
9/27/05

1

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Network Security

EECE 412
Session 8

2

Outline

Link & end-to-end protocols

SSL/TLS

WPA

3

Networks

4

Link and End-to-End Protocols

Link Protocol

End-to-End (or E2E) Protocol

5

Examples

 Telnet protocol
• Messages between client, server enciphered, and

• encipherment/decipherment occur only at these hosts

• End-to-end protocol

 PPP Encryption Control Protocol
• Host gets message, deciphers it

• Figures out where to forward it
• Enciphers it in appropriate key and forwards it

• Link protocol

6

Link vs. End-to-end protection

Link encryption
 Can protect headers of

packets
 Possible to hide source

and destination
• Note: may be able to

deduce this from traffic
flows

End-to-end encryption
 Cannot hide packet

headers
 Attacker can read

source, destination

9/27/05

2

7

Example Protocols

 Privacy-Enhanced Electronic Mail (PEM)
• Applications layer protocol
• Bishop

 Secure Socket Layer (SSL)/Transport Layer
Security (TLS)
• Transport layer protocol

 IP Security (IPSec)
• Network layer protocol
• Bishop

 Wi-Fi Protected Access (WPA)
• Data layer protocol
• Today session

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Secure Socket Layer (SSL)
a.k.a.

Transport Layer Security (TLS)

9

Networks

SSL/TLS

10

SSL Session

Association between two peers

 Two peers may have several sessions

 Information for each association:
• Unique session identifier

• Peer’s X.509v3 certificate, if needed

• Compression method

• Cipher spec for cipher and MAC

• “Master secret” shared with peer
• 48 bits

11

SSL Connection

Describes how data exchanged with peer in
a session

 Several connections per session
 Information for each connection

• Random data
• Write keys (used to encipher data)
• Write MAC key (used to compute MAC)
• Initialization vectors (IVs) for ciphers, if

needed
• Sequence numbers

12

Supporting Crypto

 All parts of SSL use them
 Initial phase: public key system exchanges

keys
• Messages enciphered using classical ciphers,

and MACed
• Only certain combinations allowed

• Depends on algorithm for key exchange cipher

• Key exchange (a.k.a., interchange) algorithms:
• RSA
• Diffie-Hellman
• Fortezza

9/27/05

3

13

RSA: Cipher, MAC Algorithms

SHADES, EDE mode, CBC mode

SHADES, CBC mode

SHAIDEA, CBC mode

MD5, SHARC4, 128-bit key

MD5, SHANoneRSA

SHADES, 40-bit key, CBC mode

MD5RC2, 40-bit key, CBC mode

MD5RC4, 40-bit key

MD5, SHA noneRSA,
key ≤ 512 bits

MAC AlgorithmClassical cipherInterchange
cipher

14

D-H: Cipher, MAC Algorithms

SHADES, EDE mode, CBC mode

SHADES, CBC mode

SHADES, 40-bit key, CBC modeDiffie-Hellman,
key ≤ 512 bits
RSA Certificate

SHADES, EDE mode, CBC mode

SHADES, CBC mode

SHADES, 40-bit key, CBC modeDiffie-Hellman,
DSS Certificate

MAC
Algorithm

Classical cipherInterchange
cipher

15

Fortezza: Cipher, MAC Algorithms

SHAFortezza, CBC mode

MD5RC4, 128-bit key

SHAnoneFortezza key
exchange

MAC AlgorithmClassical cipherInterchange
cipher

16

SSL Protocols

SSL Record Protocol

SSL Handshake
Protocol

SSL Change Cipher
Spec Protocol

SSL Alert
Protocol

SSL Application
Data Protocol

HTTP

17

SSL Record Layer

Message

Compressed
blocks

Compressed
blocks,

enciphered,
with MAC

MAC

18

Overview of Handshake Rounds

1. Create SSL connection between client,
server

2. Server authenticates itself
3. Client validates server, begins key

exchange
4. Acknowledgments all around

9/27/05

4

19

Handshake Round 1

Client Server
{ vC || r1 || sid1 || ciphers || comps }

Client Server
{v || r2 || sid2 || cipher || comp }

vC Client’s version of SSL
v Highest version of SSL that Client, Server both understand
r1, r2 nonces (timestamp and 28 random bytes)
sid1 Current session id (0 if new session)
sid2 Current session id (if s1 = 0, new session id)
ciphers Ciphers that client understands
comps Compression algorithms that client understand
cipher Cipher to be used
comp Compression algorithm to be used

Purpose: Create SSL connection between client, server

20

Handshake Round 2

Client Server
{certificate }

Note: if Server not to authenticate itself, only last message sent; third
step omitted if Server does not need Client certificate
mod public key modulus
exp public key exponent
kS Server’s private key
ctype Certificate type requested (by cryptosystem)
gca “Good” certification authorities
er2 End round 2 message

Client Server{mod || exp || { h(r1 || r2 || mod || exp) } kS }

Client Server
{ctype || gca }

Client Server
{er2 }

Purpose: Server authenticates itself

21

Handshake Round 3

Client Server
{ pre }eS

msgs Concatenation of previous messages sent/received this handshake
opad, ipad As above

Client Server
{ h(master || opad || h(msgs || master | ipad)) }

Both Client, Server compute master secret master:
master = MD5(pre || SHA(‘A’ || pre || r1 || r2) ||

MD5(pre || SHA(‘BB’ || pre || r1 || r2) ||
MD5(pre || SHA(‘CCC’ || pre || r1 || r2)

Purpose: Client validates server, begins key exchange

22

Handshake Round 4

Client Server
{ h(master || opad || h(msgs || 0x434C4E54 || master || ipad)) }

msgs Concatenation of messages sent/received this handshake in
previous rounds (does notinclude these messages)

opad, ipad, master As above

Client Server
{ h(master || opad || h(msgs || master | ipad)) }

Server sends “change cipher spec” message using that protocol

Client Server

Client sends “change cipher spec” message using that protocol

Client Server

23

SSL Change Cipher Spec Protocol

 Send single byte
 In handshake, new parameters

considered “pending” until this byte
received

24

SSL Alert Protocol

 Closure alert

• Sender will send no more messages

 Error alerts

• Warning

• connection remains open

• Fatal error

• connection torn down as soon as sent or received

9/27/05

5

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Wi-Fi Protected Access (WPA)

26

Where is WPA?

WPA WPA

SSL/TLS

IPSec IPSec

Jesse Walker, Intel CorporationSlide 27

doc.: IEEE 802.11-04/0123r1

Submission

Design Constraints

Wired Server
Access
Point

Station 1

Ethernet

Station 2

Constraint 1: All messages
flow through access point; 1st
generation AP MIP budget = 4
Million instructions/sec

Constraint 2: WLAN uses short
range radios, so APs must be
ubiquitous, so lowest cost

Constraint 3: Multicast integral to modern networking
(ARP, UPnP, Active Directory, SLP, …) and cannot be
ignored

28

Wireless Security
Overview

Paul Cychosz

March 2005

29

802.11i
Terms:

• 802.1x: Authentication standard
• RADIUS: Authentication Server
• EAP: Extensible Authentication Protocol
• CCMP: Encryption based on AES counter mode with

 CBC-MAC

30

802.11i Parts
Robust Secure Network (RSN)

802.1x / EAPoL

RADIUS EAP

EAP-TLS

CCMP / TKIP / WRAP

Outside of 802.11i, but
de facto standard

Authentication / Key Dist.

Encryption / Integrity

9/27/05

6

31

802.11i – First half

STA AP AS

Capability Discovery

802.1x Authentication

802.1x Key Management Keygen & Distribution

 Encryption + Additional handshaking

Copyright © 2004 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

WPA Key Managment

Jesse Walker, Intel CorporationSlide 33

doc.: IEEE 802.11-04/0123r1

Submission

Key
Confirmation
Key (KCK) –

PTK bits 0–127

Key Encryption
Key (KEK) –

PTK bits
128–255

Temporal Key – PTK bits 256–n – can
have cipher suite specific structure

802.11i Pairwise Key Hierarchy

Pairwise Master Key (PMK) : 256 bit Access token

Pairwise Transient Key (PTK)

Analog of the WEP key

34

Session Key Establishment

35

Handshake Details

{AA, AP Nonce, n, msg1}

 {SA, STA Nonce, n, msg2, MICPTK(STA Nonce, n, msg2)}

{AA, AP Nonce, n + 1, msg3, MICPTK(AP Nonce, n + 1, msg3)}

 {SA, n + 1, msg4, MICPTK(n + 1, msg4)}

36

Message 1
 not protected, doesn’t matter though

AP STA: {AA, AP Nonce, n, msg1}
AA: MAC Address of AP

AP Nonce: random value

n: sequence identifier

msg1: PMKID = HMAC-SHA1-128(PMK, "PMK Name" || AA || SPA).

•Client uses AP Nonce and PMK to compute PTK
PTK = 802.11i-PRF(
PMK,
min(AP Nonce, STA Nonce) || max(AP nonce, STA Nonce) ||
min(AP MAC Addr, STA MC Addr) || max(AP MAC Addr, STA MAC Addr))

9/27/05

7

37

802.11i – What’s PTK?

PMK
PA Nonce

STA Nonce
STA MAC

AP MAC
TK
KEK

KCK
Keygen

Algorithm

38

802.11i – Key Heirarchy

Cipher-suite
dependent

39

Message 2

STA AP: {SA, STA Nonce, n, msg2, MICPTK(STA Nonce, n, msg2)}

SPA: MAC Address of STA

SNonce: random value

n: sequence identifier, matches msg1

msg2: RSN IE of STA

• AP uses STA Nonce and PMK to compute PTK

40

Message 3

AP STA: {AA, AP Nonce, n + 1, msg3, MICPTK(AP Nonce, n + 1, msg3)}

AA: MAC Address of AP

AP Nonce: random value again

n: sequence identifier, to match msg4

msg3: Informs STA that TK ready to use, RSN IE of AP.

MIC: to verify the above. Silently discarded if MIC fails.

Verifies no MITM attack happening

41

Message 4

STA AP: {SPA, n + 1, msg4, MICPTK(n + 1, msg4)}

SPA: MAC Address of STA

n: sequence identifier, to match msg3

MIC: to verify the above. Silently discarded if MIC fails.

• This message dropped in some implementations.

• Only kept for convention

42

WPA Data Protection

9/27/05

8

43

AES-CCMP
 New encryption based on AES

“ NIST estimates that a machine that can break 56-bit DES key
in 1 second would take about 149 trillion years to crack a 128-bit

AES key (unless someone is very lucky)”

 CCMP: Counter Mode with Cipher Block Chaining Message
Authentication Code Protocol

Confidentiality protection: counter mode

Authenticity and integrity protection: CBC-MAC

44

AES-CCMP: Counter Mode Encryption

Nonce Counter

AESK
ey

Plaintext

Ciphertext

⊕

45

Cipher Block Chaining (CBC)

⊕

init. vector (IV) m1

Ek

c1

⊕

m2

c2

…

…

…

Ek

M = m1 | m2 | … | mn

C = IV | c1 | c2 | … | cn

46

Integrity and authenticity Protection

MIC: CBC-MAC / per packet algorithm

 128-bit generation, but only take first 64-bits

 XOR blocks, hence “block-chaining”

 MIC computed on packet header

 MIC then encrypted (using IV = 0, CTR mode) and appended
to payload

