

THE UNIVERSITY OF BRITISH COLUMBIA

Availability

EECE 412 Session 18

Copyright © 2004 Konstantin Beznosov

Last Session Recap

- Types of malicious logic
- Theory of detecting malware
- Protection and detection techniques

Where We Are

Protection					Assurance			
Authorization		Accountability	Availability		ance	e	rance	ance
Control	otection	Audit	Continuity	Secovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance
Access Control	Data Protection	Non- Repudiation	Service C	Disaster Recovery	Requirem	Desig	Developn	Operati
Authentication Cryptography								

Outline

- Availability in the presence of failures
 - FT terminology
 - k fault tolerance
 - two army problem
 - Byzantine Generals problem
 - Services continuity and disaster recovery
- Availability in the presence of attacks
 - Failures vs. attacks
 - Random vs. scale-free networks
 - Internet tolerance to attacks and failures
 - Services continuity and disaster recovery

UBC

THE UNIVERSITY OF BRITISH COLUMBIA

Availability in the Presence of Failures

Copyright © 2004 Konstantin Beznosov

Failures, Errors, and Faults

A system is said to fail when it cannot meet its promises
Error may lead to a failure
Fault -- a cause of an error

Fault Types

Transient: occur once and then disappear

Intermittent: occurs, then vanishes, then reappears

Permanent: continues to exist

Availability and Reliability

•Availability: Probability that a system operates correctly at any given moment and is available to perform its functions

•Reliability: time period during which a system continues to be available to perform its functions

 Problem: calculate system availability and reliability if it's unavailable for 1 second every hour.

Fault Tolerance

A fault tolerant system can provide its services even in the presence of faults

Classification of Failure Modes

Type of failure	Description			
Crash failure	A server halts, but is working correctly until it halts			
Omission failure	A server fails to respond to incoming requests			
Receive omission	A server fails to receive incoming messages			
Send omission	A server fails to send messages			
Timing failure	A server's response lies outside the specified time interval			
Response failure	The server's response is incorrect			
Value failure	The value of the response is wrong			
State transition failure	The server deviates from the correct flow of control			
Arbitrary (a.k.a. Byzantine) failure	A server may produce arbitrary responses at arbitrary times			

Achieving k fault tolerance

A system is k fault tolerant if it can survive faults in k components
silent failure vs. Byzantine failure k+1 2k+1

Agreement among honest players with unreliable communications: Two-army Problem

Even with nonfaulty processes, agreement even between two processes is not possible in the face of unreliable communications

Agreement among dishonest players with perfect communications: Byzantine Generals Problem

Results:

1.In a system with *m* faulty processes, agreement can be achieved only if 2*m*+1 correctly functioning processes are present (total 3m+1). (Lamport et al., 1982)

2.If messages cannot be guaranteed to be delivered within a known, finite time, no agreement is possible even with one faulty process. (Fischer et al., 1985)

Ways to Deal with Failures

Service continuity

- Masking failures via
 - Redundancy of
 - information
 - time
 - physical
- Disaster recovery
 - Backward recovery
 - check pointing
 - Forward recovery
 - bringing system into a correct new state
 - Don't underestimate backups!

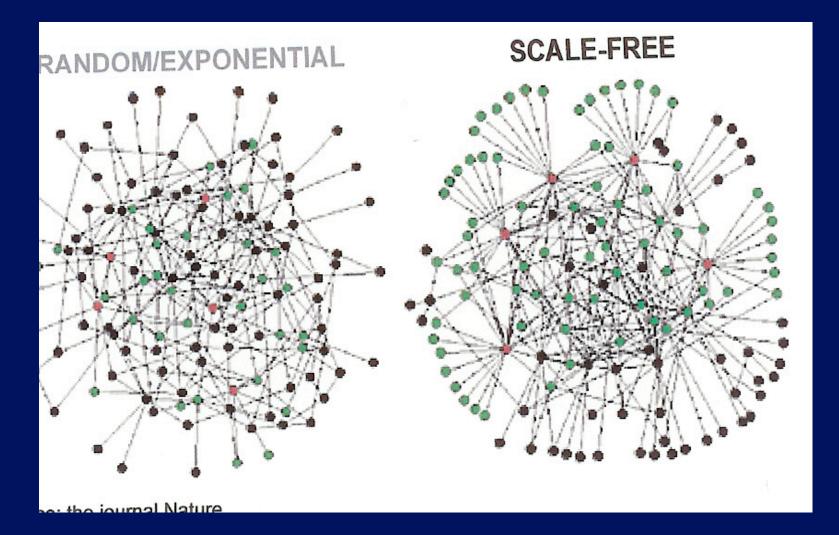
THE UNIVERSITY OF BRITISH COLUMBIA

Availability in the Presence of Attacks

Copyright © 2004 Konstantin Beznosov

Failures vs. Attacks

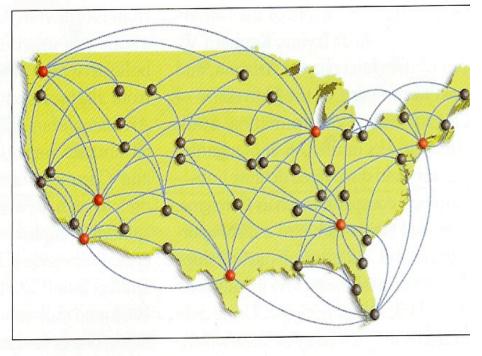
Failure

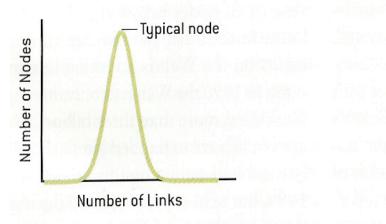

 Random unavailability of participants and/or infrastructure elements

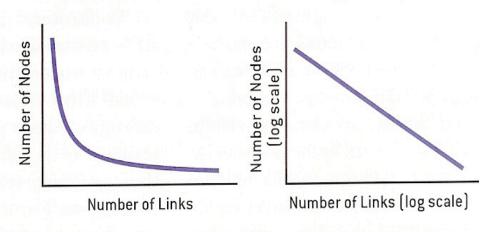
Attack

 Systematic unavailability of participants and/or infrastructure elements

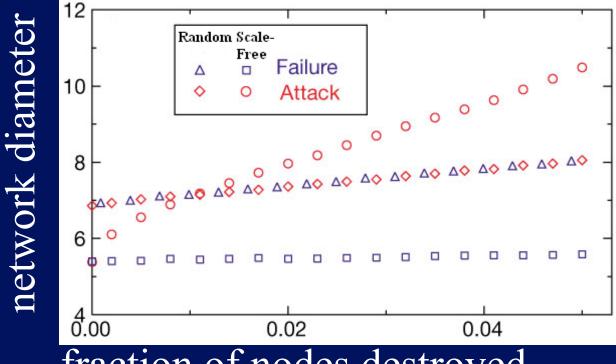
Random vs. Scale-free Networks




Random Network


Scale-Free Network

Bell Curve Distribution of Node Linkages


Power Law Distribution of Node Linkages

Internet Tolerance to Attacks and Failures

Scale-free networks are failure-tolerant

Random networks are attack-tolerant

fraction of nodes destroyed

Source: R. Albert, H. Jeong, and A.-L. Barabasi, "Error and attack tolerance of complex networks," Nature, vol. 406, no. 6794, 2000, pp. 378-82.

Ways to Deal with Attacks

Service continuity

- Same as for FT, plus
- Heterogeneity
 - Diversification
 - Avoid monocultures
 - Randomization
 - Avoid "hubs"
- Disaster recovery
 Same as for FT

