

Introduction into Computer Security

EECE 412 Session 2

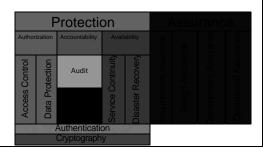
Outline

- Miscellaneous
- Last session re-cap
- Introduction into computer security
- Upcoming important dates and action items
- Next session preview

Introduction to Computer Security

Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers' violation of security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds


What Computer Security Policies are Concerned with?

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

CIA

Conventional Approach to Security

Protection

 provided by a set of mechanisms (countermeasures) to prevent bad things (threats) from happening

Authorization

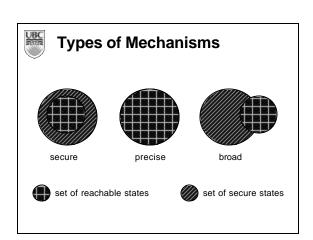
protection against breaking rules Rule examples:

- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital's medical personnel should have access to the patient's medical records
- Your example...

Authorization Mechanisms: Data Protection

- · No way to check the rules
 - e.g. telephone wire or wireless networks
- · No trust to enforce the rules
 - e.g. MS-DOS

Accountability

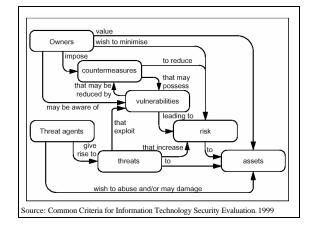

You can tell who did what when

- (security) audit -- actions are recorded in audit log
- Non-Repudiation -- evidence of actions is generated and stored

Availability

- Service continuity -- you can always get to your resources
- Disaster recovery -- you can always get back to your work after the interruption


Assurance

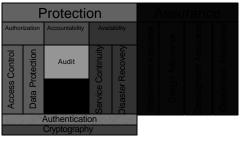

Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended

Securing Systems

Steps of Improving Security

- 1. analyze risks
 - · asset values
 - threat degrees
 - vulnerabilities
- 2. develop/change policies
- 3. choose & develop countermeasures
- 4. assure
- 5. go back to the beginning



Classes of Threats

- Disclosure
 - Snooping
- DeceptionModification
 - Woulded
 - Spoofingrepudiation of
 - origin

 denial of receipt
- Disruption
 - Modification
 - denial of service
- Usurpation
 - Modification
 - Spoofing
 - Delay
 - denial of service

Key Points (cont-ed)

- Secure, precise, and broad mechanisms
- Risk = Asset * Vulnerability * Threat
- Steps of improving security
- · Classes of threats
 - Disclosure
 - Deception
 - Disruption
 - Usurpation

Next session preview

- Introduction to Cryptography
 - Historical background
 - Random Oracle Model

Important dates in the next three weeks

- 9/9 Optional "get to know" social at Koerner's Pub 6 PM
- 9/15 online student entry survey due
- 9/20 Assignment #1 due