

UNIVERSITY OF BRITISH COLUMBIA

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EECE 259: Introduction to Microcomputers
Assignment 1: Logic Gates, Binary Numbers and a Computational Datapath

Handed out Jan. 14, 2011

Overview

There are 2 parts to this homework!

1. The Study Questions (SQ) are not marked, but they form the basis of the Friday quiz.

Solutions to the SQ will be provided.

2. The Practical Assignment (PA) is marked out of 10 by a TA during your PA timeslot.

The TA will ask you questions and expect you to demonstrate competence with the
material. For example, the TA may ask you to repeat part of the practical with a small
change and/or explain your steps. Effective communication is a part of your grade. You
are graded individually, but you can only be marked with your partner present. If your
partner cannot attend, s/he gets 0. (Please note the additional policies in the Course
Information handout about this.)

Please also re-read the Important Policies section in the Course Information handout.

PART 0: Important TODO items **** DO THESE RIGHT AWAY ****.

1. Sign up for the course mailing list.

 https://lists.ece.ubc.ca/sympa/subscribe/eece259
2. With your partner, make a 15-minute TA appointment before Thursday, January 20.

a. Note the timeslots for marking the PA are roughly Thurs 3-5pm and Fri 9-5pm.
You must make the appointment at last 12 hours in advance and no more than 7
days in advance.

b. If you still need a partner, use the mailing list mailto:eece259@ece.ubc.ca

3. Buy a DE1 board from ECE Stores in the basement of MCLD for $100. CASH ONLY.

PART 1: Study Questions

4. Fill in the following table by writing the required values in both binary and decimal. Why
is the minimum unsigned value not included in the table?

 Maximum unsigned Maximum signed Minimum signed
(negative numbers)

4 bits (binary) % 1111
(decimal) 15

(binary) % 0111
(decimal) 7

(binary) % 1000
(decimal) -8

8 bits

16 bits

32 bits

5. Fill in the rest of the table. Use as many bits / digits as you need.

Decimal Binary (%) Hexadecimal ($)
224110 % 1000 0100 0001 $ 8 C 1
18610

4187210
 % 0111 1011 1000
 % 1000 0100 0010 0001
 $ A B C D
 $ E F 8

6. Convert directly from hexadecimal to decimal: $1111, $BEEF, $CAFE, $F00D. Verify
your answers by converting directly from decimal back to hexadecimal.

7. Determine the decimal number that results if:
a. –13 is stored in an 8-bit signed number format and then interpreted (mistakenly)

as an 8-bit unsigned number.
b. 253 is stored in memory as an 8-bit unsigned number and then interpreted

(mistakenly) as an 8-bit signed number.
c. 13 is stored in an 8-bit signed number format and just the lowest 4 bits are

interpreted as a 4-bit signed value.
d. –13 is stored in an 8-bit signed number format and just the lowest 4 bits are

interpreted as a 4-bit signed value.
8. Perform sign extension for the following examples.

a. Write the value of 4 in binary using 4 bits. Extend this to an 8-bit value.

b. Write the value of –4 in binary using 4 bits. Extend this to an 8-bit value.
9. To convert a positive number to a negative number in two’s complement form, you invert

all the bits and add 1. Try doing this for 8-bit values 0 and –128. What happens? Why?
10. Given a 4-bit adder that computes A+B, find a way of re-using that circuit by adding

some additional logic so it will compute A–B.
11. The logic gates to produce carryout c1 of a full adder were shown in class. The logic for

the carryout C flag was also given. Verify that these two equations are the same. Hint:
you can create a truth table and verify that both C and c1 are the same, or you can
manipulate the algebraic equations to show they are equivalent. Try it both ways!

12. In class, you were given the logic to detect overflows while adding two signed numbers
(Vadd= 777777 rbarba !!+!!). Using a similar approach, design overflow logic for
subtracting two signed numbers, that is compute Vsub for the operation A–B.

13. Summarize the logic expression for each flag. Keep in mind that N and Z only look at the
result bits, r7 to r0. Expressions for Vadd and N are given as examples.

a. C =

b. B =

c. Vadd = 777777 rbarba !!+!!

d. Vsub =

e. N = r7
f. Z =

14. (Long, but you need practice!). Perform each of the operations in the table below.
Express the answer in binary, decimal, and hexadecimal, and give ALL flags: Z, N, Vsub,
Vadd, B and C using the logic equations from problem 14. The first row is done for you.
Hint: flags are merely logic equations that don’t care which operation is performed.

Operation on
8-bit values

Results
Binary Decimal Hex Z N Vsub Vadd B C

a. 114 + 24 % 1000 1010 13810 $ 8 A 0 1 0 1 1 0
b. $37 + $34 % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
c. $37 + $44 % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
d. $13 + $EC % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
e. $13 + $ED % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
f. $13 + $EE % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
g. $83 + $96 % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
h. $F0 + $02 % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
i. $24 – $3B % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __
j. $FD – $07 % __ __ __ __ __ __ __ __ __ __ __ $__ __ __ __ __ __ __ __

PART 2: Practical Assignment

There are 3 parts to this practical assignment, consisting of 3 different circuits containing:

A) basic logic gates,
B) register file, and

C) computational datapath.
Each part requires a different bitstream file to program your Altera DE1 board.

Installing Software, Opening Projects and Generating Bitstream Files

Visit the course web site for Altera installation and programming instructions:
 http://courses.ece.ubc.ca/259/homework/installing.htm

 http://courses.ece.ubc.ca/259/homework/programming.htm
Next, you must generate the .pof and .sof bitstream files for the homework. Download the
appropriate ZIP file containing all of the circuits:
 http://courses.ece.ubc.ca/259/homework/hw1/files/

After you unzip the files, there will be 3 folders. Enter the first folder, hw1A_DE1, and double-
click the .qpf or Quartus project file. This is the main top-level file that describes all of the
features, settings, and files needed for the circuit. It may take a minute or two for Quartus II to
start up.

Go to Processing ! Start Compilation to start generating the bitstream files. This step can take
several minutes as the mapping process is quite involved. While it is running, look for the Status
area to see the progress and browse some of the many information messages in the bottom area.
You can ignore any warnings. When Quartus II finishes, press the OK button.

Go to Tools ! Programmer. Make sure USB-Blaster is displayed beside the Hardware
Setup…button. If is not displayed, check the Altera programming instructions link above.

In the programmer window area, check the box under Program/Configure and press the Start
button. It should finish in 1 or 2 seconds.

Digging deeper – interesting, but not necessary for this course!
If you want to learn more about Quartus II and VHDL, go ahead. Start by double-clicking hw1A
underneath Entity in the top-left corner of the window. This will open the main VHDL file that
describes the circuit, hw1A_DE1.vhd. If you click the + symbol next to hw1A you can browse
and open the subcircuits it uses as well. Subcircuits starting with lpm_ are parts of Altera’s own
library, e.g. for the multiplier – don’t modify these! You can learn about VHDL from your
EECE256 textbook, or by reading about it on the web. Even without using the textbook, you
should be able to understand some parts of the language and change it. For example, try to find
the multiplier operator “*” and change it to “XOR” instead!

A. Basic Logic Gates
15. A logic diagram for this circuit is shown in Figure A. Download the programming file

and program your board. You probably want to use the temporary programming method.
There are actually 4 distinct circuits that are now programmed on your board. Try each:

a. The first two circuits are two distinct 2-input logic gates, labeled U1 and U2. Both
gates share the same two inputs, switches SW9 and SW8. The outputs are the red
LEDs: U1 drives LEDR9, while U2 drives LEDR8.

 Fill in the table below and determine which gates were implemented in A and B.

Inputs Outputs Conclusions based on observations…

SW9 SW8 U1 U2

0 0 1. Logic Gate U1 is an __________ gate.

0 1

1 0 2. Logic Gate U2 is an __________ gate.

1 1

b. The third circuit is an Accumulator. The outputs of the accumulator are shown in
hexadecimal on HEX0, and in binary on the green LEDs labeled LEDG[3:0]. The
accumulator has only two inputs: reset and clock. Find the switches that control
these two signals. When you press reset, the register inside the accumulator is
reset to 0, but you will see 1 on the output. Why? On the rising edge of the clock,
the accumulator should increment by one.
Q: When does the rising edge of the clock occur, on PRESS or RELEASE?

Fill in the table below according to your observations.

Hex Binary Hex Binary Hex Binary Hex Binary
$0 % __ __ __ __ $4 % __ __ __ __ $8 % __ __ __ __ $C % __ __ __ __
$1 % __ __ __ __ $5 % __ __ __ __ $9 % __ __ __ __ $D % __ __ __ __
$2 % __ __ __ __ $6 % __ __ __ __ $A % __ __ __ __ $E % __ __ __ __
$3 % __ __ __ __ $7 % __ __ __ __ $B % __ __ __ __ $F % __ __ __ __

c. The fourth circuit is an ALU. The function calculated by the ALU is controlled by

SW[1:0] according to the ALUop table in the figure. The answer is displayed on
HEX1 as well as LEDG[7:4]. The inputs of the ALU are from two 4-bit registers,
A and B. You can verify the register contents: A is displayed on HEX3 and
LEDR[7:4], while B is displayed on HEX2 and LEDR[3:0]. After a reset, the A
and B registers hold $0, and the ALU should be 0 for all functions.
To load a new value into A, you must place the value on dataIn using SW[7:4]
and set the enable signal for a, wrA on SW3, to 1. Of course, the value is not
accepted in A until you send a clock pulse. Similarly, you can load a value in B.

Q: How do you load the same value into A and B simultaneously? Try it!

Load the following values into A and B and observe the ALU calculations. The
last few rows are left blank for you to try your own values for A and B. Try to
choose meaningful values that give interesting results for all (+ – * &) functions.

A B A+B A–B A*B A&B
%0001 %0010 $ __ % _ _ _ _ $ __ % _ _ _ _ $ __ % _ _ _ _ $ __ % _ _ _ _

$4 $8
$8 $4
$7 $F
$3 $3
$3 $4
$A $5

B. Register File

16. The Register File circuit is shown in Figures B1 and B2. The purpose of this circuit is to
experiment with reading and writing values to different registers. Navigate to the hw1B
folder and open the .qpf project file. Create the programming file and program your
board. Again, you probably want to use the temporary programming method.

a. Press the reset. To make things interesting, some of the flip-flops have this signal
connected to their preset input instead, causing them to initialize to 1 instead of 0.

b. Read all 4 registers to determine their initial value. Do this by selecting each one
using selRd[1:0] and viewing dataOut[7:0]. You don’t need to press clock. Why?

Register selRd Initial Value Register selRd Initial Value
R0 %00 $ ___ ___ R2 %10 $ ___ ___
R1 %01 $ ___ ___ R3 %11 $ ___ ___

c. Write the value $0F to register R2. Do this by setting dataIn[3:0] to all 1s, selWr[]
to select R2, wrReg to 1, and sending a clock pulse. Verify that the other registers
retain their original value and that only R2 has changed to $0F.
Q: What happens if you press clock a second time? … a third time?

d. Initialize all registers to 0. Verify they are all 0.
e. Press reset. Verify that all registers have the correct initial values.
f. Load the values 0, 1, 2 and 3 into registers R0, R1, R2, and R3 respectively.

Verify they have the correct new contents.

C. Computational Datapath
17. The Computational Datapath is shown in Figure C2. Download the programming file

and program your board. Since this circuit can be fun, you might want to try the
permanent programming method so it is always available at power-up. Notice this circuit
contains an 8-bit version of the ALU from Part A and the Register File from Part B.
This circuit will teach you how to compute using a datapath. You are the brains behind
the circuit, so you must decide correct values of all control signals that are brought out to
the switches. Also, you must figure out when to send a clock pulse. It is this
combination of control signals and clock pulses that govern the computation. The logic
gates are the minions doing the calculations, but you are the one instructing it!

The switch settings you choose for each clock cycle are equivalent to one “machine
language” instruction given to the computer.
The most important thing for you to focus on is the Bus. This signal goes almost
everywhere, so it is shown as a thick, bold line. The contents of the Bus are displayed on
HEX3 and HEX2; since it is 8 bits, two hex digits are required. To control the minions,
there are two things to ask about the Bus:

a. Where does the Bus value come from? (from: Register File, ALU, constants)
b. Where does the Bus value go? (writing to: Register File, A, or B)

 Important: there can be only one value on the Bus in each clock cycle.

Where does the value on the Bus come from? The Bus value, determined from the
settings of selBus[1:0], can be the constants $00 or $01 (settings %00 and %01,
respectively), the Register File output (%10), or the ALU output (%11). If you select the
Register File, you must also determine which register is to be output using selReg[1:0].
Similarly, if you select the ALU, you must set ALUop[1:0]. As the brain behind this
computer, you must have first loaded meaningful values into A and B before using the
ALU. Or, if you are using the Register File, you must have first stored a meaningful
value in that register already.
Where does the value on the Bus go? Of course, it is displayed on HEX3 and HEX2.
However, this is just for your convenience! To do useful calculations, the value on the
Bus must be written to some register inside the datapath. We say this is changing the
state of the system, and it is the advancement of this changing state that helps us compute
a final result. In this datapath, the Bus can go to registers A or B or one of registers in the
Register File selected by selReg[1:0]. Although you can write to all 3 of these register
destinations at the same time, it is more typical to write to only one destination.

18. After reset, verify whether the initial values of the Register File in your datapath are the
same as you found earlier with the standalone Register File circuit from Part B.

19. Use your Computational Datapath to initialize the registers as follows:
 R0 = 1, R1 = 2, R2 = 3, R3 = 4.

Do not rely upon the registers containing any particular initial value. The only reliable
values you have are the $00 and $01 constants in the datapath.

To solve this problem, write out the sequence of steps required in RTN. Make sure all
complex operations are broken down into a sequence of simple µ-ops. To make your job
easier, you probably want to write out the control signal values in a worksheet
http://courses.ece.ubc.ca/259/homework/hw1/hw1worksheet.pdf

20. Use your Computational Datapath to compute 1+2+3+4. To solve this problem, write
out the sequence of steps required in RTN. Do not rely upon the registers having any
particular initial values – you can add to your solution from the previous step, or you can
start from scratch. There are many possible ways of doing this – I have one solution that
requires 10 µ-ops, and another that requires 25 µ-ops.

The problems below are “extra work” for the curious. You do not need to do them for the PA,
but you may wish to do them to help you study.

21. (Easy!) Use your Computational Datapath to compute the Fibonacci sequence:

 21 !! += iii FFF where F2 = F1 = 1.

 If you can find the trick to get it started, this becomes very easy!

22. (Not too hard, but long!) Use your Computational Datapath to compute the following

summation:

 !
=

=
4

1i
iFS , where 212 !! +"= iii FFF and F2 = F1 = 1.

To perform this summation, you will need to use the registers to hold some intermediate
values. Hint: to keep this easy, don’t try to write a “loop” that stores i in a register.
Instead, try the simple approach:
 R0 holds F1, R1 holds F2, R2 holds F3, R3 holds F4.

Then, add the values R0+R1+R2+R3 (storing the final result in, say, R3).

23. (A bit tricky!) Repeat the last problem using a different series: 218 !! +"= iii FFF .

24. (Very difficult!) Find a way to multiply two 4-bit numbers without using the multiply

operation. You should use the exact same method for any two 4-bit numbers. That means
a robot could repeat the exact same sequence of switch presses for any two 4-bit numbers
and it would get the correct result. Hint: I don’t have one… but I think it is possible!

LEDR8

LEDR9

LEDR[7:4]
LEDR[3:0]

KEY3
reset

KEY0
clk

4

D Q

E

4
B

4
D Q

E

A

00
01
10
11

A+B
A−B
A*B
A&B

ALUop

ALUop
SW[1:0]

2

wrBwrAdataIn
SW[7:4] SW3 SW2

LEDG[7:4] (also HEX1)

LEDG[3:0] (also HEX0)

D Q
4

+
%0001

4

ACCUMULATOR

SW9

U2

U1

SW8

(also HEX3)
(also HEX2)

4

ALU

00
01
10
11

+

*

−

Figure A. Basic Logic Gates circuit.

wrReg

D Q

E

D Q

E

D Q

E

D Q

E

10
01
00

11

10
01
00

11

muxRd

R0

R1

R2

R3 8

8

8

8

8

decoder

Register File
dataIn

selWr

selRd

dataOut8

2

2

Figure B1. Register File details.

DE1 and DE2 Boards
HEX0HEX1HEX2HEX3

[3:0][7:4][7:4] [3:0]

Register
File

dataIn

selRd

dataOut

selWr

wrReg
8

2

SW8
wrReg

SW[5:4]
selRdselWr

SW[7:6]

2

clk
KEY0

reset
KEY3

8
SW3:0 4

4 [7:4]

[3:0]

$0

Figure B2. Register File circuit.

wrReg

D Q

E

D Q

E

D Q

E

D Q

E

10
01
00

11

10
01
00

11

muxRd

R0

R1

R2

R3 8

8

8

8

8

decoder

Register File
dataIn

selWr

selRd

dataOut8

2

2

Figure C1. Register File details (same as Figure B1).

SW8

01
00

11

C
B

0
1
2
3

N
Z

4
5

Vadd
Vsub

Flags

ALU

clk
KEY0

reset
KEY3

D Q

E

D Q

E

ALUop

01
10
11

00 A+B
A−B
A*B
A&B

2

2

2

HEX0HEX1HEX2HEX3

[3:0][7:4][7:4] [3:0]

8$00 8

DE1 Boards

DE2 Boards

Bus

Register
File

dataIn

selRd

dataOut
muxBus

selWr

wrReg

8
$01 8

8

LEDG[5:0]

8 LEDR[7:0]

SW13:10

$0 4

[3:0]

[7:4]

4(LSB)

(MSB)
8

8 R

6

2

SW[5:4]
selBus

8

8

8

8

A

B

wrA wrB
SW3 SW2

2

SW[1:0]
ALUopselReg

SW[7:6]
wrReg

10

Figure C2. Computational Datapath circuit.

�����
������� �	
�� ���
��
���� ������
���� �	� �	� �����
���� ���	�����	����� � �	�������	�����

��

��

��

��

��

��

	�

�

��

���

���

���

���

���

���

���

�	�

�
�

���

���

