
EECE259 Quiz 4: Interrupts
Common Mistakes

Generally, many students did not demonstrate a good understanding of interrupts. This is
not surprising, because it is a hard thing to master, and this was your first time trying.

The most common mistake was assuming that each loop iteration takes a fixed amount of
time, such as 1ms or 1s. This is incorrect – loops will always run as fast as the CPU can
run them! The only way to slow down a loop is to insert a deliberate time delay, such as a
call to timedDelay().

A few solutions tried to pause for a specific amount of time by "iteration counting" (eg,!
i=50000; while(i>0) i--;) assuming that each iteration would take only 1 or 2
instructions. This is a very unreliable way to wait for a period of time that should be
precisely measured!

Many solutions lost track of the actual speed, the speed required to drive the motor, and
the amount of time that had elapsed.

A few students still don't know how to read from the switches or write to the LEDs in C
language (you cannot write to the switches, or read from the LEDs!).

Another common mistake is writing a loop like this:

int SW = *pSWITCH ;
while(SW) {

// loop body
}

Please remember that pointers (* in C) are not the same as references (& in C++). In this
code, the value of SW in the loop will never change. This is because the assignment
SW=*pSWITCH will copy the value from *pSWITCH to the variable SW only once, at
the line where this assignment statement occurs. Each time through the loop, the value of
SW is read, but SW itself never changes (it does not read *pSWITCH again).

NAME: ___STUDENT #: ______________________

EECE 259: Introduction to Microcomputers QUIZ 4 – 201 Apr 1, 2011

Write a C program to regulate the speed of a mobile robot using pulse width modulation (PWM) to travel at 75%
of maximum speed. The motor is controlled by LEDG0: 1 turns the motor on, and 0 turns it off. The motor speed
can be controlled by sending a pulse to the motor every 100ms: the longer the width of the pulse, the faster the
motor will go. For example, if the motor is on for 75ms, and off for 25ms, it would ideally achieve 75% speed.
However, due to friction and other forces, the actual robot speed is often lower.

A speedometer signal on SWITCH 0 is a pulse signal that is high for a certain percentage of the 100ms period;
this is the true speed of the robot. For example, if SW0 is high for 70ms, then low for 30ms, then the robot is only
travelling at 70% and not 75%. At the end of every 100ms, if the robot is travelling too slowly (below 75%
speed), increase the next pulse width by 1ms; if it is travelling too fast, decrease it by 1ms.

#include “259macros.h”
volatile unsigned int *pCOUNTER_STATUS; //write clrs irq, write 1 to enable irqs

/* global variables */
int time = 0___;

int motor = 75___;

int speed = 0__;

 /* ISR should be called every __1ms___ */
 // 1 mark for <= 1 ms ISR resolution
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */

 counterEnableIRQ(ONE_MS,cntrISR); // increment speed if SW0 is on
 // 1 mark for masking *pSWITCH,
 // 1 mark for tracking speed
 // speed
 speed += *pSWITCH & 0x1 ;

 // keep track of how many ms have
 while(1) { // elapsed; 1 mark for tracking time
 time++ ;
 // no code necessary in main
 // loop, everything done in ISR // clear the IRQ; 1 mark for clearing
 *pCOUNTER_STATUS = 1 ;

 // REMEMBER: there is no concept // drive motor every 1s before limit
 // of time in this infinite loop! // 2 marks total:
 // Code here would be executed // 1 mark for driving motor for time < motor
 // repeatedly whenever the ISR // 1 mark for using *pLED
 // is not running! if (time < motor)
 *pLEDG = 1 ;
 else
 *pLEDG = 0 ;

 // every 100 ms, update limit by
 // +/- 1 if either wetness or dryness
 // was over 75ms (i.e. 75%)
 // 3 marks total:
 // 1 mark for checking speed,
 // 1 mark for modifying motor,
 // 1 mark for resetting variables
 if (time == 100) {
 if (speed < 75)
 motor++ ;
 else if (speed > 75)
 motor-- ;

 // reset variables
 time = 0 ;
 speed = 0 ;

 } }

} }

NAME: ___STUDENT #: ______________________

EECE 259: Introduction to Microcomputers QUIZ 4 – 202 Apr 1, 2011

Write a C program to control an automated houseplant watering machine that pours water once every 60
seconds. The amount of water needed depends upon wetness and dryness sensors, but initially assume you
must pour water for 30 seconds out of 60 seconds. The machine is controlled by LEDG0: when 1, the machine
will continuously pour water at a steady but very slow rate; when 0, the machine does not pour water. The input
on SWITCH0 is a WET sensor that is 1 while the plant is too wet, and SWITCH1 is a DRY sensor that is 1 while
the plant is too dry. The goal is to keep both sensors at 00. The machine must adjust the next watering by +/-1
second, depending whether the last 60s was too wet or too dry. You should read the sensors throughout the 60
seconds, and only add more water if the DRY sensor was 1 for more than 50% of the time; likewise add less
water if the WET sensor was 1 for more than 50% of the time (they will never both be 1). During the 60s, the
sensors can only go from 0-to-1 and from 1-to-0 once (they will never toggle back and forth quickly).

#include “259macros.h”
volatile unsigned int *pCOUNTER_STATUS; //write clrs irq, write 1 to enable irqs

/* global variables */
int time = 0__;

int pour = 30___;

int wetness = 0 , dryness = 0___;

 /* ISR should be called every _1000ms_ */
 // 1 mark for <= 1000 ms ISR resolution
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */

 counterEnableIRQ(1000*ONE_MS, cntrISR); // every second, check switch state
 // and update variable
 // 1 mark for masking *pSWITCH,
 // 1 mark for tracking
 if (*pSWITCH & 0x1) // SW0
 wetness++ ;
 while(1) { else if (*pSWITCH & 0x2) // SW1
 dryness++ ;
 // no code necessary in main
 // loop, everything done in ISR // keep track of how many seconds // have elapsed; 1 mark
 time++ ;
 // REMEMBER: there is no concept
 // of time in this infinite loop! // clear the IRQ; 1 mark for clearing
 // Code here would be executed *pCOUNTER_STATUS = 1 ;
 // repeatedly whenever the ISR
 // is not running! // pour water every 1s before limit
 // Code here would be executed // 2 marks total:
 // repeatedly whenever the ISR // 1 mark for pouring water when time < pour,
 // 1 mark for using *pLED
 if (time < pour)
 *pLEDG = 1 ;
 else
 *pLEDG = 0 ;

 // every 60 seconds, update limit by
 // +/- 1 if either wetness or dryness
 // was over 30s (i.e. 50%)
 // 3 marks total:
 // 1 mark for checking speed,
 // 1 mark for modifying motor,
 // 1 mark for resetting variables
 if (time == 60) {
 if (wetness > 30)
 pour-- ; else if (dryness > 30)
 pour++ ;

 // reset variables
 time = 0 ;
 wetness = 0 ;
 dryness = 0 ;
 } }
} }

