
1

Acknowledgement
All notes in this chapter are based on an online article by Sing Li
(http://www.ibm.com/developerworks/java/library/j-
robocode/index.html).

This chapter will not cover any topics associated with neural net learning. Its
purpose is to acquaint the reader with the tools necessary to complete the
coursework: Robocode, the java programming language and the Eclipse IDE.

2

Robocode is an easy-to-use robotics battle simulator that runs on all platforms
that support Java 2. Robocode is the brainchild of Mathew Nelson, a software
engineer in the Advanced Technology, Internet division at IBM.
You create a robot, put it onto a battlefield and let it battle to the bitter end
against opponent robots created by other developers. Each Robocode
participant creates his or her own robot using elements of the Java language,
enabling a range of developers, from rank beginners to advanced hackers to
participate in the fun.

3

The coursework requires each student to develop and submit their own
Robocode robot. And because this course is about architectures for learning
systems, it is required that you apply (and be able to demonstrate) what you
learn in class, to your robot. As a minimum, you must use the error
backpropagation algorithm as applied to multi-layer perceptrons and
reinforcement learning in aspects of your robot’s attack or defence strategy.
Instructions will be provided as to where and how to apply these learning
methodologies.

4

The latest version of Robocode can be found at
http://robocode.sourceforge.net/
The latest version of Robocode is v1.9.2.6 as of 20 September 2017. Note that
this version requires JDK 1.6 on your machine.
Installation is straightforward. Just run robocode-setup.jar within your
java VM.

5

After your installation, you can start the Robocode system from either the shell
script (robocode.sh) or batch file (robocode.bat). There is also an icon.
Robocode is supported for all platforms, including Windows, Mac and Linux.

6

The battlefield is the arena where battle between the robots takes place. It
houses the main simulation engine and allows you to create, save and open
new or existing battles. You can pause and resume the battle, terminate the
battle, destroy any individual robot, or get the statistics of any robot using the
controls available in the arena. Furthermore, you can activate the Robot Editor
from this screen. The Robot Editor is a customized text editor for editing the
Java source files that make up a robot. It integrates both the Java compiler (for
compiling robot code) and the customized Robot packager in its menu. Any
robot created with the Robot Editor and successfully compiled is in a ready-to-
deploy location for the battlefield. A robot in Robocode consists of one or
more Java classes. These classes can be archived into a JAR package.
Robocode provides a "Robot Packager" that can be activated from the
battlefield GUI window, for just this purpose.
Tip: Watching a battle unfold can be lengthy at times. If you would like to
speed things along and are happy not to actually watch the battle, minimize the
Robocode window. The battle continues but since the java Virtual Machine
(VM) no longer needs to generate a graphical output, you’ll find it progresses
much much faster! When it comes to reducing learning times, you’ll find this
very useful.

7

Note that the robot has a rotating gun, and on top of the gun is a rotating radar.
The robot vehicle, the gun, and the radar can all rotate independently. At any
moment in time, the robot's vehicle, the gun, and radar can be turned in
different directions. By default, these items are aligned, facing the direction of
the vehicle movement.
You can also fix the direction of the gun turret and the radar for that matter, to
always point in the direction the tank is heading. Might be useful if you’re in
pursuit!
The radar is able to detect any tank within a certain distance.

8

Note that with the default battlefield size of 800 x 600 pixels, the maximum
distance between you and any other tank is 1000 pixels. This is within your
scanning range of 1200 pixels. I.e. you can scan any tank in a battlefield of this
size.
Some other useful information:
•Your gun heats up and rapid fire attempts will be unsuccessful. You should
query the heat of the gun before firing if you need to be sure of a successful
shot.
•The radar is unable to detect enemy bullets.
•See the wiki at http://robowiki.net/wiki/Robocode for more details

http://robowiki.net/wiki/Robocode

9

The most useful piece of information you’ll likely apply is the relative bearing
of a scanned opponent. In Robocode, upon scanning an enemy, if the very
next command you issue is fire, your tank will turn this amount first before
firing. I.e. it will automatically point at the scanned tank, then fire. Handy!

10

A strategy where your tank tries to stay out of trouble and does not attack, may
be enough to survive until the end of a round. However, since points are
awarded for killing enemy tanks, you should be aware that such a strategy may
not be satisfactory to win overall.
After a battle, Robocode collects the scores and generates a rankings table
showing who is 1st, 2nd etc.

11

Entering robots into a battle is easy. From the Robocode Battle menu, select
New. From here you should be able to see your robot and others in the dialog
that pops up.

12

The following shows you what you get to start with when you create your first
robot. <<Area1>> is typically used to declare global variables. They will be
accessible from anywhere in your code. <<Area 2>> is inside the robot’s “run”
method which is called from within Robocode to instruct your robot to start.
<<Area 2>> will typically contain code that only needs to be executed once
per robot instance. E.g. to get the robot into some predetermined state. <<Area
3>> is the endless while loop that controls the normal behaviour of your
robot. I.e. what your tank is doing when it is not firing or acting on a radar
event. <<Area 4>> is where you implement helper methods and event handlers
that determine how your robot will react to certain events. The robocode editor
generates two of these event handlers, onScannedRobot and
onHitByBullet, automatically for you

13

public class MyFirstRobot extends Robot

{

public void run() {

while(true) {

// Replace the next 4 lines with any behavior you would like

ahead(100);

turnGunRight(360);

back(100);

turnGunRight(360);

}

}

/**

* onScannedRobot: What to do when you see another robot

*/

public void onScannedRobot(ScannedRobotEvent e) {

fire(1);

}

/**

* onHitByBullet: What to do when you're hit by a bullet

*/

public void onHitByBullet(HitByBulletEvent e) {

turnLeft(90 - e.getBearing());

}

}

14

The slide shows a screen show of the very simple editor that comes with
Robocode.

15

One useful feature of this “IDE” is that it allows you to package up your
robots into a java archive file. This is what you would typically upload to the
many online robot repositories.
However, the editor is quite basic. Instead, Eclipse is recommended.

16

void ahead() moves your robot forward the specified distance. Units of
distance are pixels.
void fire() fires a shot with the specified power.
double getEnergy() will return how much energy you have left.
void turnLeft() rotates your robot the specified number of degrees
anticlockwise.
void turnRadarLeft() turns your robots radar the specified number of
degrees to the left.
These are just a few of the methods supported by the Robot class. See the
javadocs for the rest. Note that these methods are all synchronous methods.
That is they will block execution until each method completes. So if your code
looks like:

ahead(100);

turnGunRight(30);

fire(1);

Your ‘bot will first travel 100 pixels. Upon getting there the gun will turn right
30 degrees. Upon completion of that your robot will fire. If you derive your
robot from class AdvancedRobot, it provides all these methods plus some
asynchronous methods. More on this later.

17

When something happens in Robocode, e.g. you get hit, Robocode needs to
know how you would like to react to, or handle this event. In software
engineering, callback methods are a common way of implementing such event
handlers and in languages such as C++ and Java, callbacks typically manifest
themselves as virtual methods. The following is a sampling of some of the
virtual methods that Robocode will call and expects you to implement:
void onBulletHit(BulletHitEvent event) is called when a
bullet your robot fires, reaches a target. The event parameter passed to you by
this method can provide you with some valuable information. For example, the
BulletHitEvent class allows you to obtain the attacked robots name and
energy.
void onHitByBullet(HitByBulletEvent event) is called when
your ‘bot is hit. The event parameter passed to you tells you the name of the
robot that fired the bullet, the bearing to the bullet, the power of the bullet etc.
void onScannedRobot(ScannedRobotEvent event) is called
when your robot scans another. As you may expect this event can tell you all
sorts of information about who you’ve just spotted!
These are just a small sample of the events supported by Robocode. There is
even an onWin() event called when you win a round as well as an
onDeath() handler. Robocode provides an implementation of this last one

for you so you don’t have to explicitly implement this method. Unless you need to
perform some cleanup (e.g. closing a file) on robot death.

17

18

Deriving from the AdvancedRobot class provides further methods. Notably
asynchronous robot commands. Consider the following example:

setAhead (100);

setTurnLeft (30);

setFire(1);

execute();

In this case, each method completes immediately and your robot does nothing
until you return control back to Robocode. You do this by issuing the execute
method. When execute is reached, Robocode will start all requests at the same
time and advance your tank as much as possible in one tick of the clock. This
tick represents a single frame of motion. To find out how much your tank
actually travels in one tick you need to look at the physics of the tank. E.g.
maximum tank speed is 20 pixels per tick and turn rate is 20 degrees per tick.
These commands will remain in an event queue that Robocode creates for you.
The event queue is checked each tick. Once the commands are complete, the
events are removed from the queue. Note that there is a waitFor() method
that you may use to wait for a particular condition to complete. E.g. you may
want to wait for your tank to complete its 30 degree turn before firing. By the
way, can you see what path the first two setAhead & setTurnLeft commands
above would cause the tank to take?
At times it will be necessary for you to write out information to a file. In this

case you cannot use the java.io, FileStreamOutput methods. Java security prohibits
this. Instead, you have to use a Robocode class for this. RobocodeFileStreamOutput.

18

19

Eclipse is a popular IDE introduced by the Eclipse Foundation. It is written in
Java and admittedly, early versions where sluggish in use. However, the latest
versions are slick. Of course it can be used to develop Java, but the IDE is not
restricted to any one language. I would highly recommend you use this to
develop your robots for this course. It is far more user friendly than the basic
editor that comes with Robocode. For those new to Java, it supports class
browsing and method completion, so you don’t have to rummage around for
Robocode documentation elsewhere. Compilation errors are highlighted as you
type and Eclipse in some cases, will suggest fixes. Very useful, if you are a
beginner to Java.

20

As with Robocode, you will need a preinstalled java virtual machine on your
PC or Mac. Eclipse is being continually updated and I fully expect there to be
newer versions in the future.

21

When creating a project, Eclipse will look for folders containing java source
files. These folders will appear as “packages” in the browser. It’s important to
make sure that the location selected for the external location is a directory
above where the folder containing the actual robot folders is. Each folder will
then appear as a package in Eclipse Package explorer view on the left.
If you don’t see a ‘sample’ and ‘sample team’ package, try selecting a folder
even higher, e.g. the robocode folder itself.

22

Robocode.jar will be in the directory where robocode is installed.

23

The Package Explorer view will show you all folders installed by Robocode
under ‘robots’. Each folder containing java source code will appear as a
package. Opening a package lists all java source files. Double clicking on one
of these source files will open the file in the editor window (not shown above).
Eclipse makes it easy traversing classes and methods. If you haven’t correctly
set up the external location, you will see warning symbols against each
package and source file. At least when initially setting up Eclipse using the
previous instructions, you should not see any such problems.

24

With the appropriate settings, Eclipse can be set to automatically compile and
build java files in the background. This is done when you save the updated
java source. By default, the compiled class file is created in the same directory
the source file is.
After editing and saving a robot in Eclipse, your compiled robot will be ready
to enter into a battle straight away!

25

26

27

28

29

Upon starting a battle, Robocode will call the SpinBots run method, which
simply puts the tank in an endless while loop. So if no other event handler is
triggered, this tank is programmed to go ahead a distance of 10000, while at
the same time turning right. The end result is that SpinBot goes around in
circles! Can you guess what would happen if the velocity was increased?

30

Here we see two event handlers. Upon scanning the action is quite simple.
SpinBot will fire with a power setting of three. Note that Robocode will
automatically turn the robot using the bearing returned in the scanned event
prior to firing. This happens only if the first command in this event handler is
fire.
The next event handler attempts to deal with the situation if SpinBot hits
another robot. Robocode can even tell you if it was your fault for hitting the
other robot!

31

Sing Li’s article can be found at :
http://www.ibm.com/developerworks/java/library/j-robocode/index.html
The Robocode wiki page is http://robowiki.net/wiki/Main_Page
How to track bullets:
http://www.ibm.com/developerworks/java/library/j-tipbullet.html
In fact there are many resources and literature on the web that you will find
useful.

All links valid at time of writing (September 2016).

http://robowiki.net/wiki/Main_Page

32

The assignment for this course requires you to develop your own Robocode
robot. The course will cover a number of topics related to neural networks,
including learning algorithms, data representation and heuristics. Multi-layer
perceptrons and reinforcement learning are two of the topics covered. To
complete this course, you are expected to demonstrate the use of these two
algorithms within the development of your robot. Of course, while building a
strong adversary is a nice goal, it is more important to show your
understanding of the techniques taught in the course and your ability to apply
them in practice. Its also hoped that this will be a fun and challenging
coursework assignment.

For more details visit http://www.ece.ubc.ca/~eece592/ and click on the
“coursework” link.

33

Consider applying reinforcement to other robot actions. For example, being
rammed by another robot or hitting a wall incurs damage. As of course does
being hit by an enemy bullet! However, the scanning of enemy bullets in
Robocode is unfortunately not supported. Does this mean enemy bullets
cannot be avoided? Perhaps not. Would it instead be possible to predict if an
enemy was about to fire at you once scanned? If so, such information would be
critical in directing robot motion for bullet avoidance. For example, the energy
of a robot will drop by a value between 0.1 and 3 when it fires. While not
unique, this figure may be sufficient to tell if an attack is imminent.

