THE UNIVERSITY OF BRITISH COLUMBIA

Introduction to Cryptography

EECE 412 Session 3

Copyright © 2004 Konstantin Beznosov

Session Outline

- Historical background
 - Caesar and Vigenère ciphers
 - One-time pad
 - One-way functions
 - Asymmetric cryptosystems
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

THE UNIVERSITY OF BRITISH COLUMBIA

Historical Background

Copyright © 2004 Konstantin Beznosov

Letter Indices in English Alphabet

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	\cap	P	\bigcirc	D	C	т	11	\/	۱۸/	V	V	7
			Q		3		U	V	VV		Ĭ	2

Caesar Cipher

- Plaintext is HELLO WORLD
- Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - C = P + K mod 26
- Ciphertext: KHOOR ZRUOG
 Plain HELLOWORLD
 Key DDDDDDDDDD
 Cipher KHOORZRUOG

Monoalphabetic Cipher

Invented by Arabs in 8th or 9th centuries

- Plain HELLOWORLD Key AGVVYEYEVS
- Cipher HKGGMAMVGV

Polyalphabetic Vigenère Cipher

proposed by Blaise de Vigenere from the court of Henry III of France in the sixteenth century Like Cæsar cipher, but use a phrase

- Example
 - Message: TO BE OR NOT TO BE THAT IS THE QUESTION
 - Key: RELATIONS
 - Encipher using Cæsar cipher for each letter:

PlainTO BE OR NOT TO BE THAT IS THE QUESTIONKeyRELATIONS RELATION SRELATIONSRELCipherKS ME HZ BBLKS ME MPOG AJ XSE J CSFLZSY

Cryptanalysis of Vigenère Cipher

Factoring of distances

- KSMEHZBBLKSMEMPOGAJXSEJCSFLZSY
- 012345678012345678012345678012
- Statistical analysis of each Caeser cipher group
 - KKJZ
 - 1. SSXS
 - 2. MMSY
 - **3.** EEE
 - **4** HMJ
 - 5. ZPC
 - 6. BOS
 - 7. BGF
 - 8. LAL

One-Time Pad

A Vigenère cipher with a random key at least as long as the message

- Provably unbreakable
- Why?

Plain text	DOIT	DONT
Кеу	AJIY	AJDY
Cipher text	D X Q R	DXQR

 Warning: keys must be random, or you can attack the cipher by trying to regenerate the key

Asymmetric Cryptosystems

- Public key and private key
 - Encryption
 - Signatures
 - Sep. 21st & 23rd

THE UNIVERSITY OF BRITISH COLUMBIA

Random Oracle Model

Copyright © 2004 Konstantin Beznosov

What is Random Oracle Model?

Random Function as Random Oracle

In: string of any length

- Out: random string of fixed length
- Applications:
 - One-way functions
 - Hash functions
 - Message digests
 - Time stamping

Properties

- "One-wayness"
- No input inference from output
- Few collisions

Random Generator (Stream Cipher) as Random Oracle

In: short string (key)

- Queries Responses
- Out: long random stream of bits (keystream)
- Applications:
 - Communications encryption
 - Storage encryption

Properties

- Should not reuse
 - Use seed

Random Permutation (Block Cipher) as Random Oracle

- In
 - fixed size short string (plaintext) M,
 - DES -- 64 bits
 - Key K

Out

 same fixed size short string (ciphertext) C

Notation

- C = { M }_K
 M = { C }_K
 Properties
- Invertible

Attacks on Block Ciphers

Ou

Rest

Attack types

- Known plaintext attack
- Chosen plaintext attack
- Chosen ciphertext attack
- Chosen plaintext/ciphertext attack
- Related key attack (K +1, K + 2, etc.)

Attack objectives

- Deduce the answer to the query which the attacker has not made yetforgery attacks
- Recover the key--key recover attacks
- Why attack types are important?
 - DES
 - 2⁴⁷ chosen plain texts
 - 2⁴³ known plain texts

eries 🕨	
onses	

Public Key Encryption and Trap-door One-Way Permutation as Random Oracle

Public Key Encryption Scheme:

- Key pair (KR, KR⁻¹) generation function from random string R
 - KR \rightarrow KR⁻¹ is infeasible
- C = {M) _{KR}
- M = {C) _{KR}⁻¹

- In:
 - fixed size short string (plaintext) M,
 - Key KR
- Out: fixed size short string (ciphertext) C

Digital Signature as Random Oracle

Public Key Signature Scheme:

- Key pair (σ R, VR) generation function
 - VR $\rightarrow \sigma R$ is infeasible
- S = Sig $_{\sigma R}(M)$
- {True, False} = Ver_{VR}(S)

	Signing	Verifying
Input	Any string M + σR	S + VR
Output	S = hash(M) cipher block	"True" or "False"

Summary

Historical background

- Caesar and Vigenère ciphers
- One-time pad
- One-way functions
- The Random Oracle model
 - Random functions: Hash functions
 - Random generators: stream ciphers
 - Random Permutations: block ciphers
 - Public key encryption and trapdoor one-way permutations
 - Digital signatures

