

i Ali

THE UNIVERSITY OF BRITISH COLUMBIA Confidentiality Policies

What's Confidentiality?

- X set of entities, I information
- *I* has *confidentiality* property with respect to *X* if
 - no $x \in X$ can obtain information from I
 - I can be disclosed to others
- Examples?

諁

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
- Example:
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Subjects have security clearance L(s)
- Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Alice	Personnel Files
Secret	Bob	E-Mail Files
Confidential	Chiang	Activity Logs
Unclassified	Fred	Telephone Lists

• Alice can read all files

巖

繎

- Chiang cannot read Personnel or E-Mail Files
- Fred can only read Telephone Lists

Reading Information Information flows *up*, not *down*"Reads up" disallowed, "reads down" allowed Simple Security Property Subject s can read object o iff, *L(o) = L(s)* and s has permission to read o Note: combines mandatory control (relationship of

- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
- · Sometimes called "no reads up" rule

Bell-LaPadula Model, Step 2 Expand notion of security level to include categories Security level is (*clearance, category set*) Examples (Top Secret, { NUC, EUR, ASI }) (Confidential, { EUR, ASI }) (Secret, { NUC, ASI })

EECE 412: Introduction to Computer Security

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by "dominates" relation
- Note:
 - · "dominates" serves the role of "greater than"

巖

• "greater than" is a total ordering, though

Writing Information

- Information flows up, not down
 "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject *s* can write object *o* iff *L*(*o*) dom *L*(*s*) and *s* has permission to write *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Group 1	Group 2	Group 3	Group 4	Group 5
Chiang, Joyce Huang, Ben Darwish, Wesam Kwan, Michael Chan,Ryan Tse, Janet Yan Ha,Shu Zhao, Samson	Tsang, Jeannette Li-Heng Lin, Mike Wong, Chun-Yue Markandan, Kartik Woo, Wing Keong Lau, Ivan Vo, Tuan Ann Cheung, Jason	Ong, Tieng Pei Kler, Jeffrey Milojkovic, Aleksandar Chow, Jacqueline Leung, Wing Yen, Horng Elizabeth-Tiedje, Megan Li, John	Wei, Olang Fong, Claudia Lee, Larix Handoko, Handika Lee, Johnson Leung,Michael Yeung, Derrick Lam, Victor	Tung, Jeffrey Kan, Jason Tsai, Johnson Hung,Wallace Cheuk Lun Chang, Steven Lai, Kevin

巖

諁

Key Points Regarding Confidentiality Policies Confidentiality policies restrict flow of

information

- Bell-LaPadula model supports multilevel security
 - Cornerstone of much work in computer security policies

EECE 412: Introduction to Computer Security

Entities in the Model

- CDIs: constrained data items
 Data subject to integrity controls
- UDIs: unconstrained data items
 Data not subject to integrity controls
- IVPs: integrity verification procedures
 - Procedures that test the CDIs conform to the integrity constraints
- TPs: transaction procedures
 Procedures that take the system from the
 - Procedures that take the system from one valid state to another

巖

巖

Key Points

- Integrity policies deal with trust
 - As trust is hard to quantify, these policies are hard to evaluate completely
 - Look for assumptions and trusted users to find possible weak points in their implementation
- Biba, Lipner based on multilevel integrity
- Clark-Wilson focuses on separation of duty and transactions

