
EECE 412: Introduction to Computer
Security

Fall 2004

Session 11: Security Policies 1

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Security and Usability

EECE 412
Session 23

2

What’s More Important:

The correctness of security

functions/mechanisms,

or

the correct use of them?

3

Outline

 Principles of secure interaction design
 Five lessons about usable security

4

Usability and Security Tradeoffs

 A computer is secure from a particular
user’s perspective if the user can depend on
it and its software to behave as the user
expects.

 Acceptable security is a requirement for usability.

 Acceptable usability is a requirement for security.

5 6

Principle 1:
Path of Least Resistance

To the greatest extent possible,
the natural way to do a task should be

the secure way.

EECE 412: Introduction to Computer
Security

Fall 2004

Session 11: Security Policies 2

7

Example 1: Least resistance

8

Principle 2:
Appropriate Boundaries

The interface should expose, and the
system should enforce, distinctions

between objects and between actions that
matter to the user.

I.e., any boundary that could have meaningful security
implications to the user should be visible, and those that
do not should not be visible.

9

Example 2: Bad boundaries

 A real dialog window in Internet Explorer:

 User is forced
to make an
all-or-nothing choice!

10

Principle 3: Explicit Authorization

A user’s authorities must only be provided
to other actors as a result of an explicit

action that is understood to imply
granting.

 Conflicts with Least Resistance?
 Authorizes the increase of privileges
 Combining designation with authorization

11

Example 3: When do we ask?

12

Example 3: When do we ask?

EECE 412: Introduction to Computer
Security

Fall 2004

Session 11: Security Policies 3

13

Principle 4: Visibility

The interface should allow the user to easily
review any active authorizations that

would affect security-relevant decisions.

14

Example 4: What do we show?

 7:09am up 117 days, 6:02, 1 user, load average: 0.17, 0.23, 0.23
110 processes: 109 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 7.6% user, 4.5% system, 0.0% nice, 87.8% idle
Mem: 512888K av, 496952K used, 15936K free, 60K shrd, 29728K buff
Swap: 1052216K av, 146360K used, 905856K free 181484K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
24733 root 18 0 2556 2556 488 S 6.0 0.4 1:42 chargen
25184 ping 16 0 996 996 748 R 3.9 0.1 0:01 top
24276 root 9 0 1888 1864 1484 S 0.7 0.3 0:04 sshd
23519 apache 10 0 21792 13M 8080 S 0.1 2.6 0:23 httpd
23520 apache 10 0 21456 12M 8076 S 0.1 2.5 0:20 httpd
 1 root 8 0 188 148 148 S 0.0 0.0 0:25 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
 3 root 9 0 0 0 0 SW 0.0 0.0 0:00 kapm-idled
 4 root 19 19 0 0 0 SWN 0.0 0.0 0:33 ksoftirqd_CPU0
 5 root 9 0 0 0 0 SW 0.0 0.0 94:12 kswapd
 6 root 9 0 0 0 0 SW 0.0 0.0 0:02 kreclaimd
 7 root 9 0 0 0 0 SW 0.0 0.0 0:08 bdflush
 8 root 9 0 0 0 0 SW 0.0 0.0 0:15 kupdated
 9 root -1 -20 0 0 0 SW< 0.0 0.0 0:00 mdrecoveryd
 654 root 9 0 348 288 288 S 0.0 0.0 2:41 syslogd
 659 root 9 0 852 120 120 S 0.0 0.0 0:06 klogd
 744 root 9 0 1988 1988 1728 S 0.0 0.3 0:07 ntpd
 757 daemon 9 0 172 116 116 S 0.0 0.0 0:00 atd
 786 root 9 0 360 232 200 S 0.0 0.0 0:03 sshd
 807 root 8 0 476 336 292 S 0.0 0.0 0:56 xinetd
 866 root 8 0 396 332 312 S 0.0 0.0 0:34 crond
 915 root 9 0 2076 476 476 S 0.0 0.0 0:25 miniserv.pl
 919 root 9 0 108 48 48 S 0.0 0.0 0:00 mingetty
 920 root 9 0 108 48 48 S 0.0 0.0 0:00 mingetty

Not this:

15

Example 4: What do we show?

16

Principle 5: Identifiability
The interface should enforce that distinct objects

and distinct actions have unspoofably
identifiable and distinguishable representations.

two aspects
• Continuity: the same thing should appear the same
• Discriminability: different things should appear

different

 perceived vs. be different/same

17

Example 5: Violating identifiability

18

Example 5: Fixing identifiability

EECE 412: Introduction to Computer
Security

Fall 2004

Session 11: Security Policies 4

19

Principle 6: Clarity

The effect of any security-relevant action
must be apparent before the action is taken.

20

Example 6: Violating Clarity

What program? What source?
What privileges? What purpose?
How long? How to revoke?
Remember this decision? What decision?

Might as well click “Yes”: it’s the default.

21

Principle 7: Expressiveness

In order for the security policy enforced by
the system to be useful, we must be able
to express a safe policy, and we must be

able to express the policy we want.

22

Example 7: Unix File Permissions

23

Design Principles Summary

In order to use a system safely, a user needs to have confidence in all of
the following statements:

1. Things don't become unsafe all by themselves. (Explicit Authorization)
2. I can know whether things are safe. (Visibility)
3. I can make things safer. (Revocability)
4. I don't choose to make things unsafe. (Path of Least Resistance)
5. I know what I can do within the system. (Expected Ability)
6. I can distinguish the things that matter to me. (Appropriate

Boundaries)
7. I can tell the system what I want. (Expressiveness)
8. I know what I'm telling the system to do. (Clarity)
9. The system protects me from being fooled. (Identifiability, Trusted

Path)

24

Lessons learned about usable security
1. You cannot retrofit usable security

 Adding explanatory dialogs to a confusing system makes it
more confusing

2. Tools are not solutions
 They are just Lego™ blocks

3. Mind the upper layers
 Application-level security design allows intentional, implicit,

application-specific security

4. Keep your users satisfied
 Put your users’ needs first
 Evaluate your solution on the target audience

5. Think locally, act locally
 Don’t assume support from global infrastructure (e.g., PKI)
 If a generic security tool can be used independently of

application, the user(s) must deal with it directly

EECE 412: Introduction to Computer
Security

Fall 2004

Session 11: Security Policies 5

25

Where To Go From Here
Continue University Education
 UBC Undegrad. Research

Conference, every March
 EECE 496: do a security project
 Undergraduate Student Research

Assistantship (USRA) from NSERC
• Get paid during summer while doing

security research!
• Application deadline some time in

March. Talk to Dr. Beznosov

 Other security-related courses
• EECE 512: grad course will help to start

security research at grad level
• MATH 342 “Algebra, Coding Theory, and

Cryptography”
• COMM 456 “Control and Security of

Information Systems” at
mis.commerce.ubc.ca

Self Education
• Read good books on security.

See EECE 412 resources page
 Keep up to date

• IEEE Security & Privacy Magazine
• Online -- free for UBC students
• Paper -- subscription-based

• Conferences
• Local

– West Coast Security Forum,
every November in Vancouver,
www.wcsf.com

– CanSecWest, May 4-6, 2005,
Vancouver,
www.cansecwest.com

• Security professional groups:
• CIPS Vancouver Security SIG

– www.infosecbc.org
– Monthly every first

Wednesday 2PM -- 4 PM

