THE UNIVERSITY OF BRITISH COLUMBIA

Asymmetric Crypto System

EECE 412 Session 5

Last Session Recap

Symmetric Cryptography

- Classical cryptography
- Sender, receiver share common key
- Same key used for encryption and decryption
- Two basic types
 - Transposition (permutation) ciphers
 - Substitution ciphers
- Block cipher
 - SP-network
 - Modes of operation

Outline

- Asymmetric Cryptography
- Diffie Hellman
- RSA
- Cryptographic Checksums

Asymmetric Cryptography

- Public key cryptography
- Based on mathematical functions
- Two keys
 - Private key known only to individual (owner)
 - Public key available to anyone
- Idea
 - Confidentiality: encipher using public key, decipher using private key
 - Integrity/authentication: encipher using private key, decipher using public one

Requirements

- It must be computationally easy to encipher or decipher a message given the appropriate key
- It must be computationally infeasible to derive the private key from the public key
- It must be computationally infeasible to determine the private key from a chosen plaintext attack

Well-Known Public Key Schemes

Diffie / Hellman (1976)

- First public key scheme
- Originally proposed for key exchange
- RSA (Rivest, Shamir, Adleman) (1977)
 - Only widely accepted and implemented general-purpose approach to public-key encryption.

Diffie-Hellman

- Compute a common, shared key
 - Called a symmetric key exchange protocol
- Based on discrete logarithm problem
 - Given integers n and g and prime number p, compute k such that n = g^k mod p
 - Solutions known for small p
 - Solutions computationally infeasible as p grows large
 - {k} can be viewed as private key and {n} can be viewed as public key

Algorithm

- Constants: prime p, integer $g \neq 0$, 1, p–1
 - Known to all participants
- Alice chooses private key kAlice, computes public key KAlice = g^{kAlice} mod p
- To communicate with Bob, Anne computes Kshared = KBob^{kAlice} mod p
- To communicate with Alice, Bob computes Kshared = KAlice^{kBob} mod p
 - It can be shown these keys are equal

Example

- Assume p = 53 and g = 17
- Alice chooses kAlice = 5
 - Then *KAlice* = $17^5 \mod 53 = 40$
- Bob chooses kBob = 7
 - Then $KBob = 17^7 \mod 53 = 6$
- Shared key:
 - *KBob*^{*kAlice*} mod $p = 6^5$ mod 53 = 38
 - *KAlice^{kBob}* mod $p = 40^7$ mod 53 = 38

RSA

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer n
- Plaintext is encrypted in blocks m. (m < n)</p>
- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$

 $(= (m^e)^d \mod n$

- $= m^{ed} \mod n = m \mod n$)
- Sender knows: {e, n} public key
- Receiver knows: {d, n} private key

Requirements of RSA

- It is possible to find values of *e*, *d*, *n* such that *m* = *m*^{ed} mod *n* for all *m* < *n*.
- It is relatively easy to calculate m^e and c^d
 for all values of m < n.
- It is infeasible to determine d given e and
 n.

Background

- Totient function \u03c6(n)
 - Number of positive integers less than n and relatively prime to n
 - *Relatively prime* means with no factors in common with n
- Example: $\phi(10) = 4$
 - 1, 3, 7, 9 are relatively prime to 10
- Example: $\phi(21) = 12$
 - 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

Algorithm

- Choose two large prime numbers p, q
 - Let n = pq; then $\phi(n) = (p-1)(q-1)$

 - Compute *d* such that $ed \mod \phi(n) = 1$
- Public key: (e, n); private key: (d, n);

P, *q*, $\phi(n)$ are safely destroyed.

- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$

Example

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 - $07^{17} \mod 77 = 28$
 - $04^{17} \mod 77 = 16$
 - $11^{17} \mod 77 = 44$
 - $11^{17} \mod 77 = 44$
 - $14^{17} \mod 77 = 42$
- Bob sends 28 16 44 44 42

Example

- Alice receives 28 16 44 44 42
- Alice uses private key, d = 53, to decrypt message:
 - $28^{53} \mod 77 = 07$
 - $16^{53} \mod 77 = 04$
 - $44^{53} \mod 77 = 11$
 - $44^{53} \mod 77 = 11$
 - $42^{53} \mod 77 = 14$
- Alice translates message to letters to read HELLO
 - No one else could read it, as only Alice knows her private key and that is needed for decryption

A few points

It could be slow

Depend on the key length: 512, 1024, 2048, 4096...

• but . . .

- I don't have to distribute a secret key because I have my Private Key
- Everyone with whom I communicate can know my Public Key
- Scales well
 - There's only one copy of the Private Key

Common Misconceptions

- It is more secure from cryptanalysis than is conventional encryption
- It makes conventional encryption obsolete
- Key distribution is trivial when using public-key encryption.

Security Services

Confidentiality

- Only the owner of the private key knows it, so text enciphered with public key cannot be read by anyone except the owner of the private key
- Authentication
 - Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Digital Signature

Authenticates sender's identity

Digital Signature Verification

21

Cryptographic Checksums

- Used for message authentication
- Mathematical function to generate a set of k bits from a set of n bits (where k ≤ n).
 - k is smaller then n except in unusual circumstances
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Keys

- Keyed cryptographic checksum: requires cryptographic key
 - Message Authentication Code (MAC)
 - DES in chaining mode: encipher message, use last *n* bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless cryptographic checksum: requires no cryptographic key
 - Hash Function
 - MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

HMAC

- Incorporation of a secret key into an existing hash algorithm
- "A hash function such as MD5 was not designed for use as a MAC and cannot be used directly for that purpose because it does not rely on a secret key."

Algorithm

- *h* keyless cryptographic checksum function that takes data in blocks of *b* bytes and outputs blocks of / bytes. *k*' is cryptographic key of length *b* bytes
 - If short, pad with 0 bytes; if long, hash to length b
- *ipad* is 00110110 repeated *b* times
- opad is 01011100 repeated b times
- HMAC-h(k, m) = h(k' ⊕ opad || h(k' ⊕ ipad || m))
 - \oplus exclusive or, || concatenation

Key Points

- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity
 - Keyed and Keyless

Next Session

- Lecture on Key Management
 - 50 minutes
- Quiz 1
 - 40 minutes

