

Introduction into Computer Security

EECE 412

Session 2

- Miscellaneous
- Last session re-cap
- Introduction into computer security
- Upcoming important dates and action items
- Next session preview

Introduction to Computer Security

Introduction to Computer Security

What is Security?

- •security -- "safety, or freedom from worry"
- •How can it be achieved?
 - Make computers too heavy to steal
 - Buy insurance
 - Create redundancy (disaster recovery services)

Goals of Security

Prevention

 Prevent attackers from violating security policy

Detection

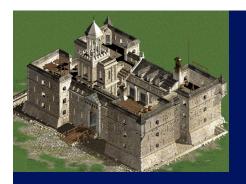
Detect attackers' violation of security policy


Recovery

- Stop attack, assess and repair damage
- Continue to function correctly even if attack succeeds

Solovki Monastery, White Sea, Russia

Conventional, fortress-based, security


Goal:

Prevent people from violating system's security policy

Means:

Fortification

- provides safety
- involves layering
- expensive
- requires maintenance
- eventually compromised



Some points about fortresses

- No absolute safety
- One weakness/error sufficient
- Extra layers → extra cost
- Important to understand threats
- Limited defender's resources
- Adjust to attacks
- Resource suppliers
- Distinguishing noncombatants from attackers
- Containment

Limitations of Fortresses

Fortress Analogy Limitations

Fortress

 Against external attackers

Protects only insiders

Defenses cannot change

Computer security

Control of insiders

 Has to keep system usable

 Has to protect from new types of attacks

What Computer Security Policies are Concerned with?

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

What Computer Security Policies are Concerned with?

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

Conventional Approach to Security

Protection						Assurance			
Authorization		Accountability	Availability		rance	ce	Assurance	ance	
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assu	Operational Assurance	
		Non- Repudiation							
Authentication									
Cryptography									

Protection

 provided by a set of mechanisms (countermeasures) to prevent bad things (threats) from happening

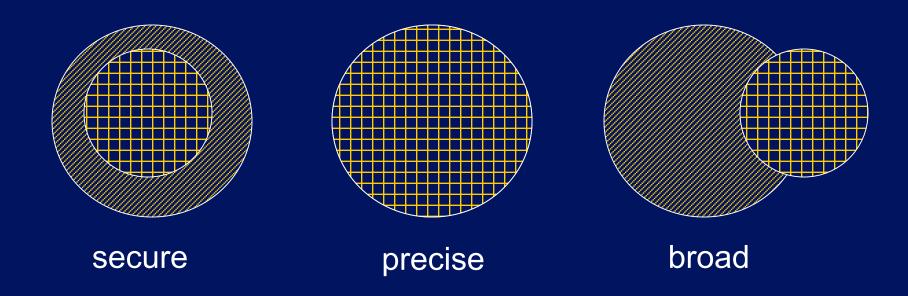
protection against breaking rules Rule examples:

- Only registered students should be able to take exam or fill out surveys
- Only the bank account owner can debit an account
- Only hospital's medical personnel should have access to the patient's medical records
- Your example...

Authorization Mechanisms: Data Protection

- No way to check the rules
 - e.g. telephone wire or wireless networks
- No trust to enforce the rules
 - e.g. MS-DOS

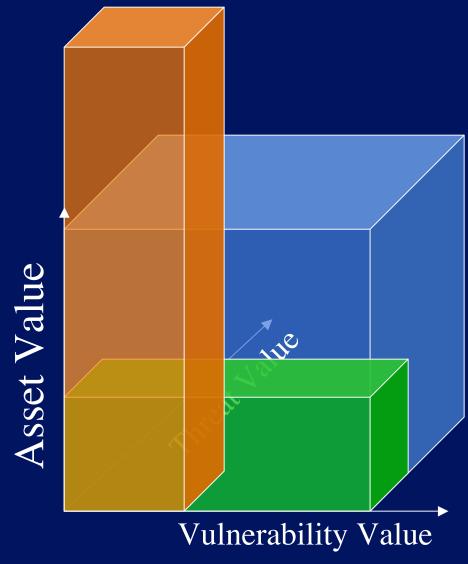
You can tell who did what when


- (security) audit -- actions are recorded in audit log
- Non-Repudiation -- evidence of actions is generated and stored

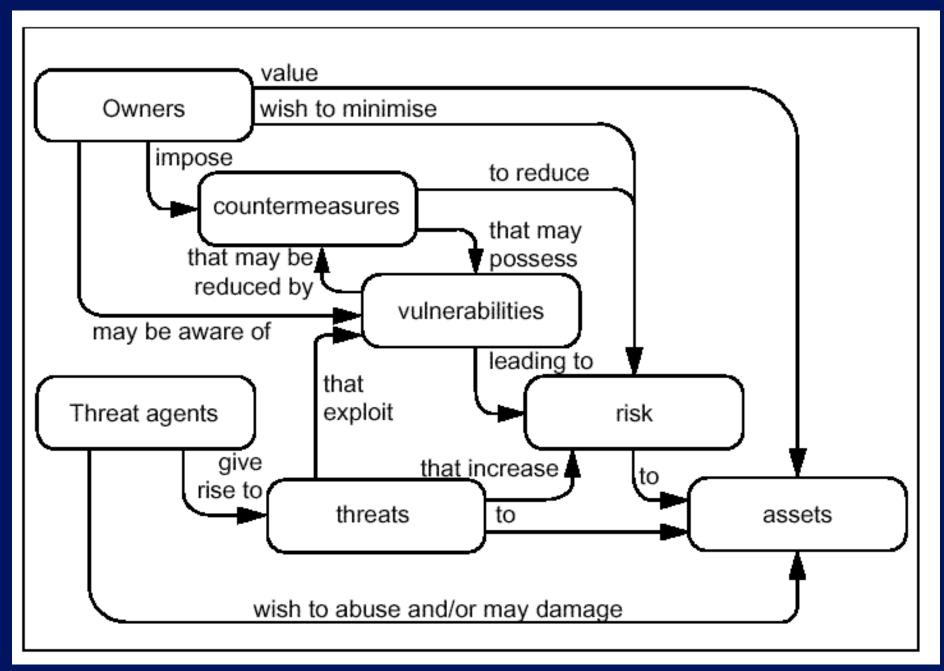
Availability

- Service continuity -- you can always get to your resources
- Disaster recovery -- you can always get back to your work after the interruption

Types of Mechanisms


Set of things the system builder and the operator of the system do to convince you that it is really safe to use.

- the system can enforce the policy you are interested in, and
- the system works as intended



Securing Systems

Risk = Asset * Vulnerability * Threat

Source: Common Criteria for Information Technology Security Evaluation. 1999

Steps of Improving Security

- analyze risks
 - asset values
 - threat degrees
 - vulnerabilities
- 2. develop/change policies
- 3. choose & develop countermeasures
- 4. assure
- 5. go back to the beginning

Classes of Threats

- Disclosure
 - Snooping
- Deception
 - Modification
 - Spoofing
 - repudiation of origin
 - denial of receipt

- Disruption
 - Modification
 - denial of service
- Usurpation
 - Modification
 - Spoofing
 - Delay
 - denial of service

Key Points

Protection						Assurance			
Authorization		Accountability	Availability		rance	ce	Assurance	ance	
Access Control	Data Protection	Audit	Service Continuity	Disaster Recovery	Requirements Assurance	Design Assurance	Development Assu	Operational Assurance	
		Non- Repudiation							
Authentication									
Cryptography									

Key Points (cont-ed)

- Secure, precise, and broad mechanisms
- Risk = Asset * Vulnerability * Threat
- Steps of improving security
- Classes of threats
 - Disclosure
 - Deception
 - Disruption
 - Usurpation

Next session preview

- Introduction to Cryptography
 - Historical background
 - Random Oracle Model

Important dates in the next three weeks

- 9/9 <u>Optional</u> "get to know" social at Koerner's Pub 6 PM
- 9/15 online student entry survey due
- 9/20 Assignment #1 due