

THE UNIVERSITY OF BRITISH COLUMBIA

Security Policies

EECE 412 Session 11

Copyright © 2004 Konstantin Beznosov

Last Topic Recap

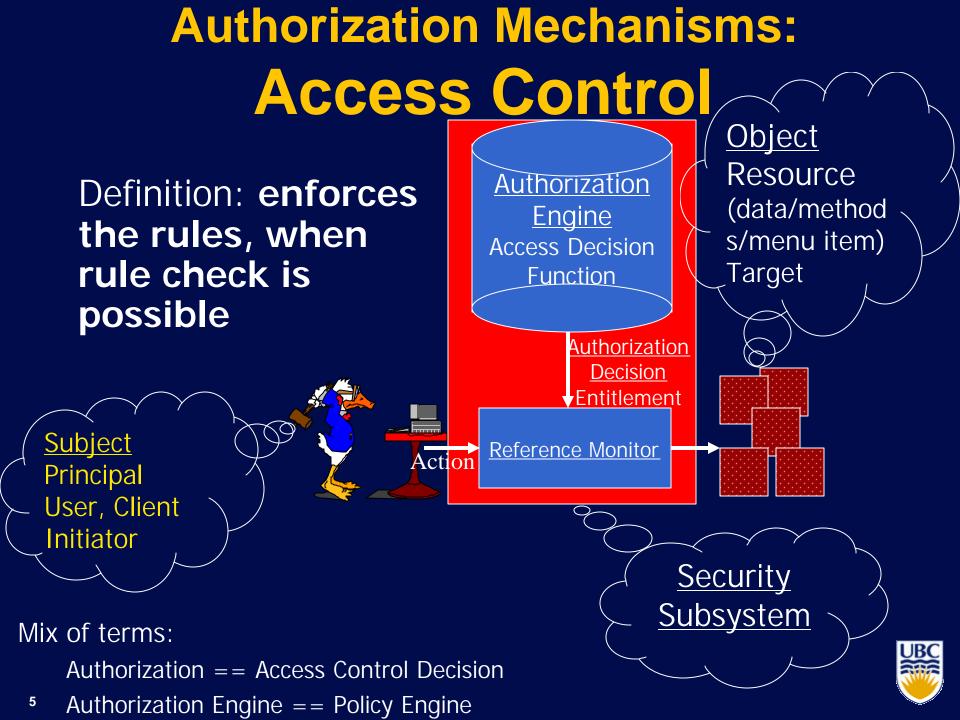
Content

- Authentication system definition
- Password-based authentication
- Challenge-response authentication
 - S/Key one-time password system
- Biometric authentication
- Multi-factor authentication
- Ways to break and improve authentication systems

Key points

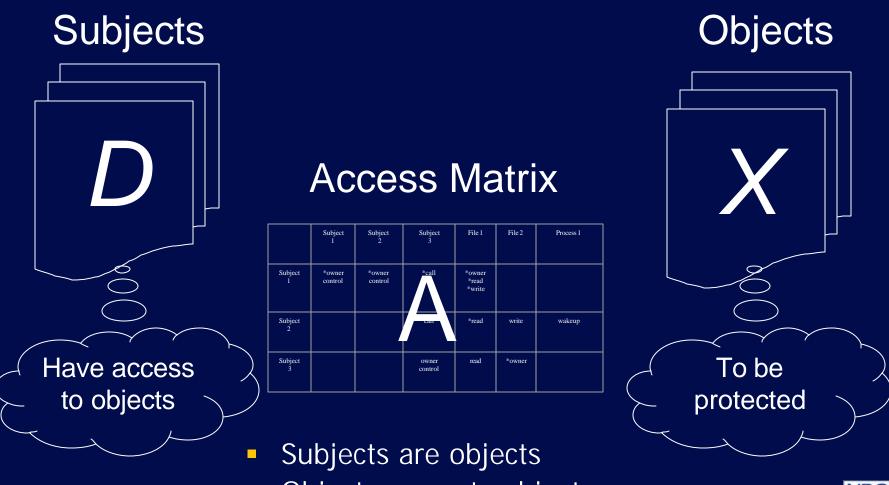
- Authentication is not just about cryptography
 - You have to consider system components
- Passwords are here to stay
 - They provide a basis for most forms of authentication
- Two or three -factor authentication is the best yet more expensive

Outline


- Access control mechanisms
- Access Matrix
- Security policies
 - Confidentiality policies
 - Bell LaPadula confidentiality model

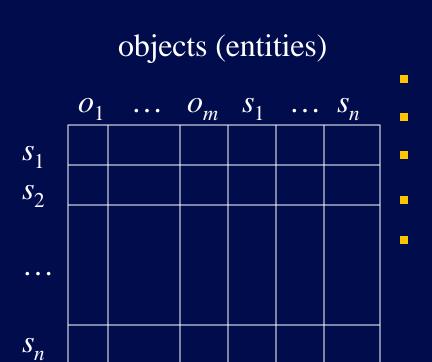
Where We Are

Protection					Assurance			
Authorization		Accountability	Availability		Irance	Jce	Assurance	Assurance
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assı	Operational Assu
		Non- Repudiation						
Authentication								
Cryptography								



THE UNIVERSITY OF BRITISH COLUMBIA

Access Matrix


Copyright © 2004 Konstantin Beznosov

Object System

Objects are not subjects

Access Matrix Structure

- Subjects $S = \{ s_1, \dots, s_n \}$
- Objects $O = \{ o_1, ..., o_m \}$
- Rights $R = \{ r_1, ..., r_k \}$
- Entries $A[s_i, o_j] \subseteq R$
- $A[s_i, o_j] = \{ r_{x'}, ..., r_y \}$ means subject s_i has rights $r_{x'}, ..., r_y$ over object o_j

subjects

Example

- Processes p, q
- Files f, g
- Rights r, w, x, a, o

	f	g	p	q
p	rwo	r	rwxo	W
q	а	ro	r	ΓWXO

Matrix Implementation Techniques

- **1**. $T = \{ < d, x, A_{d,x} > \} \text{impractical} \}$
 - a) Only relevant parts of A need to be handy
 - b) Could be very inefficient for some As (e.g. public files)
 - c) List of objects to which d has access
- 2. Capability = $\langle x, A_{d,x} \rangle$
 - C-lists
 - Attach C-list to domains
 - Addresses (a), (c) and potentially (b)
- 3. attach the protection information to the object: $A_x(d)$
 - Access key capability used for identification, (credential)
 - {<access key, {access attributes}>} access control list (ACL)

Group Work

ACLs are good for revoking individual's access to a particular file.

- How hard is it to revoke a user's access to a particular set of files, but not to all files, with ACLs?
- Compare and contrast this with the problem of revocation using capabilities.

Access Matrix Summary

Object System

- Subjects, objects, access matrix
- Objects are shared
- All subjects are objects
 - not all objects are subjects
- Matrix modification rules
- Matrix implementation
 - Capability lists
 - Access control lists

THE UNIVERSITY OF BRITISH COLUMBIA

Security Policies

Copyright © 2004 Konstantin Beznosov

What's Security Policy?

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation

Secure system

- Starts in authorized state
- Never enters unauthorized state
- Authorized state in respect to what?

What's Confidentiality?

- X set of entities, I information
- I has confidentiality property with respect to X if
 no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - *I* is confidential with respect to *X* if students cannot obtain final exam answer key

What's Integrity?

X set of entities, I information

- I has integrity property with respect to X if all $x \in X$ trust information in I
- Examples?

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access

Originator Controlled Access Control (ORCON)

 originator (creator) of information controls who can access information

Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- A class has students do homework on computer
- Alice forgets to read-protect her homework file
- Bob copies it
- Who cheated?
 - Alice, Bob, or both?

Answer

Bob cheated

- Policy forbids copying homework assignment
- Bob did it
- System entered unauthorized state (Bob having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part #2

- Alice didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Alice did breach security
 - She didn't do this

Key Points about Policies and Mechanisms

- Policies describe what is allowed
- Mechanisms control how policies are

enforced

THE UNIVERSITY OF BRITISH COLUMBIA

Confidentiality Policies

Copyright © 2004 Konstantin Beznosov

What's Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
- Example:
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Subjects have security clearance L(s)
- Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Alice	Personnel Files
Secret	Bob	E-Mail Files
Confidential	Chiang	Activity Logs
Unclassified	Fred	Telephone Lists

- Alice can read all files
- Chiang cannot read Personnel or E-Mail Files
- Fred can only read Telephone Lists

Reading Information

Information flows up, not down

- "Reads up" disallowed, "reads down" allowed
- Simple Security Property
 - Subject s can read object o iff, L(o) = L(s) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

Information flows up, not down

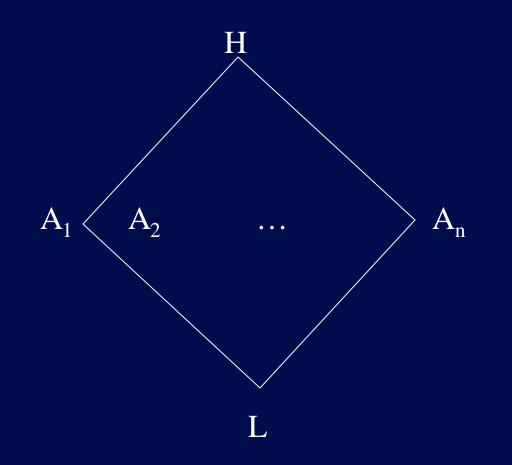
"Writes up" allowed, "writes down" disallowed

*-Property

- Subject s can write object o iff L(s) = L(o) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- Sometimes called "no writes down" rule

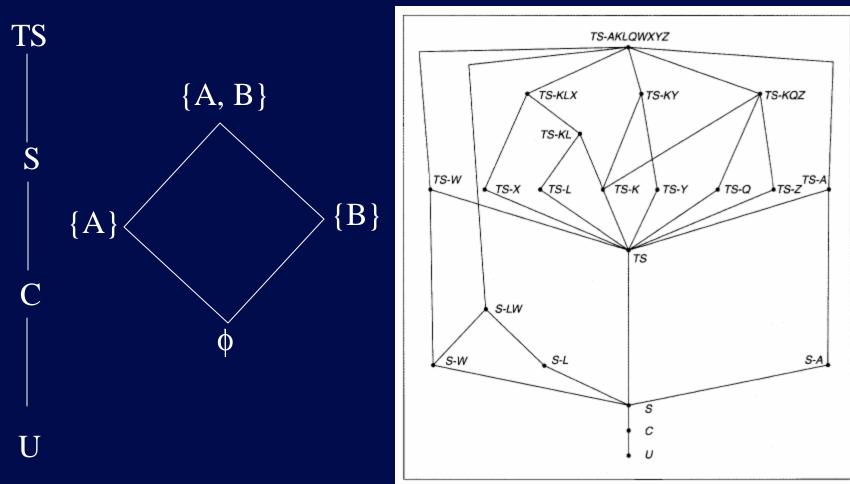
Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (clearance, category set)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - (Secret, { NUC, ASI })



Levels and Lattices

- (A, C) dominates (A c C ϕ iff A' = A and C c c C
- Examples
 - (Top Secret, {NUC, ASI}) dom (Secret, {NUC})
 - (Secret, {NUC, EUR}) dom (Confidential, {NUC, EUR})
 - (Top Secret, {NUC}) ¬dom (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels $L = C \times K$, dom form lattice



Bounded Isolated Classes

The Military Lattice

Levels and Ordering

Security levels partially ordered

 Any pair of security levels may (or may not) be related by *dom* relation

Note:

- "dominates" serves the role of "greater than"
- "greater than" is a total ordering, though

Reading Information

Information flows up, not down

- "Reads up" disallowed, "reads down" allowed
- Simple Security Property (Step 2)
 - Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

Information flows up, not down

- "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
- Major can talk to colonel ("write up" or "read down")
- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 - maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has *maxlevel* (Secret, { NUC, EUR })
 - Colonel sets *curlevel* to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"

Key Points Regarding Confidentiality Policies

- Confidentiality policies restrict flow of information
- Bell-LaPadula model supports multilevel security
 - Cornerstone of much work in computer security

Next Session Preview

Integrity policies

- Biba integrity model
- Clark-Wilson integrity model
- Hybrid policies
 - Chinese Wall model
 - Role-based access control model

