. See later slides on batch versus online 
updating. 
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There is always a problem in deciding on the magnitude of ρ, too large and 
learning can oscillate, too small and convergence becomes very slow. The 
addition of a momentum term helps to smooth out the learning curve. The 
diagram is meant to show lines of equal error. You can see that in (a), taking 
large steps may cause you to oscillate in regions of higher error. 
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The addition of  “momentum” to the weight update term is an easy way to 
reduce training times. As the name implies, the weight update is given some 
inertia to keep going in the direction of the previous update. 
Momentum is easily implemented.  The idea is that the weight change is 
pushed on by the previous weight change. Step 2c becomes as shown above. It 
does mean that your software implementation of backpropagation now needs to  
store both the current set of weights and a previous set of weights. 



18 

3 - Test total error 
The total error is computed once all patterns in the training set have been 
presented. One presentation of a training set is known as an epoch. It’s normal 
for many hundreds or thousands of epochs to pass before an acceptable total 
error is reached. 
One question to ask yourself here, is what is an “acceptable” error? 
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Backpropagation is a generalization of the delta rule and is sometimes referred 
to as the “generalized delta rule”. 
We start with the delta rule as before: 
where Ep is the error pattern p 
and wji is the weight ith to neuron j, then using the chain rule, 
 

                 let 
 
And 

                so 
 
 
Leading to 
 
The trick is to calculate the error signal δj for each unit yj 
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It turns out that there is a simple way in which δj  can be computed and 
propagated back through the network. 
 
 
 
Using the chain rule, 
 
 
If yj is an output unit 
To calculate the second factor 
 
                   à 
 
To calculate the first factor,             à 

   
Thus (folding in the –ve sign from the initial gradient descent starting point) 
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If yj is a hidden unit 
Then using 
 
 
we can define  
 
 
in terms of the units of the layer above.      Thus 
 
 
and, as before, 
 
                      and                  see previous slide 
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The squashing function guarantees that the output of a cell will be less than 1.0 
and greater than 0.0.  If the output is to be interpreted in a boolean sense, then 
arbitrary values must be assigned to 1 and 0. E.g. the output may be deemed to 
be a 1 if the output of the cell exceeds 0.9, or 0 if the output is below 0.1.  Of 
course, the response could also be based on which side of 0.5, the output is. 
To keep training fast, it might be better to use correct values Ck as 0.2 and 0.8 
instead of 0 and 1.  This prevents from reaching flatter portions of the sigmoid 
where f'(Si) is close to zero and the weight change correspondingly smaller 
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When working with the BP algorithm, it is important to include a bias term. 
Without it, BP is restricted in the extent of the learning it can perform. 
To explain its importance, consider a 2-dimensional categorisation problem as 
shown above. Without a bias term, backpropagation is restricted to finding a 
hyperplane that intersects the origin. In this case, one that correctly learns both 
categories of pattern cannot be found. Once a bias term is introduced, the 
problem is easily solved. 
A bias term is simply a weight from an input that is always 1 and is usually 
built into the implementation of the algorithm. When training a single layer of 
neurons, we learned that you can add bias by simply changing your training 
patterns by adding an additional input of value 1, to each pattern. 
Unfortunately, this does not work for training in multiple layers. This is 
because the neurons in the other layers also need a bias. 
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To break the initial symmetry, the weights of the net should be set to small 
random values before learning commences.  If the values are too large, f'(Si)  
could be close to 0, slowing down learning.  Gallant suggests if there are z 
inputs, the initial values should be in the range [-2/z, 2/z], but this is not 
critical. Note, you may also want to consider Nguyen-Widrow initialization 
procedure which is claimed to yield faster learning. (See page 297 of Fausett). 



The general idea behind the Nguyen-Widrow initization procedure is simple 
and is typically described in terms of using a one input neural network to 
approximate a continuous function between some range of input values. 
Given H hidden neurons, once trained we would like each neuron to 
approximate, in a piecewise fashion, a section of the curve. This can be done if 
the linear portion of the output of each neuron maps to some range of the input 
domain. Using this idea, Nguyen-Widrow extend it to apply to any number of 
input neurons. 
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From page 297 Fausett. 
Note that Fausett suggests that only the weights of the hidden neurons are 
adjusted. However, other authors tend to apply Nguyen-Widrow initialization 
to all layers. 
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As mentioned before, small step sizes will invariably reduce the speed of 
convergence and too large could lead to oscillations as learning jumps around a 
minimum.  The use of a momentum term allows higher values of step size to 
be used (e.g. 0.9). 
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The number of output units and the number of input units is completely 
defined by the problem itself and the representation of the input/output data. 
However the number of hidden units is arbitrary. The hidden layer may contain 
as few or as many hidden units as desired. 
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The number of hidden units must be sufficient to accommodate learning of the 
problem, I.e. all the patterns in the training set. 
However, the best generalization which is typically desirable, is achieved when 
the fewest possible units are used. 
Selection of the actual amount of units is a balancing act! The network should 
be forced to learn with a limited, but just enough, capacity. This should lead to 
the network, learning the “general” concept rather than say “parrot-fashion”. 
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As an analogy, consider using a neural net to interpolate a set of points. 
When just the right amount of hidden units are used, the “general concept” is 
learned. 
When too many hidden units are used, overfitting occurs and the result is a 
high-order polynomial that obviously has no bearing on the set of points being 
interpolated. 



Recently, learning in deep neural networks uses backpropagation in which the 
number of hidden units in a layer may be large compared to the number of 
inputs. Does this not lead to overfitting? 
In Deep Learning, backpropagation is used in an autoencoder configuration, 
for which useful internal representations result when used with large numbers 
of neurons. To prevent overfitting, techniques such as denoising and dropout 
are used. However, it may be that these only work for autoencoders and not the 
more general application of BP. 
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Weight decay is a mechanism for dynamically keeping the number of hidden 
neurons to a minimum. 
During training, each weight is decayed according to the following step: 
 
 
Where ε is some small parameter between 0 and 1 and determines the 
magnitude of the decay. Those weights that are not continuously reinforced, 
will gradually decay to 0. When a weight is 0, it is effectively equivalent to 
disconnecting that input. 
 

wji
* = (1−ε)wji
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The aim of learning is to reach the lowest possible error minimum for the 
pattern being trained. This is called the global minima. However a known 
problem associated with gradient descent type learning is that of local minima. 
The diagram illustrates the situation. Generally it is difficult to know whether a 
minima is local or global! 
In practice, local minima are not necessarily a problem, especially for 
problems where dimensionality of the input is high. This is because to be a real 
minima, the point must be a minima in all dimensions simultaneously. For 
example, a gutter is not a minima since it curves up only in cross-section and 
not along its length. 
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[0,1] vs [-1, +1] activations 
Earlier it was mentioned that [-1, +1] activation is preferred over the traditional 
[0,1] values.  Here's why. Consider the update: 
Using [0,1], with a 0 input xi = 0 
thus the weight change is 0 and no learning takes place. 
Using [-1, +1], with a -1 input xi =-1 and the weight change is non-zero. 
Convergence will obviously be faster and this result can be verified 
experimentally. To use these [-1, +1] activations requires a simple modification 
to the sigmoid squashing function as shown above. In fact it is easy to change 
the activation function to cover any required range of values, not just -1 to +1. 

wji
* = wji + ρδ j xi
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Remember the total error calculated is for all patterns in the training set.  There 
are two alternatives to updating the weights, on-line updating or batch 
updating. 
 
On-line updating (stochastic gradient descent) 

A training example is presented and the errors computed for this 
pattern.  The errors are used immediately to update the weights before 
the next pattern is presented. 

Batch updating 
As each training pattern is presented, the weight changes based on the 
errors are summed. Once all patterns in the training set have been 
presented, the sum of the weight changes is used to update the weights 
before another pass through the training set. 
 

Note that gradient descent is defined in terms of batch updates. In practice, the 
best (fastest) approach is to update after presentation of each example, i.e. on-
line updates. 
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NETtalk is a now well known early application of backpropagation that helped 
revive interest in neural networks. 
The goal of the project was to develop a network that could learn to pronounce 
English text. 
 
Input & output Representation 

The input to the net consisted of ASCII text and the output was a 
phoneme description.  The output of the net was connected to a device 
for actually producing the voice for a given phoneme. 
To capture contextual data, the input was a seven character moving 
window, 3 characters before and 3 after the character to be spoken.   
Each character was represented by 29 boolean inputs (26 for each letter 
of the alphabet, 2 for punctuations and 1 for a space). 
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The output was represented using 26 features, e.g. low, voiced, affricative, 
nasal, etc. and again, each output was boolean indicating either the presence or 
absence of a feature. 
At most, 3 features were true and the rest false at any one time. 
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1024 words were chosen for training and 439 other words selected for testing.  
80 hidden units were used. 
When examined, units in the hidden layer were found to develop according to a 
distributed representation rather than a local representation, giving the net the 
benefit of resistance to damage and noise. 
An example was considered perfect if all output cells had the desired activation 
and correct if the output vector was closer in angle to the desired vector than to 
any other vector. 
The audible speech generated was reasonably coherent and its performance 
comparable to DECtalk, an earlier, rule based, text-to-speech system. 
It's interesting to note that learning was very childlike with the initial babbling 
turning gradually to garbled words and then to understandable words. 
NETtalk was a milestone because it proved connectionist approaches were a 
feasible alternative to conventional programming.  DECtalk had taken in the 
region of a couple of years to develop, mainly because of the need to find and 
"tune" rules capable of adequately describing the text-to-speech process.  
NETtalk on the other hand was built in as little as a few months over summer 
and required no knowledge of speech. 
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LeCun et al. applied a backpropagation model to handwritten character 
recognition.  The model, based upon the neocognitron by Fukushima, used a 
hierarchically structured multi-layer network. 
The input was a 16 x 16 gray scale image containing examples of handwritten 
digits.  The outputs were 10 boolean units, used to represent the digit appearing 
on the input. 
The idea was that each layer contained a number of grids of cells.  Each cell in 
the grid takes its input from a small receptive field from either the image or the 
cells in the previous layer.  The receptive fields were made to overlap. 
All cells in a layer or plane, shared the same weights,  The idea here is that 
each plane is meant to recognize the same pattern, be it from any location in 
the input.  This was an attempt to manually bestow the net with built in 
translation invariance. 
Each successive layer is geared towards responding to increasingly complex 
patterns. The nice thing about the approach, is that all cells in the structure are 
the same, and all undergo training according to the backpropagation algorithm.  
However, rather than using a fully connected net and hoping that the required 
behaviour develops, connectivity within the net has been strategically 
restricted, thus forcing the net to develop in a particular way. 
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Results 
The net was trained with 7,291 handwritten digits and tested on 2007 new 
examples. The approach it seems provided for good generalization.  In 
comparison, a  normal fully connected net with 40 units was trained to 98.4% 
which upon testing was found to generalize only 91.9% of the time. 
Overfitting of Data 
As the number of hidden units in a backpropagation net increase, the net seems 
to overfit the data.  That is, it in effect learns the patterns by rote, slowly giving 
up it ability to generalize. 
With fewer hidden units, the net does not have the capacity to store each 
pattern and is forced to learn a more general description of the input - thus 
enhancing generalization. 
However, some complex problems such as this cannot be learnt well, while at 
the same time retaining the ability for good generalization. 
The approach used by Le Cun appears to prevent overfitting of data by limiting 
the connectivity within the net. 
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Given an input pattern and a network trained using backpropagation, the net 
will produce the same output each time, for that input. 
What if instead, we want the net to respond to a particular  sequence appearing 
through time at the input? 
For example, consider a network with three (boolean) inputs and one 
continuous output. The required behaviour is shown above. 
Following an input of 100, the pattern 010 should generate 0.0, but following 
an input of 001, the input 010 should generate a 1.0.  Clearly a standard 
backpropagation net could not handle this. 
In this case, the output depends on the context. 
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The diagram shows a modified multi-layer perceptron using recurrent units 
(marked rn).  The network is recurrent because the connections are not feed 
forward only;  r1 and r2 not only provide inputs to u4 and u5, but the outputs of 
u4 and u5 are fed back in to r1 and r2. 
How to use recurrent backpropagation 
A forward pass through the net is based upon the fact that the recurrent units 
inputs reflect their corresponding regular unit outputs in the previous “tick” of 
the clock.  This provides a way of preserving contextual information for the 
current pattern on the inputs. Training is a little more complicated and is 
performed in batch for each pattern sequence.  I.e. the weights changes are 
accumulated for each pattern in the sequence before updating takes place.  
Errors are accumulated for the last “tick” in the sequence working back to the 
first. The weight changes are computed using the normal delta rule for 
backpropagation. In some cases, when the input pattern is small, it may be 
possible to simplify the sequence by joining it together into one large input, 
much the same way as it was done for NETtalk. That is not practical if a single 
pattern in the sequence is already large.  This might be the case in areas such as 
stock market prediction where large amounts of data are often needed for a 
single prediction to be made. One set of recurrent units provides a temporal 
context extending back to the previous input pattern.  An addition of a second 
set of recurrent units, attached to the first, would increase the context to the  


