Asymmetric Crypto System

EECE 412
Session 5

Last Session Recap

- Symmetric Cryptography
- Classical cryptography
- Sender, receiver share common key
- Same key used for encryption and decryption
- Two basic types
- Transposition (permutation) ciphers
- Substitution ciphers
- Block cipher
- SP-network
- Modes of operation plaintext attack

Requirements

- It must be computationally easy to encipher or decipher a message given the appropriate key
- It must be computationally infeasible to derive the private key from the public key
- It must be computationally infeasible to determine the private key from a chosen

Asymmetric Cryptography

- Public key cryptography
- Based on mathematical functions
- Two keys
- Private key known only to individual (owner)
- Public key available to anyone
- Idea
- Confidentiality: encipher using public key, decipher using private key
- Integrity/authentication: encipher using private key, decipher using public one

Well-Known Public Key Schemes

- Diffie / Hellman (1976)
- First public key scheme
- Originally proposed for key exchange
- RSA (Rivest, Shamir, Adleman) (1977)
- Only widely accepted and implemented general-purpose approach to public-key encryption.

Diffie－Hellman

－Compute a common，shared key
－Called a symmetric key exchange protocol
－Based on discrete logarithm problem
－Given integers n and g and prime number p ， compute k such that $n=g^{k} \bmod p$
－Solutions known for small p
－Solutions computationally infeasible as p grows large
－\｛k\} can be viewed as private key and \{n\} can be viewed as public key

Algorithm

－Constants：prime p ，integer $g \neq 0,1, p-1$
－Known to all participants
－Alice chooses private key kAlice，computes public key KAlice $=g^{\text {kalice }} \bmod p$
－To communicate with Bob，Anne computes Kshared $=K B o b^{\text {KAlice }} \bmod p$
－To communicate with Alice，Bob computes Kshared $=$ KAlice ${ }^{〔 B 0 b} \bmod p$
－It can be shown these keys are equal

RSA

－Exponentiation cipher
－Relies on the difficulty of determining the number of numbers relatively prime to a large integer n
－Plaintext is encrypted in blocks $\mathrm{m} .(\mathrm{m}<\mathrm{n})$
－Encipher：$c=m^{e} \bmod n$
－Decipher：$m=c^{d} \bmod n$

$$
\begin{aligned}
& \left(=\left(m^{e}\right)^{d} \bmod n\right. \\
& \left.=m^{e d} \bmod n=m \bmod n\right)
\end{aligned}
$$

－Sender knows：$\{e, n\}$－public key
－Receiver knows：$\{d, n\}$－private key
${ }^{20}$

Requirements of RSA

－It is possible to find values of e, d, n such that $m=m^{e d} \bmod n$ for all $m<n$ ．
－It is relatively easy to calculate m^{e} and c^{d} for all values of $m<n$ ．
－It is infeasible to determine d given e and n ．

Background

－Totient function $\phi(\mathrm{n})$
－Number of positive integers less than n and relatively prime to n
－Relatively prime means with no factors in common with n
－Example：$\phi(10)=4$
－1，3，7， 9 are relatively prime to 10
－Example：$\phi(21)=12$
－ $1,2,4,5,8,10,11,13,16,17,19,20$ are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
- Let $n=p q$; then $\phi(n)=(p-1)(q-1)$
- Choose $e<n$ such that e is relatively prime to $\phi(n)$.
- Compute d such that $e d \bmod \phi(n)=1$
- Public key: (e, n); private key: (d, n);
$P, q, \phi(n)$ are safely destroyed.
- Encipher: $c=m^{e} \bmod n$
- Decipher: $m=c^{d} \bmod n$
:

Example

- Alice receives 2816444442
- Alice uses private key, $d=53$, to decrypt message:
- $28^{53} \bmod 77=07$
- $16^{53} \bmod 77=04$
- $44^{53} \bmod 77=11$
- $44^{53} \bmod 77=11$
- $42^{53} \bmod 77=14$
- Alice translates message to letters to read HELLO
- No one else could read it, as only Alice knows her private key and that is needed for decryption

15

Common Misconceptions

- It is more secure from cryptanalysis than is conventional encryption
- It makes conventional encryption obsolete
- Key distribution is trivial when using public-key encryption.

Example

- Take $p=7, q=11$, so $n=77$ and $\phi(n)=60$
- Alice chooses $e=17$, making $d=53$
- Bob wants to send Alice secret message HELLO (07 041111 14)
- $07^{17} \bmod 77=28$
- $04^{17} \bmod 77=16$
- $11^{17} \bmod 77=44$
- $11^{17} \bmod 77=44$
- $14^{17} \bmod 77=42$
- Bob sends 2816444442

A few points
 - It could be slow
 - Depend on the key length: 512, 1024, 2048, 4096...
 - but . .
 - I don't have to distribute a secret key because I have my Private Key
 - Everyone with whom I communicate can know my Public Key
 - Scales well
 - There's only one copy of the Private Key

Security Services

- Confidentiality
- Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
- Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
- Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
- Message enciphered with private key came from someone who knew it

Digital Signature Verification

Keys

- Keyed cryptographic checksum: requires cryptographic key
- Message Authentication Code (MAC)
- DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
- Hash Function
- MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

23

Keys
- Keyed cryptographic checksum: requires
cryptographic key
- Message Authentication Code (MAC)
- DES in chaining mode: encipher message, use
last n bits. Requires a key to encipher, so it is
a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires
no cryptographic key
- Hash Function
- MD5 and SHA-1 are best known; others
include MD4, HAVAL, and Snefru
23

Digital Signature

- Authenticates sender's identity

Cryptographic Checksums

- Used for message authentication
- Mathematical function to generate a set of k bits from a set of n bits (where $k \leq n$).
- k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
- ASCII has 7 bits; 8th bit is "parity"
- Even parity: even number of 1 bits
- Odd parity: odd number of 1 bits

22

HMAC

- Incorporation of a secret key into an existing hash algorithm
- "A hash function such as MD5 was not designed for use as a MAC and cannot be used directly for that purpose because it does not rely on a secret key."

Algorithm

- h keyless cryptographic checksum function that takes data in blocks of b bytes and outputs blocks of / bytes. k^{\prime} is cryptographic key of length b bytes
- If short, pad with 0 bytes; if long, hash to length b
- ipad is 00110110 repeated b times
- opad is 01011100 repeated b times
- HMAC- $h(k, m)=h\left(k^{\prime} \oplus\right.$ opad $\| h\left(k^{\prime} \oplus i p a d \|\right.$ m))
- \oplus exclusive or, || concatenation

Next Session

- Lecture on Key Management
- 50 minutes
- Quiz 1
- 40 minutes

